Homework Assignments **Dynamical Systems III** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Monday, July 5, 2021, 18:00

Problem 37: Consider the periodically forced smooth ODE on $x \in \mathbb{R}^N$

$$\dot{x} = f(\lambda, t, x),$$

with parameters $\lambda \in \mathbb{R}^2$, 1-periodic forcing $f(\lambda, t+1, x) = f(\lambda, t, x)$, and a trivial solution $f(\lambda, t, 0) \equiv 0$, for all λ, t .

Give sufficient conditions on f under which subharmonic solutions with integer minimal period $q \ge 3$ bifurcate from the trivial equilibrium branch x = 0. Prove your claims.

Problem 38: Let ρ be a representation of a group H on \mathbb{R}^N and consider an H-equivariant ODE

$$\dot{x} = f(x), \ x \in \mathbb{R}^N.$$

Assume there exists a homoclinic solution x(t) to an equilibrium x^* such that the orbit of x(t) is *H*-invariant, as a set. Prove or disprove:

- (i) $\{x^*\}$ is *H*-invariant.
- (ii) Each homoclinic point x(t) is *H*-invariant.
- (iii) If H is compact, H fixes every homoclinic point x(t).

Problem 39: Consider the representation of $D_3 \times S^1$ on \mathbb{C}^2 given by

$$\begin{aligned} \varphi(z_1, z_2) &= (e^{2\pi i/3} z_1, e^{-2\pi i/3} z_2), \\ \sigma(z_1, z_2) &= (z_2, z_1), \\ \vartheta(z_1, z_2) &= (e^{i\vartheta} z_1, e^{i\vartheta} z_2). \end{aligned}$$

Here D_3 , generated by the rotation φ , and the reflection σ is the symmetry group of the equilateral triangle, as in elementary geometry. Determine the isotropy lattice and the fixed-point subspaces.

Problem 40: Consider three oscillators $z_k \in \mathbb{C}$ in Hopf normal form, coupled to their neighbors "diffusively" via

$$\dot{z}_k = (\lambda + i + \gamma |z|_k^2) z_k + D(z_{k-1} - 2z_k + z_{k+1}), \qquad k \mod 3, \quad \gamma, z_k \in \mathbb{C}, \quad \lambda, D \in \mathbb{R}.$$

Find the parameter values λ for which the linearization at $(z_1, z_2, z_3) = 0$ possesses a pair of complex conjugate eigenvalues. Discuss the occurrence of Hopf bifurcation and the spatio-temporal symmetry of at least one bifurcating solution.