Homework Assignments
 Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, January 22, 2020, 12:00

Problem 37: For each of the following points, find an example of a vector field which is:
(i) Hamiltonian, but not reversible.
(ii) Reversible, but not Hamiltonian.
(iii) Both Hamiltonian and reversible.
(iv) Neither Hamiltonian nor reversible.

Problem 38: Consider an R-reversible vector field

$$
\dot{x}=f(x) \in \mathbb{R}^{N}, \quad f(R x)=-R f(x),
$$

with R linear, $R^{2}=\mathrm{id}, \operatorname{Fix}(R):=\left\{x \in \mathbb{R}^{N} \mid R x=x\right\}$.
(i) Consider a solution $x(t)$ satisfying $x(0), x(\tau) \in \operatorname{Fix}(R)$ for $x(0) \neq x(\tau)$. Prove that $x(t)$ is periodic and determine its period. What can you say about the minimal period?
(ii) Consider a nonstationary periodic orbit $\gamma \subset \mathbb{R}^{N}$ which intersects $\operatorname{Fix}(R)$. Show that γ intersects $\operatorname{Fix}(R)$ at exactly 2 points.
(iii) Consider a solution $x(t)$ satisfying $x(0) \in \operatorname{Fix}(R)$, and with α-limit set $\left\{x_{-}\right\} \subset$ $\operatorname{Fix}(R)$, a singleton such that $x_{-} \neq x(0)$. Prove that $x(t)$ is a homoclinic solution.

Problem 39: Consider a R-reversible C^{1}-vector field

$$
\dot{x}=f(x) \in \mathbb{R}^{N}, \quad f(R x)=-R f(x), \quad f(0)=0, \quad A:=f^{\prime}(0),
$$

with R linear, $R^{2}=\mathrm{id}, \operatorname{Fix}(R):=\left\{x \in \mathbb{R}^{N} \mid R x=x\right\}$.
(i) Assume $\operatorname{det}(A) \neq 0$. Prove that the dimension N must be even.
(ii) Let N be odd and

$$
\operatorname{dim} \operatorname{Fix}(R)=(N+1) / 2
$$

Assume $\operatorname{dim} \operatorname{Ker} A<2$. Show that there exists a local curve of equilibria in $\operatorname{Fix}(R)$, near 0 .

Problem 40: Consider a smooth vector field

$$
\text { (1) } \dot{x}=f(\lambda, x), \quad x \in \mathbb{R}^{2}, \quad \lambda \in \mathbb{R}, \quad f(\lambda, 0) \equiv 0, \quad D_{x} f(\lambda, 0)=\left(\begin{array}{rr}
\lambda & -1 \\
1 & \lambda
\end{array}\right),
$$

together with the iteration

$$
\text { (2) } x_{n+1}=\phi_{T}\left(\lambda, x_{n}\right) \text {, }
$$

where $\phi_{T}(\lambda, \cdot)$ is the time- T map of (1).
Characterize the parameter values λ, T for which the fixed point $x=0$ in (2) undergoes subharmonic bifurcation. Discuss and interpret how the subharmonic bifurcation in (2) relates to the Hopf bifurcation from 0 for the ODE (1) at $\lambda=0$.

