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We explore why norm continuity is too strong a concept for representations of Lie
groups on Banach spaces X. Any Lie group contains one-parameter subgroups t 7→
exp(at), t ∈ R, via elements a of its Lie algebra. Indeed exp(a(t+s)) = exp(at) exp(as).
We therefore address linear representations ρ of the group (R,+) on X, i.e.

(1) ρ(t+ s) = ρ(t)ρ(s), ρ(0) = idX .

Slightly more generally, we will study semigroups, where ρ(t) is only required to be
defined for t ≥ 0 and (1) is only required to hold for all t, s ≥ 0.

Strong continuity only requires continuity of the map

[0,∞)×X → X

(t, x) 7→ ρ(t)x.
(2)

In particular ρ(t) ∈ L(X), i.e. ρ(t) is bounded linear, for all t ≥ 0. Norm continuity
requires that

ρ : [0,∞)→ L(X)

t 7→ ρ(t)
(3)

is continuous, in the much stronger norm

(4) ||A||L(X) := sup
|x|≤1
|Ax|

on the Banach space L(X). In this note we prove

Theorem Let ρ(t) be a linear semigroup in the sense of (1). Then ρ is norm contin-
uous if, and only if, there exists a bounded linear operator A ∈ L(X) such that for all
t ≥ 0 we have

(5) ρ(t) = exp(At).



In particular, ρ is then analytic in t, and x(t) := ρ(t)x0 satisfies the following ordinary
differential equation in the Banach space X:

ẋ(t) = Ax(t) ,

x(0) = x0 .
(6)

Moreover, any ρ(t) is invertible with bounded inverse ρ(t)−1 = exp(−At), and ρ extends
uniquely to a norm continuous linear representation of the group (R,+).

Example 1. Consider the strongly continuous shift representation

(7) (ρ(t)x)(ξ) := x(t+ ξ),

of (R,+) on x(.) ∈ L2(R) or BC0(R). Then (6) would require

(8) (Ax0)(ξ) = ∂
∂t

∣∣
t=0

x(t+ ξ) = x′(ξ) ∈ X ,

i.e. x(.) is in the Sobolev space H1(R) = W 1,2(R) of functions with square integrable
weak derivative, or in the space BC1(R) of bounded functions x(.) with bounded
continous derivative. In other words, u(t, ξ) := (ρ(t)x0)(ξ) is a weak solution of the
partial differential equation

(9)
∂

∂t
u− ∂

∂ξ
u = 0

with initial condition u(t, ξ) = x0(ξ) at t = 0. Alas, in virtue of theorem 1, the
representation ρ(t) cannot be norm continuous because H1 $ L2 and BC1 $ BC0 are
proper subspaces.

Example 2. An interesting example of a semigroup ρ(t), say on x ∈ X := L2(R), is
given by the solutions of the heat equation

(10)
∂

∂t
u =

∂2

∂x2
u,

again with initial condition u(t, ξ) = x0(ξ) at t = 0. The explicit solution for t > 0 is
given by convolution with the heat hernel:

(11) u(t, ξ) = (ρ(t)x0)(ξ) :=

∫ +∞

−∞

1√
4πt

exp(−(ξ − η)2)/(4t))x0(η)dη ,

thanks to Fourier transformation of (10). Note strong continuity of ρ(t), t ≥ 0, with
ρ(0) = id. Since ρ(t)x0 ∈ C∞(R) is smooth, for any t > 0, norm continuity of ρ(t)
must fail: the maps ρ(t) are not even surjective, onto X = L2, much less invertible.

Proof of theorem. To show necessity, suppose A is bounded linear. Then the majorant
exp(||A|| t) shows absolute convergence of the power series

(12) ρ(t) := exp(At) :=
∞∑
k=0

1
k!

(At)k
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in L(X). This also shows norm continuity, differentiability, analyticity, and that ρ(t)
is the flow of the ODE (6).

Sufficiency is more interesting. Let ρ be norm continuous and pick h > 0. (In a moment
we will choose h small enough.) Define the ”regularization”

(13) Rhx := 1
h

∫ h

0

ρ(s)x ds

Then

|Rhx− x| =
∣∣∣∣ 1h ∫ h

0

(ρ(s)− id)x ds

∣∣∣∣ ≤ 1
h

∫ h

0

||ρ(s)− id|| · |x| ds ≤

≤ sup
0≤s≤h

||ρ(s)− id|| · |x|.
(14)

In other words, norm continuity (3), (4) implies

(15) ||Rh − id|| ≤ ε < 1 ,

if we fix h > 0 small enough. The Neumann series (or contraction mapping) allows us
to invert Rh ∈ L(X):

(16) R−1h = (id− (id−Rh))
−1 :=

∞∑
k=0

(id−Rh)
k ,

with absolute convergence by the geometric series majorant
∑
||id − Rh||k ≤

∑
εk =

1/(1− ε). We may therefore define the bounded linear operator

(17) A := 1
h
(ρ(h)− id)R−1h .

Let x0 ∈ X, y := R−1h x0 . Then (13) and the semigroup property (1) imply

x(t) := ρ(t)x0 = ρ(t)Rhy =
1

h

∫ h

0

ρ(t)ρ(s)y ds =

=
1

h

∫ h

0

ρ(t+ s)y ds =
1

h

∫ t+h

t

ρ(s)y ds .

(18)

Since the integral is continuous we may differentiate (18) with respect to t to obtain

ẋ(t) =
1

h
(ρ(t+ h)− ρ(t))y =

=
1

h
(ρ(h)− id)ρ(t)R−1h x0 =

=
1

h
(ρ(h)− id)R−1h ρ(t)x0 = Ax(t)

(19)

and, of course, x(0) = x0. Here we have used definition (17) of A. We have also used
that ρ(t) commutes with Rh, and therefore with R−1h . This proves the ODE claim (6)
of the theorem.

Uniqueness of solutions of (6), for bounded linear A ∈ L(X), follows by the usual
Picard-Lindelöf iteration. That iteration, initialized with x(t) ≡ x0, also provides the
series ρ(t) = exp(At). This proves the theorem. ./
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Evidently, the construction of the infinitesimal generator A in (17) above does not
really depend on the specific value of h. For ρ(t) = exp(At), as in (5), this can also
be verified directly. Our construction, however, was based on the invertibility of Rh in
(16) which, in turn, required some norm continuity.

The straightforward definition suggested by the differential equation (6),

(20) Ax0 := lim
h↘0

1
h

(ρ(h)x0 − x0)

is considerably more interesting for only strongly continuous semigroups ρ(t). Under
an exponential growth assumption

(21) ||ρ(t)|| ≤Meαt ,

for suitable constants M,α > 0 and all t ≥ 0, the infinitesimal generator A of ρ(t) is
then only defined for a dense subset of x0 in X, but A is closed and satisfies a resolvent
estimate.

Conversely, any densely defined, closed operator A with such a resolvent estimate
generates a unique strongly continuous semigroup ρ(t). Moreover, ρ(t) satisfies the
growth estimate (21). One definition of ρ(t) proceeds via implicit Euler steps for the
differential equations (6),

(22) ρ(t)x0 = “ exp ”(At)x0 := lim
n→∞

(
id− t

n
A

)−n
x0 .

See the books by [Pazy], [HiPhi], [Tanabe], [Henry], [Amann] for these results, and
many more details, on semigroup theory for partial differential equations.
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