Homework Assignments

Dynamical Systems II

Bernold Fiedler, Alejandro López Nieto

http://dynamics.mi.fu-berlin.de/lectures/due date: Thursday, February 18, 2020, 16:00

Problem 37: Consider the vector field

$$\dot{x} = f(x), \ x \in \mathbb{R}^N, \ f(0) = 0.$$

Assume that the linearization Df(0) possesses an algebraically simple eigenvalue 0 and all other eigenvalues have nonzero real part. Can there exist nonstationary periodic orbits in arbitrarily small neighborhoods of x = 0?

Problem 38: Consider the system of differential equations

$$\dot{x} = xy,$$

$$\dot{y} = -y + x^3.$$

Use a (local) center manifold to decide whether the equilibrium (x, y) = (0, 0) is asymptotically stable.

Hint: Use the invariance of the center manifold to calculate the necessary terms of its Taylor expansion.

Problem 39: [Vanderbauwhede] Consider the analytic ODE

$$\begin{array}{rcl} \dot{x} & = & \mu x - x^2, \\ \dot{y} & = & y - x^2. \\ \dot{\mu} & = & 0 \end{array}$$

Suppose the local center manifold, $W_{loc}^{c}(0)$, is analytic and write it as a graph

$$y = \Psi(x, \mu) = \sum_{k=0}^{\infty} a_k(\mu) x^k.$$

(i) For small enough $\mu = 1/m$, $m \in \mathbb{N}$, derive the recursion

$$\left(\frac{k}{m} - 1\right)a_k = (k-1)a_{k-1}.$$

(ii) Conclude that $W_{loc}^{c}(0)$ cannot possibly be analytic.

Extra credit: Can $W_{loc}^{c}(0)$ be C^{∞} ?

Problem 40: Given the system

$$\dot{x} = x^2,
\dot{y} = -y,$$

consider the function

$$h_{\alpha}(x) = \begin{cases} \alpha \exp(1/x), & x < 0, \\ 0, & \text{otherwise.} \end{cases}$$

(i) Show that the graphs

$$M_{\alpha} = \{(x, h_{\alpha}(x)) \mid x \in \mathbb{R}\}, \ \alpha \in \mathbb{R}$$

are invariant under the given ODE.

(ii) Consider now a smooth cut-off function such that $\chi(x) = 1$ for $|x| \le 1$ and $\chi(x) = 0$ for $|x| \ge 2$. Given the cut-off system

$$\dot{x} = \chi(x/\varepsilon)x^2,
\dot{y} = -y,$$

for $\varepsilon > 0$ small enough there exists a unique global center manifold which we denote by W_{χ}^{c} . In class we saw that, locally near zero, $W_{\chi}^{c} = M_{\alpha}$ for a suitable α . Discuss the dependence of α on the choice of the cut-off function χ .

2