7. Exercise for Differential Equations II (WS 2016/17, Väth)

Time limit: Wednesday, December 7, 2016

Exercise 16. Let $u \in C(\Omega, \mathbb{R})$ be subharmonic. Show for every ball $B_{\rho}(x_0) \subseteq \Omega$ on which u is Lebesgue integrable (e.g. $K_{\rho}(x_0) \subseteq \Omega$) that

$$u(x_0) \leq \frac{1}{\operatorname{mes} B_{\rho}(x_0)} \int_{B_{\rho}(x_0)} u(x) \, dx.$$

(4 Points)

(2 Points)

An analogous formula with \geq holds for superharmonic functions. *Hint.* Use without proof the Cavalieri principle in polar coordinates:

$$\int_{B_{\rho}(x_0)} u(x) \, dx = \int_0^{\rho} \int_{S_r(x_0)} u \, d\sigma \, dr$$

Exercise 17. Let $u \in C^3(\Omega, \mathbb{R})$ be harmonic. Show successively:

- a) Every partial derivative u_{x_i} is harmonic.
- b) (Cauchy estimate for u') If |u| is bounded on $B_r(x_0) \subseteq \Omega$ by M then

$$|u_{x_i}(x_0)| \le \frac{M}{\operatorname{mes} B_r(x_0)}.$$
 (6 Points)

Hint. Apply Exercise 16 and integration by parts for the product $u_{x_i} \cdot 1$ on a ball $B_{\rho}(x_0)$ with $\rho < r$.

c) (Liouville's theorem) If $\Omega = \mathbb{R}^n$ and u is (globally) bounded then u is constant. (4 Points) **Exercise 18.** Let $\Omega \subseteq \mathbb{R}^n$ be open, and $x_0 \in \Omega$. Show that there is no function $\delta \colon \Omega \to [-\infty, \infty]$ such that

$$\int_{\Omega} \delta(x) u(x) \, dx = u(x_0)$$

for every $u \in C^{\infty}(\mathbb{R}^n, \mathbb{R})$. (The integral is understood in the sense of Lebesgue.) (4 Points) *Hint*. Use without proof that there is $v \in C^{\infty}(\mathbb{R}^n, [0, 1])$ satisfying v(0) = 1, which has its *support*

$$\operatorname{supp} v := \overline{\{x \in \mathbb{R}^n : v(x) \neq 0\}}$$

contained in $K_1(0)$, and consider $u_n(x) := v(n(x - x_0))$