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We explore why norm continuity is too strong a concept for representations of Lie
groups on Banach spaces X. Any Lie group contains one-parameter subgroups t +—
exp(at),t € R, via elements a of its Lie algebra. Indeed exp(a(t+s)) = exp(at) exp(as).
We therefore address linear representations p of the group (R, +) on X, i.e.

(1) p(t+s) =p(t)p(s),  p(0)=idx.

Slightly more generally, we will study semigroups, where p(t) is only required to be
defined for ¢ > 0 and (1) is only required to hold for all £, s > 0.

Strong continuity only requires continuity of the map

[0,00) x X = X
(t,z) — p(t)x.

(2)
In particular p(t) € L(X), i.e. p(t) is bounded linear, for all ¢ > 0. Norm continuity

requires that

5 p:[0,00) = L(X)

t = p(t)
is continuous, in the much stronger norm
(4) 1 Allzx) = sup [Az|
|z|<1

on the Banach space L(X). In this note we prove

Theorem Let p(t) be a linear semigroup in the sense of (1). Then p is norm contin-
uous if, and only if, there exists a bounded linear operator A € L(X) such that for all
t > 0 we have

(5) p(t) = exp(At).



In particular, p is then analytic in t, and x(t) := p(t)xq satisfies the following ordinary
differential equation in the Banach space X :

(6)

Moreover, any p(t) is invertible with bounded inverse p(t)~' = exp(—At), and p extends
uniquely to a norm continuous linear representation of the group (R, +).

Example 1. Consider the strongly continuous shift representation

(7) (p(t)x)(§) = x(t + &),
of (R,+) on z(.) € L*(R) or BC°(R). Then (6) would require
(8) (Ar0)(&) = §il, 2t +8) =) € X,

i.e. z(.) is in the Sobolev space H'(R) = W!?(R) of functions with square integrable
weak derivative, or in the space BC'(R) of bounded functions z(.) with bounded
continous derivative. In other words, u(t,§) = (p(t)xo)(§) is a weak solution of the
partial differential equation

0 0
9 —u——u=0
) ot ac"
with initial condition u(t,§) = z((§) at ¢ = 0. Alas, in virtue of theorem 1, the
representation p(t) cannot be norm continuous because H' S L? and BC! S BC"Y are
proper subspaces.

Example 2. An interesting example of a semigroup p(t), say on z € X := L*(R), is
given by the solutions of the heat equation
0 o?
10 ~Zu= =
(10) o' a2t
again with initial condition wu(t,£) = x¢(§) at t = 0. The explicit solution for ¢ > 0 is
given by convolution with the heat hernel:

—+00

1) ult = (pOm)© = [ A exp(—(€ —n) ()ao(ndn

—00

thanks to Fourier transformation of (10). Note strong continuity of p(t),¢ > 0, with
p(0) = id. Since p(t)xy € C*°(R) is smooth, for any ¢ > 0, norm continuity of p(¢)
must fail: the maps p(t) are not even surjective, onto X = L?, much less invertible.

Proof of theorem. To show necessity, suppose A is bounded linear. Then the majorant
exp(||A|| t) shows absolute convergence of the power series

(12) p(t) := exp(At) := Z L(At)*

k=0



in L(X). This also shows norm continuity, differentiability, analyticity, and that p(t)
is the flow of the ODE (6).

Sufficiency is more interesting. Let p be norm continuous and pick A > 0. (In a moment
we will choose h small enough.) Define the "regularization”

h

(13) Rpx := %/ p(s)xds
0

Then

h h
- %/0 (p(s) — id)x ds s%/o llp(s) —id]| - |z[ ds <

(14)

In other words, norm continuity (3), (4) implies
(15) |Rp —id|]| <e <1,

if we fix A > 0 small enough. The Neumann series (or contraction mapping) allows us
to invert Ry, € L(X):

(16) Ry' = (id — (id — Ry))™" = (id — Ry)",

k=0

with absolute convergence by the geometric series majorant Y. [|id — Rp||* < Y eF =
1/(1 —¢). We may therefore define the bounded linear operator

(17) A= L(p(h) —id)R;".
Let 29 € X, y := R} 'zo. Then (13) and the semigroup property (1) imply
1

2(t) = p(t)zo = p(t) Ray = — | p(t)p(s)yds =
(18) il

1 h 1 t+h

E/o p(t+ s)yds = E/t p(s)yds.

Since the integral is continuous we may differentiate (18) with respect to ¢ to obtain
#(t) = 7 (p(t +h) = p(t))y =

(19) — ~(p(h) — id)p(t) Ry "y =

(p(h) —id)R; ' p(t)xo = Ax(t)

el Bl

and, of course, x(0) = zy. Here we have used definition (17) of A. We have also used
that p(t) commutes with Ry, and therefore with R;'. This proves the ODE claim (6)
of the theorem.

Uniqueness of solutions of (6), for bounded linear A € L(X), follows by the usual
Picard-Lindel6f iteration. That iteration, initialized with x(¢) = ¢, also provides the
series p(t) = exp(At). This proves the theorem. =



Evidently, the construction of the infinitesimal generator A in (17) above does not
really depend on the specific value of h. For p(t) = exp(At), as in (5), this can also
be verified directly. Our construction, however, was based on the invertibility of R; in
(16) which, in turn, required some norm continuity.

The straightforward definition suggested by the differential equation (6),

o i 1
(20) Azxg = }lll\IN% i (p(h)zo — 70)
is considerably more interesting for only strongly continuous semigroups p(t). Under
an exponential growth assumption

(21) @I < Me,

for suitable constants M, « > 0 and all ¢ > 0, the infinitesimal generator A of p(t) is
then only defined for a dense subset of 2y in X, but A is closed and satisfies a resolvent
estimate.

Conversely, any densely defined, closed operator A with such a resolvent estimate
generates a unique strongly continuous semigroup p(t). Moreover, p(t) satisfies the
growth estimate (21). One definition of p(t) proceeds via implicit Euler steps for the
differential equations (6),

n—o0

t —n
(22) p(t)zg = “exp”(At) zp := lim (id — EA) g .

See the books by [Pazy|, [HiPhi], [Tanabe|, [Henry|, [Amann] for these results, and
many more details, on semigroup theory for partial differential equations.
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