
Extra Homework Assignments

Bifurcations: Theory and Applications
Bernold Fiedler, Alejandro López Nieto

http://dynamics.mi.fu-berlin.de/lectures/

due date: Wednesday, January 15, 2020, 12:00

Only attempted exercises will be discussed in tutorials. All exercises are for extra credit:
the points you obtain will count towards your “Übungsschein”, but we will not use these
questions to calculate the 25% threshold of the “Übungsschein”.

Weihnachtsaufgabe 1: Let ρ be a real, finite-dimensional, irreducible representation
of a group Γ on a real vector space X. Prove or disprove:

If dimX is odd, then ρ is absolutely irreducible.

Weihnachtsaufgabe 2: Consider the heat equation

∂tu(t, x) = ∂xxu(t, x), x ∈ R, t > 0.

Find, explicitly, a solution by using the Ansatz

u(t, x) = G(t, x) := 1√
t
v
(
x√
t

)
, x ∈ R, t > 0,

where v ∈ C2(R,R) ∩ L2(R), v(0) = 1/
√

4π.

[Extra credit] Show that the solutions of the nonhomogeneous heat equation

∂tu(t, x) = ∂xxu(t, x), x ∈ R, t > 0,

u(0, x) = f, f ∈ L2(R),

are given by u(t, x) = (G(t, ·) ∗ f)(x), t > 0, where ∗ denotes convolution. Which initial
value problem does G solve?
Hint: Consider the Fourier transform of the heat equation.

Weihnachtsaufgabe 3: Show that ρ(γ) : L2(R)→ L2(R) given by

(ρ(γ)u)(x) = 1√
4πγ

∫
R

exp
(
−(x−y)2

4γ

)
u(y)dy, γ > 0, x ∈ R,

is a representation of the semigroup ([0,+∞),+) on L2(R). Is it norm continuous? Is it
strongly continuous?
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Weihnachtsaufgabe 4: Let G ≤ SO(3) denote the subgroup of orientation preserv-
ing real orthogonal 3× 3-matrices which map the cube [−1, 1]3 onto itself, as a set (but
not necessarily fixing each point of the cube).

(i) Characterize G as a group Γ of permutations, e.g. of the vertices of the cube. In
other words G = ρ(Γ) ≤ SO(3), for a certain representation ρ of the finite group
Γ of permutations, by rotations in R3. Try to describe the group Γ as simply as
possible.

(ii) Is the representation irreducible? Is it absolutely irreducible?

(iii) What happens if we replace the cube maxn |xn| ≤ 1 by the octahedron
∑

n |xn| ≤ 1 ?

Weihnachtsaufgabe 5: In the setting of Weihnachtsaufgabe 4 determine all isotropy
subgroups of G, up to conjugacy, and their fixed-point subspaces.

[Extra credit] How do the results of Weihnachtsaufgaben 4 and 5 change for G ≤ O(3)?

Weihnachtsaufgabe 6: Derive the formula for the Laplacian

∆ := ∂2x1 + ∂2x2 + ∂2x3 =
1

r2
(
∂r(r

2∂r) + 1
sinϑ

∂ϑ((sinϑ) ∂ϑ) + 1
sin2 ϑ

∂2ϕ
)
,

in standard polar coordinates on R3

x1 = r sinϑ cosϕ,
x2 = r sinϑ sinϕ,
x3 = r cosϑ.

Use the variational formulation∫
R3

∆u, v = −
∫
R3

∇u,∇v,

for smooth u, v with compact support.

Weihnachtsaufgabe 7: The gradient ∇x of u ∈ C1(RN ,R) is the only vector
satisfying

Dxu(x)y = 〈∇xu, y〉 , for all vectors y ∈ RN .

Consider the usual representation ρ of the orthogonal group Γ = O(N) on C1(RN ,R),
via (ρ(γ)u)(x) = u(γ−1x) and derive the coordinate transformation of the gradient

∇γ−1x = γT∇x.
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Weihnachtsaufgabe 8: Consider u ∈ L2(S2,R). The Laplacian, ∆u, and gradient,
∇u, are defined (variationally) as the operators that satisfy∫

S2

∆uv = −
∫
S2

∇u · ∇v =

∫
S2

u∆v for all smooth functions v.

Given the usual representation ρ of Γ = O(3) on L2(S2,R), (ρ(γ)u)(x) = u(γ−1x).
Show the equivariance of the Laplacian under orthogonal transformations, i.e.

ρ(γ)(∆u) = ∆(ρ(γ)u).

Note: ∆v, ∇v are the usual Laplacian and gradient for smooth functions.

[Extra credit] What about the Laplacian on L2(B3,R)? Here B3 denotes the unit ball
in R3 and ∫

B3

∆uv = −
∫
B3

∇u · ∇v =

∫
B3

u∆v for all smooth functions v.

Weihnachtsaufgabe 9: Determine the spectrum of the Laplace-Beltrami operator
∆S2 on the 2-sphere from the kernel of the Laplacian ∆ on the space H` of homogeneous
complex valued polynomials u : R3 → C. Use the Ansatz u = r`v(ϑ, ϕ) in polar coordi-
nates. Show that the eigenspaces V` of ∆S2 , given by the restriction of the polynomials
in Ker ∆ ≤ H` to S2, are spanned by the spherical harmonic functions

Y`m = P `
m(cosϑ) exp(imϕ).

Here P `
m denote the associated Legendre polynomials. (Yes, look up those definitions!)

3



Weihnachtsaufgabe 10:

The Poisson bracket of G,H ∈ C∞(R2N ,R) is defined as

{H,G} := 〈∇G, J∇H〉 , J =

(
0 IdN
−IdN 0

)
.

The Lie bracket of two vector fields g, h ∈ C∞(R2N ,R2N) is defined as

[h, g](x) := Dh(x)g(x)−Dg(x)h(x).

Show that:

(i) (C∞(R2N ,R), {·, ·}) and (C∞(R2N ,R2N), [·, ·]) are Lie algebras.

(ii) The map
X· : C

∞(R2N ,R) → C∞(R2N ,R2N)
H 7→ XH := J∇H,

is a homomorphism of Lie algebras, i.e.

[XH , XG] = X{H,G}.

Weihnachtsaufgabe 11: [Emmy Noether theorem]

In the setting of Weihnachtsaufgabe 10, for any G,H ∈ C∞(R2N ,R) let us denote by φsG
and φtH the flows (assumed global) of the ordinary differential equations

ẋ = XG(x) and ẋ = XH(x), respectively.

Show that:

(i) G(φtH(x)) = const. for all t ∈ R if, and only if, {H,G} = 0.

(ii) φsGφ
t
H = φtHφ

s
G for all s, t ∈ R if, and only if, [XH , XG] = 0.

(iii) G(φtH(x)) = const. for all t ∈ R if, and only if, φsGφ
t
H = φtHφ

s
G for all s, t ∈ R.

4



Weihnachtsaufgabe 12: At the beginning of the 17th century, the brilliant as-
tronomer Johannes Kepler used observational data by Tycho Brahe (and his daughters)
to derive the laws of planetary motion. Thanks to the precision of his methods (some
might even call them witchcraft), he was able to oppose well-believed and little checked
“scientific facts”. A man of faith, his results enabled him to trace a series of rare con-
junctions of Jupiter and Saturn back, all the way, to at least 7 B.C. Such rare events
may well have enlightened more than just three magi to seek the light.

In the same setting as 10, 11, with N = 3, suppose that the planetary 2-body motion
is governed by the Hamiltonian H = 1

2
||p||22 + V (q) with the Newton potential V (q) =

1/||q||2. Here p is interpreted as the velocity of a particle at position q. Kepler’s first
law states that the planets follow ellipses, with the Sun at one of the foci. Use what you
have learned in the previous exercises to prove and interpret Kepler’s second law:

The line joining a planet to the Sun sweeps equal areas in equal times.

Hint: Notice the invariance of the provided Hamiltonian under rotations in R3.
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