Extra Homework Assignments Bifurcations: Theory and Applications Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Wednesday, November 13, 2019, 12:00

Problem 1: Let Ψ_1 and Ψ_2 denote smooth diffeomorphisms of \mathbb{R}^N and $A, B \in \mathbb{R}^{N \times N}$. Show the following claims:

(i) For the pullback $\Psi^*f \coloneqq (D\Psi)^{-1} \circ f \circ \Psi$ the composition satisfies

$$(\Psi_2 \circ \Psi_1)^* = \Psi_1^* \Psi_2^*.$$

(ii) For the adjoint $adAf(x) \coloneqq Af(x) - f'(x)Ax$, the matrix commutator $[A, B] \coloneqq AB - BA$ satisfies

$$[\mathrm{ad}A,\mathrm{ad}B] = \mathrm{ad}[A,B].$$

(iii) For $A[\Psi](x) \coloneqq A\Psi(x) - \Psi(Ax)$, the matrix commutator satisfies

$$[A[\cdot], B[\cdot]] = [A, B][\cdot].$$

Problem 2: Let $\Phi_t(f)$ denote the flow of a C^1 vector field

$$\dot{x} = f(x)$$
 such that $f(0) = 0, x \in \mathbb{R}^N$.

Use standard theorems on differentiation of flows with respect to initial conditions to show

$$D_x(\Phi_t(f))(0) = \Phi_t(D_x f(0)).$$

Problem 3: Let B be a real 2×2 matrix with algebraically double eigenvalue -1. Suppose $B = \exp(A)$ for some real 2×2 matrix A. Prove or disprove

$$B = -\mathrm{id}$$
.

Problem 4: For $N \in \mathbb{N}$, describe the Lie algebras, \mathfrak{g} , of the following Lie groups, \mathcal{G} , seen in the lecture:

- (i) SU(N),
- (ii) $GL(N, \mathbb{C})$,
- (iii) $SL(N, \mathbb{R})$.

Hint (iii): Note that, in our case, the usual matrix exponentiation yields a 1-parameter subgroup of \mathcal{G} for all $\mathfrak{a} \in \mathfrak{g}$

 $\{\exp(\mathfrak{a}t) \mid t \in \mathbb{R}\}.$