Homework Assignments **Dynamical Systems II** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, January 21, 2020, 16:00

Problem 21: Let P(n) be the number of periodic points of a map Φ with (not necessarily minimal) period n. A measure of the complexity of Φ is given by the *topological* entropy h defined as

$$h := \limsup_{n \to \infty} \frac{\log P(n)}{n}.$$

Calculate the entropy h of the shift on N symbols.

Prove that every iteration Φ containing shift dynamics (i.e. with an invariant set I such that $\Phi|_I$ is conjugate to a shift on m symbols) has positive topological entropy.

Problem 22: Let Φ be a homeomorphism containing shift dynamics with invariant set *I*. We denote by $\tau : S \to I$ a homeomorphism which conjugates $\Phi|_I$ to the shift σ on *S* with symbols $\{1, \ldots, N\}$. Consider $\tau_{\pi} = \tau \circ H_{\pi}$, where $H_{\pi} : S \to S$ is the trivial homeomorphism induced by a permutation $\pi : \{1, \ldots, N\} \to \{1, \ldots, N\}$. In other words,

$$H_{\pi}(\mathbf{s})_k = \pi(\mathbf{s}_k).$$

Prove or disprove:

- (i) The homeomorphism τ_{π} conjugates $\Phi|_I$ to the shift σ .
- (ii) Let $\rho: S \to I$ be a homeomorphism which conjugates $\Phi|_I$ to the shift σ , then there exists a permutation $\pi: \{1, \ldots, N\} \to \{1, \ldots, N\}$ such that

$$\rho = \tau_{\pi}$$

Problem 23: Which of the following "paper-clip" maps contains shift dynamics? (Assume the maps to be affine linear, in the regions of intersection.)

$$\begin{array}{rcl} \Phi_{j+1} &=& \Phi_j + v_j, \\ v_{j+1} &=& \alpha \, v_j - \gamma \cos(\Phi_j + v_j), \end{array}$$

with $\Phi_j \in S^1 = \mathbb{R}/(2\pi\mathbb{Z})$ and $v_j \in \mathbb{R}$, for $0 < \alpha < 1$ and $0 < \gamma$. How many fixed points does f have, for given α, γ ? Determine the type (hyperbolically stable, hyperbolically unstable, non-hyperbolic) of the fixed points. Sketch the dependence of the fixed points on γ , for $\alpha = \frac{1}{2}$. What happens for $\alpha \to 1$?