Homework Assignments **Dynamical Systems II** Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ due date: Friday, November 16, 2018, 12:00

Problem 13: Let A be a C^2 circle diffeomorphism with irrational rotation number. Consider the set \mathcal{H} of circle homeomorphisms which conjugate A to a rigid rotation. Endow \mathcal{H} with the sup-norm distance. Show that \mathcal{H} is (homeomorphic to) a circle.

[Extra credit: The rational case]

Let A be a C^2 circle diffeomorphism with rational rotation number and assume that all points are periodic. Describe the set \mathcal{H} of circle homeomorphisms which conjugate A to a rigid rotation.

Problem 14: Consider a nonlinear flow on \mathbb{T}^2 with the *y*-axis S^1 as global Poincaré section. Let $\tilde{\Phi}_t$ denote the flow after multiplication by an Euler multiplier which fixes the Poincaré time to be identically 2π . Assume that the rotation number ρ of $\tilde{\Phi}_{2\pi}$ is irrational. Show that there exists a homeomorphism H of \mathbb{T}^2 which conjugates $\tilde{\Phi}_t$ to the parallel flow

$$\begin{array}{rcl} \dot{x} &=& 1, \\ \dot{y} &=& \rho. \end{array}$$

Problem 15: Consider the Fibonacci iteration on the torus

$$\begin{array}{rcl} A:\mathbb{T}^2 & \to & \mathbb{T}^2,\\ (x,y) & \mapsto & (y,x+y) (\mathrm{mod}\ 1). \end{array}$$

Is it well-defined? Is it invertible? Calculate stable and unstable manifolds of the fixed point (0,0) under the iteration A^n . Are they dense on the torus?

Problem 16:

Consider a matrix $B \in GL(\mathbb{R}^N)$ with eigenvalues $\lambda_1 > \ldots > \lambda_N > 0$, N = 3. B induces a map on the sphere S^{N-1} given by

$$\begin{array}{rccc} \tilde{B}: S^{N-1} & \to & S^{N-1} \\ \varphi & \mapsto & \frac{B\varphi}{||B\varphi||}. \end{array}$$

Given the iteration $\varphi_{n+1} = \tilde{B}\varphi_n$:

- (i) Determine all fixed points.
- (ii) Show that they are hyperbolic.
- (iii) Determine the stable and unstable manifolds W^s and W^u and the heteroclinic orbits between the fixed points.

[Extra credit] What about the general case N > 3.