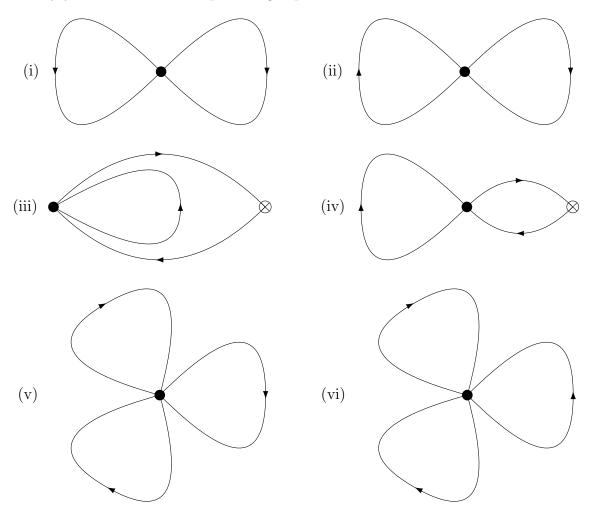
Homework Assignments **Dynamical Systems I** Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ due date: Friday, July 13, 2018

Problem 41: Which of the following sets are possible ω -limits of a (single) trajectory of some planar flow? Which of the sets cannot occur as ω -limits (of a single trajectory)? Justify your claims, without providing explicit vector fields.



Discs \bullet denote equilibria (of any type) and crossed out circles \otimes denote hyperbolic saddles.

Problem 42: Prove or disprove the theorem of Poincaré & Bendixson for flows on

- (i) the sphere S^2 ,
- (ii) the torus T^2 .

Problem 43: Prove or disprove a discrete version of Poincaré & Bendixson in the plane. Consider

$$x_{n+1} = f(x_n), \qquad x_n \in \mathbb{R}^2,$$

where $f \in C^1$ is a diffeomorphism. Define the discrete flow $\phi_n(x_0)$ by $\phi_n(x_0) := f^n(x_0)$. Let the forward trajectory $\gamma_+(x_0) := \{\phi_n(x_0), n \in \mathbb{N}\}$ of x_0 be bounded. Then $\omega(x_0)$ contains a periodic orbit or a fixed point.

Problem 44: Show that the system

$$\dot{x} = x + y - (2x^2 + y^2)x, \dot{y} = -x + y - (2x^2 + y^2)y,$$

possesses a periodic orbit.

Problem 45: [10 Extra points]

Let f be a differentiable vector field on \mathbb{R}^3 . Prove or disprove: A trajectory coincides with its ω -limit set if, and only if, the trajectory is an equilibrium or a periodic orbit. For your convenience and warning - There is an incorrect proof related to the claim, see H. Amann - Ordinary Differential Equations.