Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, November 27, 2019, 12:00

In problems 17-19 consider the unfolding of the normal form for the Arnol'd-TakensBogdanov bifurcation

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=\lambda_{1}+\lambda_{2} x_{2}+x_{1}^{2}+x_{1} x_{2} .
\end{aligned}
$$

Assume $\lambda_{1}, \lambda_{2}, x_{1}, x_{2}$ are near 0 . In the lecture we discussed the splitting of the parameter plane $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$ into four regions in which the system showcases fundamentally different dynamics.

Problem 17: Fix $\lambda_{2} \neq 0$ and consider $-\delta\left(\lambda_{2}\right)<\lambda_{1}<0$, for small enough $\delta=\delta\left(\lambda_{2}\right)$. Use center manifold theory to prove that there exists a heteroclinic orbit connecting the two equilibria x_{+}and x_{-}. Let (1) denote the region $\lambda_{1}>0$ in the parameter plane. Sketch the phase portraits in a neighborhood of the origin as the parameters $\left(\lambda_{1}, \lambda_{2}\right)$ cross from region (1) to (2) and from (1) to (4), respectively.
Hint: Use the invariance of the center manifold to obtain the coefficients of its Taylor expansion of the form

$$
\eta\left(\lambda_{1}, x_{1}\right)=h_{01} \lambda_{1}+h_{20} x_{1}^{2}+h_{11} x_{1} \lambda_{1}+h_{02} \lambda_{1}^{2}+\ldots,
$$

with coefficients $h_{j k}$ which depend on λ_{2}.

Problem 18: Sketch the phase portraits in a neighborhood of the origin as the parameters cross from region (2) to (3), by crossing the Hopf curve.

Problem 19: Try to guess the phase portraits in a neighborhood of the origin as the parameters cross from region (3) to (4), by crossing the homoclinic curve.

Problem 20: Consider the real ordinary differential equation

$$
\dot{x}=\lambda_{1}+\lambda_{2} x+x^{2} .
$$

Determine the number of equilibria and their stability, depending on the values of the real parameters λ_{1} and λ_{2}. Sketch the phase portraits close to the origin for each relevant region in the parameter plane, in the spirit of problems 17-19.

References:

J. Guckenheimer and P. Holmes: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, Springer, 2003, Sec. 7.3.
V.I. Arnol'd: Geometrical Methods in the Theory of Ordinary Differential Equations, Springer, 1988.

