Homework Assignments **Dynamical Systems III** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, May 20, 2021, 18:00

Problem 13: Let $x^*(t)$ be a periodic solution with minimal period T > 0 of the smooth ODE

$$\dot{x} = f(x), \ x \in \mathbb{R}^N.$$

Let \mathcal{P} denote the smooth Poincaré map defined locally on a smooth section transverse to the flow at $x^*(0) = 0$. Prove or disprove:

- (i) \mathcal{P} can undergo a period doubling bifurcation for $N \leq 2$.
- (ii) \mathcal{P} can undergo a torus bifurcation for $N \geq 3$.

Sketch the dynamics near a periodic orbit as it undergoes period doubling bifurcation.

For a vector space W with subspaces X, Y, let the direct sum $W = X \oplus Y$ denote that for every $w \in W$ there exist unique $x \in X$, $y \in Y$ such that w = x + y. Let U, V be Banach spaces, $L : U \to V$ linear. We call L closed if graph(L) is closed, as a linear subspace of $U \times V$.

Closed Graph Theorem: [Theorem IV.4.5, D. Werner, Funktionalanalysis, Springer (2011)] If L as above is closed, then L is bounded (and therefore continuous).

Problem 14: Assume $W = X \oplus Y$ with W Banach and X closed in W (hence Banach). Let Pw := x denote the linear projection of W onto X. Show that P is bounded and Y is closed, hence Banach.

Problem 15: Assume U, V are Banach, and $L: U \to V$ is a linear, closed bijection. Show that L and L^{-1} are bounded, i.e. L is a bounded linear isomorphism. **Problem 16:** Assume U, V Banach, $L : U \to V$ is a bounded linear operator. Which of the following are true? Which of them are false? Justify your answers.

- (i) The set of Fredholm operators $U \to V$ form a vector space.
- (ii) If L is compact and Fredholm, then dim $U < \infty$ and dim $V < \infty$.
- (iii) If dim $U < \infty$ and dim $V < \infty$, then L is Fredholm.
- (iv) If ||L|| is small, then L is Fredholm.
- (v) Id_U is a compact operator.