Homework V19028: Dynamical Systems II Bernold Fiedler, Stefan Liebscher due date: Thursday, December 20, 2007

Problem 33: Consider the iteration on the 2-torus $T = (\mathbb{R}/\mathbb{Z})^2$ defined by the matrix

$$B = \left(\begin{array}{cc} 2 & 1 \\ 1 & 1 \end{array}\right).$$

Find a horseshoe for a suitable iterate B^k , k > 0.

Hint: Identify the torus with the unit square centered at (0,0) and investigate the images of a parallelogram parallel to the eigenvectors of B.

Problem 34: Let Φ be a diffeomorphism of the plane \mathbb{R}^2 with a transverse homoclinic orbit. In class, we found a shift on two symbols for an iterate Φ^n . Prove that for every $m \in \mathbb{N}$ the shift of m symbols is conjugate to some iterate Φ^n on a suitable subset of \mathbb{R}^2 .

Problem 35: Sketch the stable and unstable manifolds to an equilibrium with a transverse homoclinic point of a diffeomorphism of your choice. Extend the manifolds as far as possible such that the picture remains consistent with all your knowledge about dynamical systems, in particular the λ -lemma.

Problem 36: [Horocycles] Consider the POINCARÉ-model of hyperbolic geometry, that is the upper half plane $\mathcal{H} = \{z = (x, y) \in \mathbb{R}^2 : y > 0\}$ with the arclength element

$$\mathrm{d}s^2 = \frac{\mathrm{d}x^2 + \mathrm{d}y^2}{y^2}.$$

The geodesics of \mathcal{H} are the vertical straight lines, $\{z = (x, y) : x = c, y > 0\}, c \in \mathbb{R}$, and the (Euclidean) circles which centers on the x-axis, $\{z = (x, y) : (x-c)^2 + y^2 = r, y > 0\}, c \in \mathbb{R}, r > 0$.

- (i) Consider the geodesic flow Φ . Choose initial condition $z_0 = (0, 1), \dot{z}_0 = (0, 1)$. What is the orbit to this initial condition? What is the stable set of (z_0, \dot{z}_0) , i.e the set of points (w_0, \dot{w}_0) , such that $z(t) - w(t) \to 0$ as $t \to \infty$?
- (ii) Prove that the following transformations are isometries of \mathcal{H} :

translation	$\tau_a(x,y)$	=	(x+a,y),
scaling	$\theta_b(x,y)$	=	$(bx, by), \qquad b > 0,$
inversion in the unit circle	$\sigma(x,y)$	=	$\left(rac{x}{x^2+y^2},rac{y}{x^2+y^2} ight),$

(iii) What are the stable/unstable sets of an arbitrary point in the tangent bundle of \mathcal{H} with respect to the geodesic flow Φ ?