In the following W and Z are Banach spaces with norms denoted by $\|\cdot\|_{W}$ and $\|\cdot\|_{Z}$, respectively. $\mathcal{L}(W, Z)$ denotes the space of bounded linear operators from W to Z.

Theorem: [Open mapping theorem]
Let $L \in \mathcal{L}(W, Z)$ be surjective. Then L is open, i.e. L maps open sets in W to open sets in Z.

Theorem: [Bounded inverse theorem]
Let $L \in \mathcal{L}(W, Z)$ be bijective. Then $L^{-1} \in \mathcal{L}(Z, W)$.

Theorem: [Closed graph theorem]
Let $L: W \rightarrow Z$ (not assumed to be bounded!) possess a closed graph, i.e. $\operatorname{gr}(L):=$ $\{(w, L(w)) \mid w \in W\}$ is closed in $\left(W \times Z,\|\cdot\|:=\|\cdot\|_{W}+\|\cdot\|_{Z}\right)$. Then L is bounded.

Problem 1:

Show that the open mapping theorem implies the bounded inverse theorem.

Problem 2:

Show that the bounded inverse theorem implies the closed graph theorem.

Problem 3:

Show that the closed graph theorem implies the bounded inverse theorem.

Problem 4: \quad Show that $W=U \oplus V$ for closed linear subspaces U, V, if, and only if, there exists a bounded linear projection $P: W \rightarrow U$ along V, i.e. a bounded linear operator P such that $P^{2}=P$, range $P=U$ and ker $P=V$.
Let $Q:=I-P$ for P satisfying the conditions above. Show that Q is a bounded linear projection onto V along U.

