Homework Assignments

Dynamical Systems III

Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/

due date: Thursday, April 29, 2021, 18:00

Problem 1: Let Ψ_1 and Ψ_2 be smooth diffeomorphisms of \mathbb{R}^N . Show that the pullback $\Psi^*f := (D\Psi)^{-1} \circ f \circ \Psi$ satisfies

$$(\Psi_2 \circ \Psi_1)^* = \Psi_1^* \Psi_2^*.$$

Problem 2: Let $f: \mathbb{R}^N \to \mathbb{R}^N$ be a smooth map and $A, B \in \mathbb{R}^{N \times N}$. Show the following claims:

(i) For the adjoint ((adA)f)(x) := Af(x) - f'(x)Ax, the matrix commutator [A, B] := AB - BA satisfies

$$[adA, adB] = ad[A, B].$$

(ii) For A[f](x) := Af(x) - f(Ax), the matrix commutator satisfies

$$[A[\cdot], B[\cdot]] = AB[\cdot] - BA[\cdot].$$

Remark: Notice that both ad A and $A[\cdot]$ are linear maps in $C^{\infty}(\mathbb{R}^N, \mathbb{R}^N)$, therefore the commutator is well-defined.

Problem 3: Derive a formula for the dimension of $H_m(\mathbb{R}^N)$, the set of real homogeneous vector polynomials of degree m on N variables.

Problem 4:

Consider the following ODE on \mathbb{R}^2

$$\begin{array}{rcl}
\dot{x_1} & = & x_2, \\
\dot{x_2} & = & ax_1^2 + bx_1x_2,
\end{array}$$

where $a, b \neq 0$. Show that one can assume without loss of generality a = b = 1, by choosing a suitable rescaling of the space and time variables x_1, x_2 and t.

1