Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, November 20, 2019, 12:00

Problem 13: Consider the smooth vector field

$$
\dot{x}=f(x)=\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right) x+\mathcal{O}\left(|x|^{2}\right)
$$

Compute $W_{m}=\operatorname{Ker}\left(\operatorname{ad}_{m} A^{T}\right)$, up to order 4 .

Problem 14: Consider the smooth ODE in \mathbb{R}^{N}

$$
\dot{x}=f(x)=A x+\mathcal{O}\left(|x|^{2}\right),
$$

with time-1 map denoted Φ_{1}. Derive non-resonance conditions for the iteration

$$
x_{n+1}=\Phi_{1}\left(x_{n}\right)=B x_{n}+\mathcal{O}\left(\left|x_{n}\right|^{2}\right),
$$

where $B:=\exp (A)=\operatorname{diag}\left\{\lambda_{1}, \ldots, \lambda_{N}\right\}$.

Problem 15: Consider the Lie algebra $\mathfrak{s o}(3)$ of skew-symmetric real (3×3) matrices. Show that the map

$$
\mathfrak{s o}(3) \longrightarrow \mathbb{R}^{3}, \quad\left(\begin{array}{ccc}
0 & a & b \\
-a & 0 & c \\
-b & -c & 0
\end{array}\right) \longmapsto\left(\begin{array}{c}
-c \\
b \\
-a
\end{array}\right)
$$

transforms the Lie bracket

$$
[\mathfrak{a}, \mathfrak{b}]=\mathfrak{a b}-\mathfrak{b a}
$$

into the vector product on \mathbb{R}^{3}. Give a geometric interpretation.
Analogously, show that the map

$$
\mathfrak{s u}(2) \longrightarrow \mathbb{R}^{3}, \quad \frac{1}{\sqrt{2}}\left(\begin{array}{cc}
a i & i b+c \\
i b-c & -a i
\end{array}\right) \longmapsto\left(\begin{array}{c}
-c \\
b \\
-a
\end{array}\right),
$$

defined on the Lie algebra $\mathfrak{s u}(2)$, transforms the Lie bracket into the vector product on \mathbb{R}^{3}.
Find an isomorphism between the Lie algebras $\mathfrak{s u}(2)$ and $\mathfrak{s o}(3)$.

Problem 16: Consider the truncated normal form for the Arnol'd-Takens-Bogdanov bifurcation

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=a x_{1}^{2}+b x_{1} x_{2},
\end{aligned}
$$

where $a, b \neq 0$. Discuss how one can assume $a=b=1$, without loss of generality, by making use of spatial and temporal rescalings (which can involve changes in the time direction).

