Homework Assignments Bifurcations: Theory and Applications Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Tuesday, October 29, 2019, 12:00

Let us recall some results mentioned in the lecture. **Theorem:** [Flow box theorem] For $x \in X = \mathbb{R}^N$ and $f \in C^1(X, X)$, consider the ODE

 $\dot{x} = f(x).$

Assume that $f(0) \neq 0$. Then there exists a local C^1 diffeomorphism Ψ near x = 0, such that $y = \Psi(x)$ satisfies

$$\dot{y} = e_1 \coloneqq \begin{pmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Theorem: [Shoshitaishvili theorem] For $x \in X = \mathbb{R}^N$ and $f \in C^1(X, X)$, consider the ODE

$$\dot{x} = f(x) = Ax + g(x),$$

where g(0) = 0 and $A := D_x f(0)$. Then there exists a local C^0 homeomorphism Ψ near x = 0, such that $y := \Psi(x)$ satisfies

$$\dot{y}^c = h(y^c),$$

$$\dot{y}^h = A^h y^h.$$

The superscripts c and h respectively denote the projection of the dynamics on the center and hyperbolic parts of the spectral splitting given by the linearization A. **Problem 1:** [Flow box theorem with parameters]

For $x \in X = \mathbb{R}^N$, and parameters $\lambda \in \Lambda = \mathbb{R}^k$, and $f \in C^1(\Lambda \times X, X)$, consider the ODE

$$\dot{x} = f(\lambda, x).$$

Use the standard flow box theorem quoted above to show that, for $|\lambda|$ small enough, there exists a λ -dependent local C^1 diffeomorphism $\Psi(\lambda, \cdot)$ near x = 0, such that $y = \Psi(\lambda, x)$ satisfies

$$\dot{y} = e_1$$

Can you choose $\Psi \in C^1$?

Problem 2: [Grobman-Hartman theorem with parameters]

Use the Shoshitaishvili theorem quoted above to prove the following Grobman-Hartman theorem with parameters:

For $x \in X = \mathbb{R}^N$, and parameters $\lambda \in \Lambda = \mathbb{R}^k$, and $f \in C^1(\Lambda \times X, X)$, consider the ODE

$$\dot{x} = f(\lambda, x).$$

Here f(0,0) = 0 and $A := D_x f(0,0)$ is hyperbolic. Then, for $|\lambda|$ small enough, there exists a family of λ -dependent local homeomorphisms $\Psi(\lambda, \cdot)$ near x = 0, such that $y := \Psi(\lambda, x)$ satisfies

$$\dot{y} = Ay.$$

Can you choose $\Psi \in C^0$?

Problem 3: [Shoshitaishvili theorem with parameters]

Use the Shoshitaishvili theorem quoted above to prove the following Shoshitaishvili theorem with parameters:

For $x \in X = \mathbb{R}^N$, and parameters $\lambda \in \Lambda = \mathbb{R}^k$, and $f \in C^1(\Lambda \times X, X)$, consider the ODE

$$\dot{x} = f(\lambda, x).$$

Here f(0,0) = 0 and $A \coloneqq D_x f(0,0)$. Then, for $|\lambda|$ small enough, there exists a family of λ -dependent local homeomorphisms $\Psi(\lambda, \cdot)$ near x = 0, such that $y \coloneqq \Psi(\lambda, x)$ satisfies

$$\dot{y}^c = h(\lambda, y^c),$$

 $\dot{y}^h = A^h y^h.$

Can you choose $\Psi \in C^0$?

Problem 4: Consider the Arnol'd cat map $A : \mathbb{T}^2 \to \mathbb{T}^2$ on the torus $\mathbb{T}^2 \cong \mathbb{R}^2/\mathbb{Z}^2$ given by the SL(2, \mathbb{Z})-matrix

$$A \coloneqq \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

- (i) Show that A maps the lattice $\{(p/n, q/n) \in \mathbb{R}^2 \mid p, q \in \mathbb{Z}\}/\mathbb{Z}^2 \subset \mathbb{T}^2$ to itself, for any $n \in \mathbb{N}$.
- (ii) Show that the periodic points of the cat map are a dense subset of \mathbb{T}^2 .
- (iii) Show that the (global) unstable manifold $W^{u}(0)$ of 0 is dense in \mathbb{T}^{2} .
- (iv) Show that the homoclinic points to 0 are dense.

[Extra credit] Are these statements also true for any hyperbolic matrix $A \in SL(2, \mathbb{Z})$, i.e. for $1 \notin |\text{spec } A|$?