Homework Assignments
 Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, December 4, 2019, 12:00

Problem 21: In the setting of the Arnol'd-Takens-Bogdanov bifurcation from the previous exercise sheet, consider the modification

$$
\begin{aligned}
& \dot{x}_{1}=x_{2}, \\
& \dot{x}_{2}=\lambda_{1} x_{1}+\lambda_{2} x_{2}+x_{1}^{2}+x_{1} x_{2} .
\end{aligned}
$$

Determine the parameters $\left(\lambda_{1}, \lambda_{2}\right)$ near zero where:
(i) Stationary bifurcations could occur.
(ii) Hopf bifurcation could occur.

Discuss what happens in the phase planes, locally near $x=0$. Just try, as far as you get.

Problem 22: Consider the real ordinary differential equation

$$
\dot{x}=\lambda_{1}+\lambda_{2} x+x^{3} .
$$

The set of equilibria determines a surface, which can be parametrized over $\left(\lambda_{2}, x\right)$, instead of solving for x as a function of $\left(\lambda_{1}, \lambda_{2}\right)$. The number of equilibria x, near any given $\lambda=\left(\lambda_{1}, \lambda_{2}\right)$, can only change where the implicit function theorem for $x=x(\lambda)$ fails. Determine the number of equilibria and their stability, depending on the values of the real parameters λ_{1} and λ_{2}. Sketch the global phase portraits for each relevant region in the parameter plane.

Problem 23: Consider the unfolding of the van der Pol oscillator

$$
\begin{aligned}
\varepsilon \dot{x} & =y+x-\frac{1}{3} x^{3}, \\
\dot{y} & =\lambda-x .
\end{aligned}
$$

Use center manifold theory and time rescalings to discuss the dynamics of the system for fixed λ and $\varepsilon \searrow 0$. Sketch the phase portraits for $\lambda>1$ and $\lambda<1$.
Do nonstationary periodic orbits exist?

Problem 24: In the setting of problem 23, discuss the bifurcation of the equilibrium $(x, y)=\left(\lambda, \frac{1}{3} \lambda^{3}-\lambda\right)$ for λ crossing 1 and fixed ε.
Which solutions bifurcate? How do you reconcile this effect with the observations of problem 23 , for λ close to 1 and small $\varepsilon>0$?

