Homework Assignments **Dynamical Systems II** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, December 10, 2020, 16:00

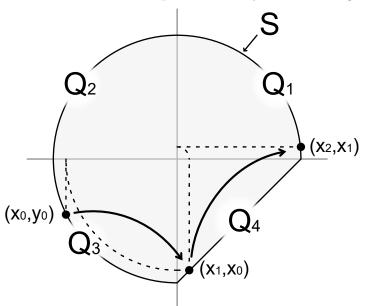
Problem 13: Consider the ordinary differential equation on the circle

$$\dot{x} = f(x), \qquad x \in S^1, \quad f(x) > 0$$

with corresponding flow Φ_t . Determine a formula for the rotation number $\rho(\Phi_T)$ of the time-*T* map. Does a devil's staircase in $\rho(\Phi_T)$ arise with respect to the parameter *T*?

Problem 14: Consider a nonlinear C^2 -flow Φ_t on $\mathbb{T}^2 = \mathbb{R}^2/2\pi\mathbb{Z}^2$ with the *y*-axis S^1 as global Poincaré section. Let the first return time be identically 2π and assume that the rotation number ρ of $\Phi_{2\pi}$ is irrational. Show that there exists a homeomorphism h of \mathbb{T}^2 which conjugates Φ_t to the parallel flow generated by

$$\begin{array}{rcl} \dot{x} &=& 1,\\ \dot{y} &=& \varrho. \end{array}$$



Problem 15: Let *A* be the circle map described by the following diagram:

Here Q_i , *i* (mod 4), denote the quadrants of the depicted cut circle *S*, with a straight lower right secant. *A* maps any point (x_0, y_0) in quadrant Q_i to the unique point of *S* in quadrant Q_{i+1} whose *y*-component coincides with x_0 .

What is the rotation number ρ of A? Does there exist a homeomorphism h conjugating A to a rigid rotation?

Problem 16: Consider the Fibonacci iteration on the torus

$$\begin{array}{rcl} A: \mathbb{T}^2 & \rightarrow & \mathbb{T}^2 = \mathbb{R}^2 / \mathbb{Z}^2, \\ (x, y) & \mapsto & (y, x + y) (\text{mod } 1) \end{array}$$

Is A well-defined? Calculate stable and unstable manifolds of the fixed point (0,0) under the iteration A^n . Are they dense on the torus?