Homework Assignments **Dynamical Systems II** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, November 26, 2020, 12:00

Problem 5: Consider real-valued solutions $u = u(t, x), t, x \in \mathbb{R}$, of the partial differential equation

$$\frac{\partial}{\partial t}u = \frac{\partial^2}{\partial x^2}u + f(u),$$

A traveling wave with wave speed $c \in \mathbb{R}$ is a solution of the special form u(t, x) = U(x - ct). Derive an ordinary differential equation that is satisfied by U.

Now consider the cubic nonlinearity $f(u) \coloneqq u(1-u)(u-a)$, for any fixed parameter 0 < a < 1. Show that $U(\xi) \coloneqq 1/(1 + \exp(-k\xi))$ is a traveling wave, for suitable k. Determine the wave speed c of the traveling wave U.

Problem 6: Floquet theory studies the Wronskian $W(t, t_0)$ of non-autonomous linear systems $\dot{y}(t) = A(t)y(t)$, with matrices A(t+p) = A(t) of period p in t.

- (i) Show $W(np, 0) = W(p, 0)^n$, for all $n \in \mathbb{N}$.
- (ii) Compare the spectra of W(p,0), $W(p+t_0,t_0)$, W(np,0) and $W(np+t_0,t_0)$.

Problem 7: Consider a homeomorphism $A : \mathbb{R} \to \mathbb{R}$ satisfying

$$A(x+2\pi) = A(x) - 2\pi,$$

for all $x \in \mathbb{R}$.

Prove or disprove: the induced map $\tilde{A} \coloneqq A \pmod{2\pi}$ from S^1 to $S^1 \coloneqq \mathbb{R}/2\pi\mathbb{Z}$ possesses a fixed point.

Problem 8: An ideal point-sized billiard ball moves with constant speed in the unit disc $B^2 \subset \mathbb{R}^2$. Fix an initial position x_0 on the boundary and a shooting angle α . Depending on α , describe the ω -limit set of the sequence of points $\{x_n\}_{n \in \mathbb{N}}$ in S^1 , where the ball hits the boundary.

The ω -limit set of $\{x_n\}_{n\in\mathbb{N}}$ is defined as

 $\omega(x_0) \coloneqq \{ y \in S^1 \mid \text{there exists a subsequence } n_k \xrightarrow{k \to \infty} \infty \text{ for which } x_{n_k} \to y \}$