Homework Assignments **Dynamical Systems III** Bernold Fiedler, Alejandro López Nieto http://dynamics.mi.fu-berlin.de/lectures/ due date: Thursday, June 24, 2021, 18:00

Problem 33: [J. Yorke *Periods of periodic solutions and the Lipschitz constant*](1969) Let $x(t) \in \mathbb{R}^N$ be a nonstationary periodic solution of $\dot{x} = f(x)$ with minimal period p > 0. Assume $f \in C^1$ and let $c \coloneqq \sup_x |f'(x)|_2$, with the Euclidean norm $|\cdot|_2$.

- (i) Rescale the minimal period p of x(t) to the minimal period 2π of $\tilde{x}(t) \coloneqq x(\frac{p}{2\pi}t)$.
- (ii) Derive an ODE for $\eta \coloneqq \frac{d}{dt}\tilde{x}(t)$, which involves $f'(\tilde{x}(t))$.
- (iii) Show that $\eta(t)$ possesses mean value zero.
- (iv) We know the Poincaré inequality (Fourier expansion!), i.e.

$$(*) \qquad ||\eta||_2^2 \le ||\dot{\eta}||_2^2$$

holds, for the Euclidean L^2 -norms $||\eta||_2^2 := \int_0^{2\pi} |\eta(t)|_2^2 dt$ and any 2π -periodic function $\eta \in C^1(\mathbb{R}, \mathbb{R}^N)$ of mean value $\frac{1}{2\pi} \int_0^{2\pi} \eta(t) dt = 0$. Use (*) to conclude the following lower bound on minimal periods p:

$$p \ge 2\pi/c.$$

(v) Is the lower bound $2\pi/c$ for p sharp?

Problem 34: Let $x_n(t)$ be a sequence of periodic solutions of $\dot{x} = f(x)$, $f \in C^1$, with minimal period p_n . Let $||x_n(\cdot)||$ denote the sup-norm and assume $||x_n(\cdot)|| \to 0$ and $p_n \to p \in (0, \infty)$, for $n \to \infty$.

- (i) Show f(0) = 0.
- (ii) Show that $y_n(\cdot) \coloneqq x_n(\cdot)/||x_n(\cdot)||$ possesses a convergent subsequence $y_n \to y$, in C^0 , and derive an ODE for y(t).
- (iii) Conclude that $A \coloneqq f'(0)$ possesses a purely imaginary eigenvalue $i\omega$.

<u>Free extra</u>: Show $\omega \neq 0$.

Problem 35: Consider an R-reversible C^1 vector field

$$\dot{x} = f(x) \in \mathbb{R}^N, \qquad f(Rx) = -Rf(x), \qquad f(0) = 0, \qquad A \coloneqq f'(0),$$

with R linear, $R^2 = id$, $Fix(R) := \{x \in \mathbb{R}^N \mid Rx = x\}.$

- (i) Prove that $det(A) \neq 0$ implies N is even.
- (ii) For N odd and

$$\dim \operatorname{Fix}(R) = (N+1)/2.$$

Show that if dim KerA < 2, there exists a local curve of equilibria in Fix(R), locally near 0.

Problem 36: Consider a smooth vector field

$$\dot{x} = f(\lambda, x), \qquad x \in \mathbb{R}^2, \qquad \lambda \in \mathbb{R}, \qquad f(\lambda, 0) \equiv 0, \qquad D_x f(\lambda, 0) = \begin{pmatrix} \lambda & -1 \\ 1 & \lambda \end{pmatrix},$$

with flow Φ_t^f . Characterize the parameter values λ, T at which the fixed point x = 0 of the iteration

$$x_{n+1} = \Phi_T^f(x_n),$$

undergoes subharmonic bifurcation. Discuss and interpret how the subharmonic bifurcation for the iteration relates to the Hopf bifurcation happening at parameter $\lambda = 0$ for the original ODE.