Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, November 6, 2019, 12:00

Problem 5: [Center manifold theorem with parameters]
Use the center manifold theorem to prove the parametric version:
For $x \in X=\mathbb{R}^{N}$, parameters $\lambda \in \Lambda=\mathbb{R}^{k}$, and $f \in C^{1}(\Lambda \times X, X)$, consider the ODE

$$
\dot{x}=f(\lambda, x)=A x+g(\lambda, x), \text { with } g \text { bounded in } \lambda \text { and } x .
$$

Then there exists $\delta>0$ such that for $\sup _{x \in \mathbb{R}^{N}}\left|D_{(\lambda, x)} g(\lambda, x)\right|<\delta$ the following holds:
(i) The sets $M^{c}(\lambda):=\left\{x_{0} \in \mathbb{R}^{N}\left|\sup _{t \in \mathbb{R}}\right| x^{h}(\lambda, t) \mid<\infty\right\}$ are invariant C^{1}-manifolds, for each λ, which are given as the graphs of a family of bounded C^{1} functions

$$
\eta: \Lambda \times E^{c} \rightarrow E^{h} .
$$

Here $x(\lambda, t):=\varphi_{t}\left(\lambda, x_{0}\right)$ is the solution of the ODE at parameter value λ with initial condition x_{0}. The spaces E^{c}, E^{h} are the center and hyperbolic parts of the spectral splitting induced by A, respectively.
(ii) $M^{c}(\lambda)$ is the only such invariant $B C^{1}$ manifold.

Problem 6: For $x \in X=\mathbb{R}^{N}$ consider the ODE

$$
\begin{aligned}
\dot{x} & =x^{2}, \\
\dot{y} & =-y .
\end{aligned}
$$

(i) Suppose $M^{c}:=\{(x, \eta(x)) \mid x \in \mathbb{R}\}$ with $\eta \in C^{1}(\mathbb{R}, \mathbb{R})$ is a flow-invariant manifold. Show $\eta(x)=0$ for all $x \geq 0$.
(ii) Show that the graphs of

$$
\eta_{\alpha}(x):= \begin{cases}\alpha e^{1 / x} & \text { if } x<0 \\ 0 & \text { elsewhere }\end{cases}
$$

define smooth invariant manifolds parametrised over the center direction E^{c}. How is this compatible with the uniqueness part of the center manifold theorem seen in the lecture?

Problem 7: Consider the smooth iteration on \mathbb{R}^{2}

$$
x_{n+1}=F\left(x_{n}\right)=B x_{n}+\mathcal{O}\left(\left|x_{n}\right|^{2}\right):=\left(\begin{array}{cc}
\lambda_{1} & 0 \\
0 & \lambda_{2}
\end{array}\right) x+\mathcal{O}\left(\left|x_{n}\right|^{2}\right) .
$$

As usual, let $W_{m}:=\operatorname{Ker}\left(B^{T}[\cdot]_{m}\right)$, where $B^{T}[\cdot]_{m}$ is the restriction to the space of homogeneous polynomials of degree m of the commutator

$$
B^{T}[\phi](x):=B^{T} \phi(x)-\phi\left(B^{T} x\right), \phi \in C^{\infty}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)
$$

(i) Derive necessary and sufficient conditions on $\lambda_{1}, \lambda_{2} \in \mathbb{R} \backslash\{0\}$ under which there exists $m \geq 2$ such that $W_{m} \neq 0$.
(ii) Interpret your result: under which conditions on $\left(\lambda_{1}, \lambda_{2}\right)$ and in which sense, can the iteration F be "linearized" (dissertation of Henri Poincaré)?

Problem 8: \quad Consider the smooth iteration on \mathbb{R}

$$
x_{n+1}=F\left(x_{n}\right)=-x_{n}+\mathcal{O}\left(\left|x_{n}^{2}\right|\right), \quad x \in \mathbb{R} .
$$

(i) Show that the B^{T} normal form

$$
y_{n+1}=-y_{n}+b_{3} y_{n}^{3}+b_{5} y_{n}^{5}+\ldots
$$

is odd, to any finite order.
(ii) [Extra credit] Determine the stability of the fixed points $y=0$ and $x=0$, respectively, depending on $a_{2}:=F^{\prime \prime}(0) / 2$ and $a_{3}:=F^{\prime \prime \prime}(0) / 6$.

