Homework Assignments Bifurcations: Theory and Applications Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Wednesday, January 22, 2020, 12:00

Problem 37: For each of the following points, find an example of a vector field which is:

- (i) Hamiltonian, but not reversible.
- (ii) Reversible, but not Hamiltonian.
- (iii) Both Hamiltonian and reversible.
- (iv) Neither Hamiltonian nor reversible.

Problem 38: Consider an *R*-reversible vector field

$$\dot{x} = f(x) \in \mathbb{R}^N, \qquad f(Rx) = -Rf(x),$$

with R linear, $R^2 = id$, $Fix(R) \coloneqq \{x \in \mathbb{R}^N \mid Rx = x\}$.

- (i) Consider a solution x(t) satisfying $x(0), x(\tau) \in Fix(R)$ for $x(0) \neq x(\tau)$. Prove that x(t) is periodic and determine its period. What can you say about the minimal period?
- (ii) Consider a nonstationary periodic orbit $\gamma \subset \mathbb{R}^N$ which intersects $\operatorname{Fix}(R)$. Show that γ intersects $\operatorname{Fix}(R)$ at exactly 2 points.
- (iii) Consider a solution x(t) satisfying $x(0) \in Fix(R)$, and with α -limit set $\{x_{-}\} \subset Fix(R)$, a singleton such that $x_{-} \neq x(0)$. Prove that x(t) is a homoclinic solution.

Problem 39: Consider a R-reversible C^1 -vector field

$$\dot{x} = f(x) \in \mathbb{R}^N, \qquad f(Rx) = -Rf(x), \qquad f(0) = 0, \qquad A \coloneqq f'(0),$$

with R linear, $R^2 = \mathrm{id}$, $\mathrm{Fix}(R) \coloneqq \{x \in \mathbb{R}^N \mid Rx = x\}.$

- (i) Assume $det(A) \neq 0$. Prove that the dimension N must be even.
- (ii) Let N be odd and

$$\dim \operatorname{Fix}(R) = (N+1)/2.$$

Assume dim KerA < 2. Show that there exists a local curve of equilibria in Fix(R), near 0.

Problem 40: Consider a smooth vector field

(1)
$$\dot{x} = f(\lambda, x), \quad x \in \mathbb{R}^2, \quad \lambda \in \mathbb{R}, \quad f(\lambda, 0) \equiv 0, \quad D_x f(\lambda, 0) = \begin{pmatrix} \lambda & -1 \\ 1 & \lambda \end{pmatrix},$$

together with the iteration

(2)
$$x_{n+1} = \phi_T(\lambda, x_n),$$

where $\phi_T(\lambda, \cdot)$ is the time-T map of (1).

Characterize the parameter values λ , T for which the fixed point x = 0 in (2) undergoes subharmonic bifurcation. Discuss and interpret how the subharmonic bifurcation in (2) relates to the Hopf bifurcation from 0 for the ODE (1) at $\lambda = 0$.