Extra Homework Assignments

Bifurcations: Theory and Applications

Bernold Fiedler, Alejandro López Nieto
http://dynamics.mi.fu-berlin.de/lectures/
due date: Wednesday, November 13, 2019, 12:00

Problem 1: Let Ψ_{1} and Ψ_{2} denote smooth diffeomorphisms of \mathbb{R}^{N} and $A, B \in \mathbb{R}^{N \times N}$. Show the following claims:
(i) For the pullback $\Psi^{*} f:=(D \Psi)^{-1} \circ f \circ \Psi$ the composition satisfies

$$
\left(\Psi_{2} \circ \Psi_{1}\right)^{*}=\Psi_{1}^{*} \Psi_{2}^{*} .
$$

(ii) For the adjoint $\operatorname{ad} A f(x):=A f(x)-f^{\prime}(x) A x$, the matrix commutator $[A, B]:=$ $A B-B A$ satisfies

$$
[\operatorname{ad} A, \operatorname{ad} B]=\operatorname{ad}[A, B] .
$$

(iii) For $A[\Psi](x):=A \Psi(x)-\Psi(A x)$, the matrix commutator satisfies

$$
[A[\cdot], B[\cdot]]=[A, B][\cdot] .
$$

Problem 2: Let $\Phi_{t}(f)$ denote the flow of a C^{1} vector field

$$
\dot{x}=f(x) \text { such that } f(0)=0, x \in \mathbb{R}^{N} .
$$

Use standard theorems on differentiation of flows with respect to initial conditions to show

$$
D_{x}\left(\Phi_{t}(f)\right)(0)=\Phi_{t}\left(D_{x} f(0)\right)
$$

Problem 3: Let B be a real 2×2 matrix with algebraically double eigenvalue -1 . Suppose $B=\exp (A)$ for some real 2×2 matrix A. Prove or disprove

$$
B=-\mathrm{id} .
$$

Problem 4: For $N \in \mathbb{N}$, describe the Lie algebras, \mathfrak{g}, of the following Lie groups, \mathcal{G}, seen in the lecture:
(i) $S U(N)$,
(ii) $G L(N, \mathbb{C})$,
(iii) $S L(N, \mathbb{R})$.

Hint (iii): Note that, in our case, the usual matrix exponentiation yields a 1-parameter subgroup of \mathcal{G} for all $\mathfrak{a} \in \mathfrak{g}$

$$
\{\exp (\mathfrak{a} t) \mid t \in \mathbb{R}\} .
$$

