Basic Questions of Dynamical Systems II

- 1. What is the definition of a flow Φ_t on \mathbb{R}^N ?
- 2. What is the definition of an evolution $\Psi_{t,s}$ on \mathbb{R}^N ?
- 3. What is the differential equation solved by the flow $\Phi_t \in C^1(\mathbb{R} \times \mathbb{R}^N)$?
- 4. Given a flow Φ_t and an initial condition $x_0 \in \mathbb{R}^N$, define the α and ω -limit sets $\alpha(x_0)$ and $\omega(x_0)$.
- 5. Given a flow Φ_t , when do we say that an orbit $\gamma(x_0) \coloneqq \{\Phi_t(x_0) \mid t \in \mathbb{R}\}$ is:
 - (a) stationary.
 - (b) periodic.
 - (c) heteroclinic.
 - (d) homoclinic.
- 6. What is the stroboscope map of a time periodic non-autonomous vector field $\dot{x} = f(t, x)$?
- 7. State the Poincaré-Bendixson theorem for autonomous vector fields on \mathbb{R}^2 .
- 8. Consider the C^1 -flow Φ_t solving the ODE $\dot{x} = f(x)$, f(0) = 0. What is the linearized ODE at 0? How is the flow of the linearized equation related to Φ_t ?
- 9. Let W(t,s) denote the Wronskian of the linear nonautonomous ODE

$$\dot{x} = A(t)x, \qquad x \in \mathbb{R}^N.$$

How are det(W(t, s)) and $trace(A(\tau))$ related?

- 10. Consider an orientation preserving homeomorphism $A : \mathbb{R} \to \mathbb{R}$ with A(x+1) = A(x)+1, for all x. In which sense does A induce a homeomorphism \tilde{A} on the circle? Define the rotation number of A.
- 11. How are existence and minimal periods of periodic points related to the rotation number of an orientation preserving homeomorphism $\tilde{A} : S^1 \to S^1$? Prove your claim.
- 12. Does it make sense to consider the rotation number for noninvertible, continuous circle maps?

- 13. Formulate an ergodic theorem for parallel flows on the 2-torus.
- 14. Formulate the Denjoy theorem for C^2 -diffeomorphisms $\tilde{A}: S^1 \to S^1$.
- 15. When do we say that, in a Diophantine sense, an irrational number ρ is badly approximable by rationals? How do such irrationals allow us to improve the Denjoy theorem?
- 16. What is a *devil's staircase* for the rotation number of a parametric family of circle diffeomorphisms $\tilde{A}_{\lambda}: S^1 \to S^1, \lambda \in \mathbb{R}$?
- 17. How are local/global stable and unstable manifolds of hyperbolic equilibria of autonomous C^1 vector fields defined? How do they relate to the local/global stable and unstable manifolds of the time-1 map of the C^1 flow?
- 18. Formulate the theorem on the existence of local stable and unstable manifolds for hyperbolic equilibria of C^1 vector fields.
- 19. Formulate the theorem on the existence of local stable and unstable manifolds for hyperbolic fixed points of diffeomorphisms.
- 20. Are local/global stable and unstable manifolds of hyperbolic equilibria unique? What are the tangent spaces to stable and unstable manifolds at the equilibrium?
- 21. What is the Bernoulli shift on N symbols? Define the shift space, its metric, and the shift map.
- 22. How can we construct
 - (a) periodic orbits of every period
 - (b) a dense set of periodic orbits
 - (c) a dense orbit
 - for the shift on 2 symbols?
- 23. How does the shift on 2 symbols illustrate the butterfly effect?
- 24. Formulate the C^0 theorem on Smale's horseshoe.
- 25. Formulate the C^1 theorem on Smale's horseshoe. What do we mean by the required invariant cone families?

26. Sketch a horseshoe construction for the bouncing-ball map

$$\begin{aligned} \varphi_{k+1} &= \varphi_k + v_k, \\ v_{k+1} &= v_k - \gamma \cos(\varphi_k + v_k), \end{aligned}$$

under a suitable assumption on γ .

- 27. What are transverse homoclinic points of diffeomorphisms?
- 28. Formulate the λ -lemma.
- 29. How does a transverse homoclinic point give rise to shift dynamics? Only sketch and label the relevant picture.
- 30. Provide an example of a diffeomorphism possessing transverse homoclinics.
- 31. What is the Plykin attractor?
- 32. What is a strange attractor? Sketch an example and list relevant properties.
- 33. Define hyperbolic structure for diffeomorphisms on compact manifolds.
- 34. Can every compact C^1 surface host a diffeomorphism with a hyperbolic structure?
- 35. Give an example of a diffeomorphism of a compact manifold with a hyperbolic structure.
- 36. How is structural stability of a diffeomorphism defined?
- 37. State Anosov's theorem on structural stability of linear diffeomorphisms of the 2torus.
- 38. Give at least two examples of structurally stable diffeomorphisms of the 2-torus.
- 39. Draw an example of a diffeomorphism of the 2-torus, which is not structurally stable.
- 40. Is the set of structurally stable diffeomorphisms of a compact manifold open in the C^1 -topology?
- 41. Is the set of structurally stable diffeomorphisms of a compact manifold dense in the C^1 -topology?