Homework Assignments **Dynamical Systems II** Bernold Fiedler, Hannes Stuke http://dynamics.mi.fu-berlin.de/lectures/ due date: Friday, December 7, 2018, 12:00

Problem 25: Which of the following "paper-clip" maps gives rise to shift dynamics? (You can assume the maps to be affine linear, in the regions of intersection.)

Problem 26: A measure of complexity of a map Φ is the *topological entropy h*: Let N(n) be the number of periodic points of Φ with (not necessarily minimal) period n. Then the entropy is defined as

$$h := \limsup_{n \to \infty} \frac{\log N(n)}{n}.$$

Calculate the entropy h of the shift on m symbols. Prove that every iteration Φ containing a shift (i.e. with an invariant set I such that $\Phi|_I$ is conjugate to a shift on m symbols) has positive topological entropy. **Problem 27:** Consider the bouncing ball map described by

$$H(x,y) \coloneqq \begin{cases} 2x - y - \gamma \cos x, \\ x. \end{cases}$$

Here H is a diffeomorphism of \mathbb{R}^2 . In class we have derived horseshoe dynamics in the square $Q = [0, 2\pi]^2$, for $\gamma > 6\pi$. Let $I \subset Q$ denote the maximal invariant subset of Q. On I, we have proved that H is conjugate to the Bernoulli shift σ on two symbols, i.e. $H = \tau \sigma \tau^{-1}$. Involutions are maps for which the second iterate coincides with identity. Let R denote the linear involution

$$\begin{array}{rccc} R : & \mathbb{R}^2 & \to & \mathbb{R}^2 \\ & (x,y) & \mapsto & (y,x). \end{array}$$

- (i) Show that H is reversible under R, i.e. $H^{-1} = RHR^{-1}$. Conclude that H = AR, for a nonlinear involution A.
- (ii) Show RI = I, i.e. I is also invariant under the linear involution R.
- (iii) Characterize the symbolic coding $s = \tau^{-1}(p)$ of all points $p \in I$ which are *R*-fixed, i.e. Rp = p.
- (iv) Characterize the symbolic coding of all *H*-periodic points p which are *R*-fixed. How many points q of the *H*-orbit of p also satisfy Rq = q?
- (v) Extra credit (4 points): If p is R-fixed, then the H-orbit of p, as a set, is invariant under R. Conversely, characterize the symbolic coding of any H-orbit which, as a set, is invariant under R. Also characterize the symbolic coding of any H-periodic orbit which, as a set, is invariant under R.
- (vi) Extra credit (4 points): solve problems (iii) (v) for the nonlinear involution A, instead of R.

Problem 28: Consider the Hénon-like map

$$\bar{x} = 1 - \alpha x^2 + y, \bar{y} = \beta x.$$

Find a horseshoe for parameters $\alpha \gg 1$ and $0 < \beta \ll 1$. Hint: Choose a small $\varepsilon > 0$ and map the square $Q = [-\varepsilon, \varepsilon]^2$.