
Homework

V19263: Basic Course Dynamical Systems
Bernold Fiedler, Stefan Liebscher

Voluntary problems

Problem 45: Prove or disprove: Every three-dimensional divergence-free differentiable
vector field

f : R3 → R3, div f ≡ 0,

possesses a regular First Integral I : R3 → R.

Note: a First Integral is called regular if, and only if, its gradient vanishes only at zeros
of the vector field, i.e

∀x ∈ R3 ∇I(x) = 0 =⇒ f(x) = 0.

Problem 46: Find the general solution to the differential equation

ẋ(t) = h
(

x

t

)
,

by separation of variables. In particular, calculate the solution to the initial-value prob-
lem

ẋ(t) =
x2(t)

t2
+

x(t)

t
+ 1, x(1) = x0.

Hint: Derive an equation for y(t) := x(t)/t, as an intermediate step.

Problem 47: Consider the autonomous differential equation

ẋ = f(x), x ∈ RN

with Lipschitz-continuous f . Suppose that all x ∈ RN satisfy the inequality

(∗) f(x)T x ≥ ‖x‖3
RN .

Prove: The maximal existence time t+(x0) of the solution x(t) is bounded, for every
non-zero initial condition x0 6= 0.

Free extra: Is x = 0 automatically an equilibrium if (∗) is satisfied?

Problem 48: Consider the differential equation

ẋ = y,

ẏ = (1− x2 − y2)y − x.

Prove: there exists a unique periodic orbit.



Problem 49: Consider two linear dynamical systems in the plane,

(1) ẋ = Ax, (2) ẋ = Bx,

x = (x1, x2) ∈ R2, A = (aij)1≤i,j≤2, B = (bij)1≤i,j≤2. Combine both system to the
piecewise linear system

(3) ẋ =

{
Ax for x1x2 > 0
Bx for x1x2 < 0

We call a function x : (0, T ) → R a solution of (3) to the initial condition x(0) if

• x is Lipschitz-continuous and piecewise differentiable.

• x solves (3) at each point x(t) of the set

Ω = { (x1, x2) ∈ R2 |x1x2 6= 0 } ∪ { (0, 0) }

• x intersects the complement of Ω only at discrete times, i.e. the set {t ∈ I |x(t) 6∈
Ω} is discrete in R.

(i) Prove: If a12b12 > 0 and a21b21 > 0 then system (3) has a global and unique solution
for any initial condition.

(ii) Prove or disprove: If, under the assumptions of (i), the origin is asymptotically
stable in (1) as well as (2), i.e. if <e spec A < 0 and <e spec B < 0, then the origin
is asymptotically stable in (3).

Problem 50: Consider a closed, sealed-off lake with prey and predator fish of total
masses x and y, respectively. Suppose their dynamics obeys the Volterra-Lotka equations

ẋ = x(µ− νy),
ẏ = y(−% + σx),

with positive fixed parameters µ, ν, %, σ.

Show that the time-averaged prey population

x := lim
t→∞

1

t

∫ t

0
x(τ) dτ

coincides with the equilibrium value of x. Does the same hold for the predator popula-
tion?

Very (ε-)cautious fishing changes µ into µ̃ = µ − ε and % into %̃ = % + ε, with ε > 0.
Why? Does the time-averaged prey population increase or decrease, due to fishing?
What happens to the total population x + y?

Hint: x = σ−1(ẏ/y + %̃).



Problem 51: Consider the prey-predator system

ẋ = x(1− ax− y),

ẏ = y(−c + x− by),

with (x, y) ∈ R2
+, and parameters a > 0, b > 0, c > 0, ac < 1.

Prove:

(i) there exists a unique equilibrium (x∗, y∗);

(ii) ω((x0, y0)) = {(x∗, y∗)}, for all initial conditions x0 > 0, y0 > 0.

Hint: Remember the case a = b = 0, and compare with it.

Problem 52: Use your favorite numerical integrator (e.g. dstool) to plot the solution
of the Van-der-Pol oscillator

εẋ = −y + x(1− x2)
ẏ = x

with initial conditions x(0) = 1, y(0) = 0 up to time t = 10. Choose parameters
ε = 0.1, 0.01, 0.001, 0.0007, and 0.0002. Use stepsize h = 10−3. Compare explicit Euler,
Runge Kutta, and another solver of your choice. Describe and discuss observations and
problems.

Free extra: What happens for ε = 0.0007 to the numerical solution calculated by the
Runge-Kutta solver with fixed stepsize h = 10−3?

Problem 53: The theorem Poincaré & Bendixson given in class has a rather
complicated formulation that (in class) was not justified by examples.

Construct a planar C1 vector field that contains a bounded trajectory γ(x0) such that
the ω-limit set ω(x0) contains a point y0 ∈ ω(x0) whose ω-limit set ω(y0) contains at
least 2 equilibria.

Hint: Due to the theorem of Poincaré & Bendixson and the compactness of ω-limit
sets the set ω(y0) must be a continuum of equilibria.

Problem 54: Can an unstable equilibrium position become stable upon linearization?
Can it become asymptotically stable? Can an asymptotically stable equilibrium become
unstable?

Problem 55: Let y(t) be a continuous function solving the integral equation

y(t) =
∫ t

0
y(s)α sin(2007 y(s)) ds,

for some fixed α ≥ 0 and all t ∈ [0, 1].

Prove: y(t) ≡ 0 is constant for all t ∈ [0, 1]. For which α ∈ [−1, 0) does the claim hold?



Problem 56: Can matrices A, B ∈ Rn×n fail to commute if eA = eB = eA+B = id ?

Problem 57: Use your favorite numerical integrator (e.g. dstool) to plot the “time-2π
map” (Poincaré map)

P : S1 ×R → S1 ×R(
x(0)
ẋ(0)

)
7→

(
x(2π)
ẋ(2π)

)
of the swing (x ≈ 0), respectively the inverted pendulum (x ≈ π)

ẍ + (ω2 + α2 sin t) sin x = 0.

a) near x = 0, ẋ = 0 width α = 0.2 and ω = 0.05 resp. ω = 0.5.

b) near x = π, ẋ = 0 width α = 0.2 and ω = 0.05 resp. ω = 0.005. (Here you should
reduce the displayed region to |ẋ| ≤ 0.03 !).

Examine the stability properties of the swing / pendulum.

Problem 58: [Arnol’d] We want to prove analytically that the upper (unstable) equi-
librium of the pendulum can be stabilized by vertical vibrations.

Let l be the length of the pendulum. The vertical forcing has amplitude a � l and
period 2τ . As a simplification, we assume that the acceleration is piecewise constant,
±c = ±8a/τ 2.

The resulting equation of motion yields

ẍ(t) = (ω2 ± α2)x(t),

with ω2 = g/l and α2 = c/l. The sign switches with period 2τ . Thus α2 = 8a/(lτ 2) > ω2,
for a sufficiently fast forcing (τ � 1).

What is the minimal forcing frequency to stabilize the inverted pendulum?

Problem 59: [Arnol’d, (Russian) sample examination problems] It is known from
experience that when light is refracted a the interface between media, the sines of the
angles formed by the incident and refracted rays with the normal to the interface are
inversely proportional to the indices of refraction of the media:

sin α1

sin α2

=
n2

n1

.

Find the form of the light rays in the plane (x, y) ∈ R2 if the index of refraction is
n = n(y). Study the case n(y) = 1/y.

Remark: The half plane {y > 0} with the index of refraction n(y) = 1/y gives a model
of Lobachevskian geometry.



Problem 60: [Arnol’d, (Russian) sample examination problems] To stop a boat at a
dock, a rope is thrown from the boat which is then wound around a post attached to the
dock. What is the breaking force on the boat if the rope makes 3 turns around the post,
if the coefficient of friction of the rope around the post is 1/3, and if a dockworker pulls
at the free end of the rope with a force of 100 N (approximately the force one needs to
lift 221

2
pounds of potatoes)?

Problem 61: [Arnol’d, (Russian) sample examination problems] Draw the rays
emanating in different directions from the origin in a plane with index of refraction
n = n(y) = y4 − y2 + 1.

Remark: This explains the formation of a mirage: the air over a desert has its maximum
of refraction in a certain finite height, due to more rarefied air in higher and lower layers.

Acoustic channels in the ocean are a similar phenomenon: the maximum of rarefaction
is found at a depth of 500m-1000m.


