Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, November 13, 2019, 12:00

Problem 9: Consider the parameter dependent iteration of the local C^{∞} diffeomorphism, F, given by

$$
\begin{equation*}
x_{n+1}=F\left(\lambda, x_{n}\right), \quad(\lambda, x) \in \mathbb{R}^{k} \times \mathbb{R}^{N} \tag{1}
\end{equation*}
$$

Assume a trivial fixed point, $F(\lambda, 0) \equiv 0, B:=D_{x} F(0,0)$. Thus, the linearization at the origin of the extended system

$$
\begin{aligned}
& x_{n+1}=F\left(\lambda_{n}, x_{n}\right), \quad \text { is } \quad \tilde{B}:=\left(\begin{array}{c|c}
B & 0 \\
\hline 0 & I_{\mathbb{R}^{k}}
\end{array}\right) \begin{array}{l}
n+1
\end{array}, .
\end{aligned}
$$

Compare the \tilde{B}^{T} normal form of the full system with the B^{T} normal form of
(2) $\quad x_{n+1}=F\left(0, x_{n}\right)$.

Prove that replacing the coefficients of the normal form to (2) by properly chosen polynomials in λ yields the normal form to (1).

Problem 10: Consider the parameter dependent iteration of the local C^{∞} diffeomorphism, F, given by

$$
x_{n+1}=F\left(\lambda, x_{n}\right)=(-1-\lambda) x_{n}+r\left(\lambda, x_{n}\right), \quad \lambda, x_{n} \in \mathbb{R} .
$$

Here, for fixed $\lambda, r(\lambda, x)$ is of order x^{2}.
(i) Show that, for λ small, the $B(\lambda)^{T}$ normal form

$$
y_{n+1}:=(-1-\lambda) y_{n}+\alpha_{3}(\lambda) y_{n}^{3}+\ldots
$$

is odd, to any finite order.
(ii) Assume $\alpha_{3}(0)>0$. Show that the iterations
(1) $y_{n+1}=(-1-\lambda) y_{n}+\alpha_{3}(\lambda) y_{n}^{3}+\ldots \quad$ and
(2) $\tilde{y}_{n+1}=(-1-\lambda) \tilde{y}_{n}+\tilde{y}_{n}^{3}+\ldots$,
are (locally) topologically equivalent for λ fixed, small enough. In other words, show that there exists a local homeomorphism h such that if $\left\{\tilde{y}_{n}\right\}_{n \in \mathbb{N}}$ solves (2), then

$$
\left\{y_{n}\right\}_{n \in \mathbb{N}}:=\left\{h\left(\tilde{y}_{n}\right)\right\}_{n \in \mathbb{N}}
$$

solves (1). Seek h of the form $h(\tilde{y})=\tilde{y}+h_{2}(\lambda) \tilde{y}^{2}+h_{3}(\lambda) \tilde{y}^{3}+\ldots$
(iii) Study the stability of the trivial branch of fixed points $\tilde{y}_{n} \equiv 0$ depending on λ and show that if $\lambda>0$ small, then the truncated iteration

$$
\tilde{y}_{n+1}=(-1-\lambda) \tilde{y}_{n}+\tilde{y}_{n}^{3},
$$

has period 2 solutions near $\tilde{y}_{n} \equiv 0$.

Problem 11: Show that the Lie group $S O(2)$ is path connected, but not simply connected. How about $S U(2)$?
Hint: Prove first that the groups consist of matrices of the form

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right),
$$

for α, β real and complex, respectively, with $|\alpha|^{2}+|\beta|^{2}=1$.
[Extra credit] The Lie group $S O(3)$ is path connected. Is it simply connected?

Problem 12:

(i) Show that the standard matrix exponential

$$
\exp : \mathfrak{s o}(2) \rightarrow S O(2)
$$

is surjective.
(ii) Show that the map

$$
\exp : \mathfrak{s l}(2, \mathbb{R}) \rightarrow S L(2, \mathbb{R})
$$

is not surjective.
(iii) Additionally, prove that any matrix in $S L(2, \mathbb{R})$, close enough to the identity, is in the range of the exponential.

Notation:

$$
\begin{gathered}
\mathfrak{s o}(2, \mathbb{R}):=\left\{\left.\left(\begin{array}{cc}
0 & -\omega \\
\omega & 0
\end{array}\right) \right\rvert\, \omega \in \mathbb{R}\right\}, \\
\mathfrak{s l}(2, \mathbb{R}):=\left\{\left.\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right) \right\rvert\, a, b, c \in \mathbb{R}\right\} .
\end{gathered}
$$

