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Andrei Afendikov ∗ Bernold Fiedler † Stefan Liebscher ‡

April 8, 2008

Abstract

We consider the Kolmogorov problem of viscous incompressible planar fluid flow under ex-

ternal spatially periodic forcing. Looking for time-independent bounded solutions near the

critical Reynolds number, we use the Kirchgässner reduction to obtain a spatial dynamical

system on a 6-dimensional center manifold. The dynamics is generated by translations in the

unbounded spatial direction. Reduction by first integrals yields a 3-dimensional reversible

system with a line of equilibria. This line of equilibria is neither induced by symmetries, nor

by first integrals. At isolated points, normal hyperbolicity of the line fails due to a transverse

double eigenvalue zero. In particular we describe the complete set B of all small bounded

solutions. In the classical Kolmogorov case, B consists of periodic profiles, homoclinic pulses

and a heteroclinic front-back pair. This is a consequence of the symmetry of the external

force.
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1 Introduction

Let us consider a viscous incompressible planar fluid flow generated by the action of a body

force σF. The governing Navier-Stokes equations in R2 are

(∂t + u · ∇)u = −1
%∇p+ ν∆u + σF,

∇ · u = 0.
(1.1)

In balance-of-momentum form with the summation convention they read

∂%ui
∂t

+
∂Πij

∂xj
= %σFi,

∂uj
∂xj

= 0,
(1.2)

with the tensor of momentum flux density

Πij = %uiuj + pδij − %ν(∂xjui + ∂xiuj).

Here u = (u1, u2)T denotes the velocity field, p pressure, % density, and ν viscosity.

We are not going to discuss the problem in such a general setting. Instead we follow A.N.

Kolmogorov [MS61] and consider the fluid flow in a cylindrical channel (x1, x2) ∈ K = R × S1

under the action of a horizontal external (body) force

F(x1, x2) =

 F (x2)

0

 , F (x2) = F (x2 + 2π), (1.3)

which depends only on the vertical cross-section coordinate x2. Here S1 = R/2πZ and vector

(u, p) is equipped with periodic boundary conditions,

u(t, x1, x2) = u(t, x1, x2 + 2π), p(t, x1, x2) = p(t, x1, x2 + 2π) (1.4)

instead of the usual no-slip boundary conditions. Originally, Kolmogorov suggested to investi-

gate the effects of decreasing viscosity on the dynamics of the problem (1.1–1.4) with

F(x1, x2) =

 √
2 sinx2

0

 . (1.5)

There are various reformulations of the Kolmogorov question, see for example [AK98b,

Sma91]. Even under an additional periodicity condition in the unbounded horizontal direction

x1

u(t, x1, x2) = u(t, x1 + 2π/α, x2), α ∈ (0, 1) (1.6)
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and for vanishing mean flux

Q :=
α

(2π)2

∫ 2π

0

∫ 2π/α

0
udx1 dx2 =

 0

0

 , (1.7)

it is still unclear whether Navier-Stokes solutions can be dynamically nontrivial for the Kol-

mogorov forcing F (x2) =
√

2 sinx2.

Stability and bifurcation of the basic steady state u∗=(U(x2), 0)T, p∗= const. of the problem

(1.1)–(1.7) depends on the Reynolds number R = ν−2σL where L is the length unit, and

were studied in [MS61, Yud65, Yud66, AB86, Afe95]. It was shown in [MS61, Yud65] that

the curve R(α) of neutral stability is monotone for F (x2) =
√

2 sinx2 and that the minimal

critical Reynolds number R0 = 1 corresponds to α = 0 with stability exponent λ = 0. There

is numerical evidence that for small enough α a similar statement is true for general forcing

F (x2), [Afe95]. Therefore the loss of stability and the bifurcation problem for α = 0, i.e. the

bifurcation problem in the unbounded cylinder K, are of particular interest.

It is therefore our goal, in the present paper, to provide a detailed study of time-indepen-

dent fluid-flow profiles (u1, u2) near u∗ = (U, 0)T without the periodicity requirement (1.6) in

the unbounded spatial variable x1. We thus consider only the time-independent Navier-Stokes

system
0 = ν∆u1 − (u1∂x1 + u2∂x2)u1 − %−1∂x1p+ σF (x2),

0 = ν∆u2 − (u1∂x1 + u2∂x2)u2 − %−1∂x2p,

0 = ∂x1u1 + ∂x2u2.

(1.8)

The fundamental tool for reaching our goal will be the Kirchgässner reduction introduced in

[Kir82], and extended to the analysis of viscous fluid flows in [IMD89]. In Kolmogorov problem

the space of all bounded solutions of elliptic problem (1.8) near the x1-independent Kolmogorov

solution u∗ fits into a 6-dimensional center manifold of spatial profiles. Even though the initial

value problem for elliptic equations is ill-posed, translation by x1 induces an autonomous flow

on this manifold. See Section 2 for details. Our study of small bounded solutions of this reduced

spatial-dynamics flow, where x1-translation plays the role of a “time” action, will account for

new homoclinic pulse-type and heteroclinic multi-pulse solutions to the Kolmogorov problem,

near Kolmogorov’s instability threshold.

Going beyond Kolmogorov’s original choice (1.5), we admit more general horizontal forcing

functions F (x2) which are periodic in the cross-sectional vertical coordinate x2 and of zero

average, but are still independent of the horizontal coordinate x1. A simple prototype is given
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by

F (x2) =
√

2 sinx2 + ω sin 3x2. (1.9)

Such higher harmonics don’t increase the complexity of the bifurcation diagram near the insta-

bility threshold.

Let 〈u(x1, ·)〉 = 1
2π

∫ 2π
0 u(x1, x2)dx2 denote the cross-sectional average. By incompressibility

the mean flux 〈u1(x1, ·)〉 does not depend on x1. In fact ∂x1〈u1(x1, ·)〉 = −〈∂x2u2(x1, ·)〉 vanishes.

The same is also true for Couette and Poiseuille plane-channel flows with no-slip boundary

conditions. Periodicity (1.4) and vanishing mean value of the forcing, 〈F 〉 = 0, imply the

existence of two additional conserved quantities

∂

∂x1
〈Π11(x1, ·)〉 = 0 and

∂

∂x1
〈Π21(x1, ·)〉 = 0. (1.10)

This property strongly relies on the absence of stress at the boundaries and is not true for

Couette and Poiseuille flows.

The existence of these conserved quantities implies the presence of three nontrivial first

integrals I1, I2, I3 of the dynamical system generated by x1-translations on the spatial center

manifold. This fact significantly facilitates our analysis of the reduced equations. Moreover, a

three dimensional manifold Ψ∗ of x1-independent solutions arises. For most values of the vector

I = (I1, I2, I3) ∈ R of first integrals, the three-dimensional level set I = const. is transverse

to the equilibrium manifold Ψ∗, in the 6-dimensional spatial-dynamics flow after Kirchgässner

reduction. This transversality degenerates precisely in one fiber I1 = 0. In the critical three-

dimensional level surface I = 0, a one-dimensional family of equilibria remains (see Section 2 for

details).

Vector fields with one- and two-dimensional families of equilibria have been studied by two of

the present authors, in a series of papers. The normally hyperbolic case is well-known; see for ex-

ample [Fen77, Arn88, Sho75, Aul84], and the references there. When normal hyperbolicity fails,

the situation resembles bifurcation theory. While the familiar foliation of the flow by a constant

bifurcation parameter is absent, a manifold of trivial solutions persists. We call this situation

bifurcation without parameters; see [FLA00a, FL00, FLA00b, FL01, FL02]. Applications include

coupled-oscillator dynamics, oscillatory viscous shock profiles of nonlinear systems of hyperbolic

conservation laws with source terms, and binary oscillations of certain discretizations of systems

of conservation laws. For an early example involving competition models in population biology

see [Far84].
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The critical equilibrium in the level surface I = 0 of the Kolmogorov problem is characterized

by a triple zero eigenvalue. Transversely to the equilibrium line, the zero eigenvalue is double. In

standard bifurcation theory, with parameters, this linearization would correspond to a Takens-

Bogdanov bifurcation; see for example [Arn72, Tak74, Bog81a, Bog81b, GH82], and also [Gel99]

for the time discrete case. Takens-Bogdanov bifurcation without parameters has been studied

in [FL01].

Reversibility of the reduced, spatial dynamics, however, is an additional feature of the plane

Kolmogorov flow which substantially changes the Takens-Bogdanov dynamics of [FL01]. Two

types of reversibilities, S1 and S2, arise, depending on the symmetry properties of the spatially

2π-periodic forcing F (x2) in the Navier-Stokes system (1.1). Specifically, these reversibilities are

generated by the following symmetries

S1 : F (−x2) = −F (x2),

S2 : F (x2 + π/s) = −F (x2).
(1.11)

The dimension of the fixed-point subspaces Fix(Sj) of Sj-fixed vectors will turn out to be j, in

the three-dimensional reduced spatial dynamics within I = 0. See Lemma 2.1 and section 3.

Note that F (x2) = (
√

2 sinx2, 0)T , as chosen by Kolmogorov, (1.5), with s = 1 satisfies both

reversibilities. The choice

F (x2) =
√

2 sinx2 + ω sin 2x2 (1.12)

in contrast, satisfies only S1, but not S2, for ω 6= 0.

In section 3, we derive a local normal form for Takens-Bogdanov bifurcations without param-

eters in the presence of only reversibility S1.

The easier case of double reversibility, S1 and S2, is studied in section 4. See in particular

Figure 4.2 for the set of all (small) bounded solutions. The x1-periodic solutions were known

to Yudovich [Yud65] already. In addition, we find homoclinic or pulse type solutions, as well as

heteroclinics of front type. Parenthetically we note that similar results can be derived when only

the reversibility S2 is present. It is in fact the two-dimensional fixed-point subspace Fix(S2),

which greatly facilitates the analysis. Such reversible system appeared in the paper [Ioo00],

where travelling waves of the Hamiltonian Fermi-Pasta-Ulam model were studied.

The more intricate case of only the single reversibility S1, as exemplified by forcing (1.12),

will be treated in [AFL08].

We now give a sample statement on the existence of bounded uniformly continuous solutions
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to Navier-Stokes problem (1.4)-(1.5), (1.8) near the Kolmogorov solution u∗ = (
√

2 sinx2, 0)T

and near the instability threshold R0 = 1, where ε2 = R−R0 is small.

Theorem 1.1 To each bounded solution y(t), t ∈ R of equation (4.1) corresponds a unique

smooth solution u(R, x1, x2) to problem (1.4–1.5, 1.8) which satisfies the asymptotic relation

u(x1, x2) =

 U(x2)

0

+ ε
√

3y(
√

2/3εx1)

 √
2 cosx2

1

+O(ε2),

p(x1, x2) = O(ε2).

Here, y ∈ {yΘ,H

per , y
Θ,H

hom, y
0, 1

4

het} is a bounded orbit of Duffing equation ÿ + y − y3 = Θ.

These solutions can be readily expressed in terms of special functions. For instance

y
0, 1

4

het(t) = ±
√

2 tanh(t/
√

2).

Notice that in the present article Kirchgässner reduction was performed analytically without

using computers in contrast to [IMD89, AM95] where numerical information was exploited in

the study of Couette-Taylor and Poiseuille problems.

To conclude this introduction, we remark that the horizontal forcing function F (x2) in (1.1),

a priori, does not have to satisfy any of the reversibility constraints (1.11). Without any re-

versibilities, however, the investigation of only stationary solutions is not adequate to the hy-

drodynamical problem since a variety of time periodic solutions close to the Kolmogorov flow

can appear [AB86].

Moreover, we do not address the formidable task of determining the PDE stability of our

nonlinear Kolmogorov flow profiles, under the time dependent Navier-Stokes system, in two or

three space dimensions. Even the global existence of L∞(K)-solutions of the nonstationary

Navier-Stokes system in the Kolmogorov problem has been addressed only recently, see [AM05].

In this sense, our analysis presents only another naive step stumbling into such largely unexplored

territories.

2 Basic equations, Kirchgässner reduction, reversibilities and

conserved quantities

We consider the Navier-Stokes system (1.1–1.4) in the cylindrical domain K = R×S1. We drop

the periodicity condition (1.6) in the unbounded horizontal direction x1, as well as the condition
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of zero mean flux. The basic steady state is u∗ = (U(x2), 0), p∗ = const..

We introduce the Reynolds number R = σν−2L, where L = 1 is the unit of length and we

take σ/ν as the velocity unit.

In the thus rescaled equation, the first component U = U(x2) of the basic steady state u∗ is

the 2π-periodic solution of the equation

U ′′ + F = 0 (2.1)

with vanishing mean value. Looking for perturbations v = (v1, v2)T of the Kolmogorov flow in

the scaled form u = u∗ +R−1v, we arrive at

∂τv1 +R (U∂x1v1 + U ′v2) + ∂x1p = ∆v1 − v1∂x1v1 − v2∂x2v1,

∂τv2 +R U∂x1v2 + ∂x2p = ∆v2 − v1∂x1v2 − v2∂x2v2,

∂x1v1 + ∂x2v2 = 0,

(2.2)

with periodic boundary condition in the cross section x2:

v(τ, x1, x2) = v(τ, x1, x2 + 2π). (2.3)

To study the loss of linear stability of the Kolmogorov flow, we temporarily reintroduce the

artificial periodicity condition (1.6) in x1 along the channel, and fix the vector of mean flux

Q = (0, 0)T. The eigenvalue problem then reduces in a standard way (see e.g. [AM95]) to

Orr-Sommerfeld equation

λ`αχ+ iα(U`αχ− U ′′χ) = R−1`2αχ, (2.4)

with ′ = d
dx2

, `α = d2

dx2
2
− α2, and

χ(x2) = χ(x2 + 2π). (2.5)

General properties of the Orr-Sommerfeld problem (2.4, 2.5), are well known, see e.g. [DH69].

For instance the spectrum of the problem is discrete. Let λ0(α,R) denote the eigenvalue with

maximal real part. Then the condition <eλ0(α,R) = 0 defines the curve R = R0(α) of neutral

stability in the plane (α,R). For small α this neutral curve is monotone and the minimal

Reynolds number corresponds to α = 0.

Each of the following two conditions is sufficient to prove that λ0(R,α) is real:

Condition (A) There exists a shift x2 → x2 + ς such that U(x2 + ς) is odd,

U(x2 + ς) = −U(−x2 + ς). (2.6)
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Without loss of generality, we use ς = 0 throughout the remaining paper, whenever referring to

condition (A).

Condition (B) There exists s ∈ N such that

U(x2) = −U(x2 + π/s). (2.7)

Since we know that the minimal critical Reynolds number corresponds to the limit α = 0 of

unbounded x1-periods it is necessary to study solutions of the perturbation system (2.2) on the

unbounded domain K with x1 ∈ R. The method of choice is the Kirchgässner reduction [Kir82],

extended to the analysis of viscous fluid flows in [IMD89, AM95, AM01].

Lemma 2.1 Under condition (A), the Navier-Stokes system (2.2) is equivariant under the re-

flection S̃1 : (x1, x2, v1, v2) 7→ (−x1,−x2,−v1,−v2). Under condition (B), system (2.2) is equiv-

ariant under the transformation

S̃2 : (x1, x2, v1, v2) 7→ (−x1, x2 + π/s,−v1, v2).

By equivariance we mean that the transformed quantities are solutions whenever the original

quantities are. The proof of the lemma is therefore an obvious calculation; see also (2.13, 2.14)

below.

Kirchgässner’s idea is to rewrite time independent system (2.2) in the form of a dynamical

system with respect to spatial “time” x1 and look for solutions which are uniformly small in x1.

In this setting we consider perturbations of the basic Kolmogorov solution. The Kirchgässner

reduction amounts to a center manifold reduction which captures all solutions (v, p) which

remain uniformly small for both positive and negative spatial “times” x1.

Following [IMD89] denote

w1 = −p+ ∂x1v1 and w2 = ∂x1v2. (2.8)

Then the stationary τ -independent Navier-Stokes problem (2.2) takes the form

∂x1v1 = −v′2,

∂x1v2 = w2,

∂x1w1 = −v′′1 +R(−Uv′2 + U ′v2)− v1v
′
2 + v2v

′
1,

∂x1w2 = RUw2 − 2v′′2 − w′1 + v1w2 + v2v
′
2.

(2.9)
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Here, ′ denotes differentiation with respect to x2. With ψ = (v1, v2, w1, w2)T, equation (2.9) can

be written as

∂x1ψ = ARψ + B(ψ,ψ) (2.10)

where AR = A0 +RA1 and

A0ψ= −


v′2

−w2

v′′1

2v′′2 + w′1

,A1ψ =


0

0

U ′v2 − Uv′2

Uw2

,B(ψ,ψ) =


0

0

v′1v2 − v1v
′
2

v1w2 + v2v
′
2

. (2.11)

The periodic boundary condition is

ψ(x2) = ψ(x2 + 2π). (2.12)

The evolution problem (2.10) is reversible with respect to spatial “time” x1. In the present

context, this means that under conditions (A), (B) the relations

AR ◦ Sj = −Sj ◦ AR, B ◦ Sj = −Sj ◦ B (2.13)

hold for j = 1, 2. Here

S1


v1

v2

w1

w2

 (x2) =


−v1(−x2)

−v2(−x2)

w1(−x2)

w2(−x2)

 , S2


v1

v2

w1

w2

 (x2) =


−v1(x2 + π/s)

v2(x2 + π/s)

w1(x2 + π/s)

−w2(x2 + π/s)

 . (2.14)

If ψ(x1, x2) is a solution of (2.10, 2.12), then in fact Sj(ψ(−x1, x2)) is also a solution. This is a

precise form of the equivariance statement of lemma 2.1, in the spatial dynamics setting.

Equation (2.10) possesses a family of x1-independent solutions

Ψ∗ = (β1 + Vβ2(x2), β2, β3, 0)T (2.15)

with three independent parameters β1, β2, β3. Here β1 corresponds to the action of the one-

parameter subgroup of the symmetry group of the Navier-Stokes system (1.1) generated by

t∂x1 + ∂u1 . This is Galilean invariance along the cylinder domain K. Parameter β3 corresponds

to the action of the subgroup generated by ∂p. Indeed, the pressure in an incompressible fluid is

determined only up to a constant. If F (x2) = 0, then β2 also corresponds to Galilean invariance.

In the Kolmogorov problem, however, the Galilean invariance is violated in the cross-sectional
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x2-direction of cylinder due to the nontrivial forcing. Instead there is a curve of solutions

parametrized by β2, such that Vβ2(x2) satisfies

V ′′β2
− β2V

′
β2
−Rβ2U

′ = 0, (2.16)

with x2-average 〈Vβ2〉 = 0. We discuss conserved quantities associated with this problem, next.

Lemma 2.2 System (2.9) possesses three conserved quantities:

Ĩ1(ψ) = 〈v1〉, (2.17)

Ĩ2(ψ) = 〈(∂x1v1 − p)〉 − 2R〈Uv1〉 − 〈v2
1〉, (2.18)

Ĩ3(ψ) = 〈∂x1v2〉 −R〈Uv2〉 − 〈v1v2〉, and Ĩ3(Sjψ) = (−1)j+1Ĩ3(ψ). (2.19)

Along the family (2.15) of x1-independent solutions Ψ∗, the map Ĩ : R3 → R3, (β1, β2, β3) 7→

(Ĩ1(Ψ∗), Ĩ2(Ψ∗), Ĩ3(Ψ∗)) is locally invertible for β1 6= 0.

Proof. Invariance claim (2.17), as already discussed in the introduction, is a general consequence

of incompressibility.

We prove invariance of (2.18) to be a consequence of the x1-independence (or x1-conserva-

tion) of the averaged component Π11 of the momentum flux density tensor. Indeed, by (2.9) the

x2-average of w1 satisfies

d
dx1

〈w1〉 = R〈U ′v2 − Uv′2〉+ 〈v′1v2〉 − 〈v1v′2〉.

Integration by parts and incompressibility implies 〈v′1v2〉 = −〈v1v′2〉 = 〈v1∂x1v1〉 = 1
2

d
dx1
〈v2

1〉.

Similarly 〈U ′v2〉 = −〈Uv′2〉 = 〈U∂x1v1〉 = d
dx1
〈Uv1〉, etc. Therefore

d
dx1

〈∂x1v1 − p〉 :=
d

dx1
〈w1〉 =

d
dx1

(
2R〈Uv1〉+ 〈v2

1〉
)
.

Invariance of (2.19) can be established in a similar way and the symmetry relations follow from

conditions (A) and (B) respectively. The last statement of the lemma follows from the relation

det

 ∂(Ĩ1, Ĩ2, Ĩ3)
∂(β1, β2, β3)

∣∣∣∣∣
ψ=Ψ∗

 = β1.

./

Let us briefly introduce the functional-analysis setting of problem (2.9). In the space P of

real-valued trigonometric polynomials, i.e., of finite sums

u(x2) =
∑
k

ukeikx2 , u−k = uk,
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consider the scalar product

(u, ũ)α =
∑
k

(1 + k2)αukũ−k, (2.20)

for α ≥ 0. The closure of P in the induced norm ‖ · ‖α is denoted Hα.

Consider the operator AR : D(AR) → X, where

X=(H1)2 × (H0)2 and D(AR)={(v1, v2, w1, w2) ∈ (H2)2 × (H1)2}

Then AR has compact resolvent, with resolvent estimate

‖(A0 − iθ id)−1‖L(X,X) ≤
c

1 + |θ|
, θ ∈ R. (2.21)

See [IMD89], where the more complicated case of no-slip boundary conditions is considered.

The operator B(ψ,ψ) is bilinear in Ψ = (v1, v2, w1, w2) ∈ (H2)2 × (H1)2. The Sobolev

embedding theorem H2 ⊂ C1
per[0, 2π] implies that the operator B(ψ,ψ) : D(AR)×D(AR) → X

is bounded. Since it is also bilinear, it is analytic.

As AR possesses compact resolvent, its spectrum consists of eigenvalues of finite multiplicity.

Consider small |R−R0|. For R < R0 there is a pair of real eigenvalues which become purely

imaginary for R > R0. This is a direct consequence of the equivalence of the eigenvalue problem

ARψ = iαψ with the Orr-Sommerfeld equation (2.4) equipped with x1-periodicity of 2π/α.

Perturbation theory [Kat66] implies that there is a multiple eigenvalue λ0 = 0 at R = R0(0).

All other eigenvalues are at finite distance from the imaginary axis.

As a first step in the Kirchgässner reduction we determine the eigenspace of AR corresponding

to the eigenvalue λ0 = 0. Our results will be summarized in lemmas 2.3 and 2.4 below. Since

operator AR : D(AR) → X possesses compact resolvent, the range rgAR is closed in X, and

AR is a Fredholm operator. By [BJS64, Sch59], rgAR is orthogonal in (L2)4 to kerA∗R, where

kerA∗R is the kernel of the unbounded formal adjoint operator

A∗R : (L2
per[0, 2π])4 → (L2

per[0, 2π])4, (2.22)
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A∗R =



0 0 − d2

dx2
2

0

d
dx2

0 R(2U ′ + U
d

dx2
) −2

d2

dx2
2

0 0 0
d

dx2

0 1 0 RU


. (2.23)

Straightforward calculations demonstrate, that kerA∗R is 3-dimensional and is spanned by

ξ−1 =


1

0

0

0

 , ξ−2 =


−2RU

0

1

0

 , ξ1 =


0

−RU

0

1

 . (2.24)

The next step is to determine the generalized eigenspace of AR associated with λ = 0. Define

the integral operator r : H0 → H1 by

rφ = Φ ⇐⇒ 〈Φ〉 = 0, and φ = Φ′. (2.25)

It is straight forward that the kernel kerAR is spanned by the tangent vectors κj at β = 0 to

the family Ψ∗ of x1-independent solutions defined in (2.15):

κ−1 =


0

0

1

0

 , κ−2 =


1

0

0

0

 , κ1 =


RrU

1

0

0

 . (2.26)

The eigenfunctions κ−1 and κ−2 correspond to the actions of generators of the symmetry group.

They do not give rise to a generalized eigenspace; but κ1 does. Indeed κ1 ∈ rgAR, i.e.

RrU = −v′2,

1 = w2,

0 = −v′′1 +R(U ′v2 − Uv′2),

0 = RUw2 − 2v′′2 − w′1,

(2.27)

is solvable. The solution of (2.27) which is orthogonal to ξ−1, ξ−2 is given explicitly by

κ2 =


R2r2(UrU − U ′r2U)

−Rr2U

3RrU +R3D0

1

 . (2.28)
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The L2-orthogonality condition (κ2, ξ−2) = 0 implies D0 = 〈2U ′r2h〉, where

h = r2(U ′′r2U − U2) = r(U ′r2U − UrU). (2.29)

Notice that condition (B) implies D0 = 0.

In fact, also κ2 /∈ rgA, except at a unique value of the Reynolds number. Indeed, the

orthogonality condition

(κ2, ξ1) = 0 (2.30)

for the solvability of equation

κ2 = ARκ3 (2.31)

provides us with the critical Reynolds number

R0 = 〈(rU)2〉−1/2. (2.32)

For R = R0 a Jordan block of length at least 3 arises. In the correspondence of the general

theory [AM95] and calculations of [Afe95] this critical Reynolds number corresponds to R0(0)

as defined from Orr-Sommerfeld equation (2.4). Define

g = r
(
Urh− U ′r2h+ 2D0

)
. (2.33)

Then the solution orthogonal to ξ−1, ξ−2, ξ1 is

κ̃3 =


−3R0r3U −R3

0rg

R2
0r

2h

−r(1 +R2
0Ur2U)− 2R2

0rh−D1

−R0r2U

 (2.34)

with

D1 = 2R2
0〈3Ur3U +R2

0Urg〉. (2.35)

Condition (A) implies D1 = 0. Setting U =
√

2 sinx2 in (1.5), for instance, we have R0 = 1,

h = 0, D0 = 0, r3U =
√

2 cosx2 and therefore g = 0, D1 = 0.

The next compatibility condition

(κ̃3, ξ1) = 0

is equivalent to

〈Ur2h〉 = 0. (2.36)
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Obviously, this holds true in any of the cases (A), (B) under consideration. We obtain

κ̃4 =


κ4,1

3R0r4U +R3
0r

2g

R3
0r(Ur2h)− 5R0r3U − 2R3

0rg

R2
0r

2h

, (2.37)

where κ4,1 = r2
(
3R2

0(U
′r4U − Ur3U) +R4

0(U
′r2g − Urg) +D1

)
+2R2

0r
3h+r3

(
1 +R2

0Ur2U
)
. The

compatibility condition (κ̃4, ξ1) = 0 for the existence of a fifth generalized eigenvector yields

K0 := − 3R2
0〈Ur4U〉 −R4

0〈Ur2g〉 = 0, (2.38)

In general, we expect K0 6= 0 and therefore a 4-dimensional Jordan block. However, we are

unable to prove that K0 6= 0 for all U(x2). This condition, however, can easily be checked for

specific U(x2). For the original Kolmogorov setting U =
√

2 sinx2, we have r4U = U , g = 0, and

K0 = −3; hence K0 6= 0 for any small perturbations of Kolmogorov’s velocity profile. Therefore

the following lemma is proved.

Lemma 2.3 We assume any one of the conditions (A), (B), as well as K0 6= 0 in (2.38). Then

the generalized eigenspace M = M(R) associated with the eigenvalue λ = 0 of the operator

AR for the stationary Navier-Stokes problem (2.10) possesses dimM(R) = 4, if R 6= R0, and

dimM(R) = 6, if R = R0. In the latter case the vectors {κ−2, κ−1, κ1, κ2, κ̃3, κ̃4} defined above

form a basis of M(R0).

In particular for U =
√

2 sinx2, we get R0 = 1, h = g = 0, K0 = −3 and

κ1=


−
√

2 cosx2

1

0

0

 , κ2=


0

√
2 sinx2

−3
√

2 cosx2

1

 , κ̃3=


−3
√

2 cosx2

0

−1/2 sin 2x2
√

2 sinx2

 ,

κ̃4=


−1/8 sin 2x2

3
√

2 sinx2

−5
√

2 cosx2

0

 .

In a same way the following statement for the adjoint problem holds true.
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Lemma 2.4 Let the assumptions of Lemma 2.3 hold. Then the generalized eigenspace M∗(R0)

associated with the eigenvalue λ = 0 of the formal adjoint operator A∗R : (L2
per)

4 → (L2
per)

4 is

spanned by {ξ−2, ξ−1, ξ1} defined in (2.24), and by {ξ2, ξ3, ξ4}, where

ξ2 =


−R0rU

1

0

0

 , ξ3 =


−R2

0Ur3U + r(1−R2
0U

′r3U)

0

R0r3U

0

 , (2.39)

ξ4 =


ξ4,1

−R2
0Ur4U

R2
0r

2(Ur3U)− r3(1−R2
0U

′r3U)

R0r4U

,

where ξ4,1 = ξ̃4,1 − 〈ξ̃4,1〉,

ξ̃4,1 = R0

(
2r3U −R2

0Ur2(Ur3U) + Ur3(1−R2
0U

′r3U)−

r
(
U ′
(
R2

0r
2(Ur3U)− r3(1−R2

0U
′r3U)

)) )
.

Note that span{ξ1, ξ2, ξ3} is orthogonal to span{κ−2, κ−1, κ1} by the construction.

Remark 2.5 . For the Kolmogorov forcing, U =
√

2 sinx2, we have R0 = 1 and

ξ1=


0

−
√

2 sinx2

0

1

 , ξ2=


√
2 cosx2

1

0

0

 , ξ3 =


−3/2 sin 2x2

0
√

2 cosx2

0

,

ξ4 =


2
√

2 cosx2 − 1
4

√
2 cos 3x2)

−2 sin2 x2

−3/8 sin 2x2
√

2 sinx2

.

Denote m0 = K−1
0 (κ̃3, ξ4) and κ3 = κ̃3−m0κ1, κ4 = κ̃4−m0κ2. For the forcing F1 =

√
2 sinx2

we get m0 = 157/96.

Lemma 2.6

The vectors {κ−2, κ−1, κ1, κ2, κ3, κ4} and {ξ−1, ξ−2,
1
K0
ξ4,

1
K0
ξ3,

1
K0
ξ2,

1
K0
ξ1} are bi-orthogonal.
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Proof. The orthogonality of span{κ1, κ2, κ3, κ4} vs. span{ξ−1, ξ−2}, span{ξ1, ξ2, ξ3, ξ4} vs.

span{κ−2, κ−1}, and the orthogonality conditions span{κ1, κ2, κ3}⊥ξ1 as well as span{ξ1, ξ2, ξ3}⊥κ1

holds by construction. For 1 ≤ l,m ≤ 4 we note the reversibility action

Sjκl = (−1)j+lκl and Sjξm = (−1)j+m+1ξm. (2.40)

From the relations

(κl, ξm) = (Sjκl, Sjξm) = (−1)2j+m+l+1(κl, ξm),

follows that (κl, ξm) = 0 for m+ l = 0mod 2. Since for l +m ≤ 5

(κl, ξm) = (Am−1
R0

κl+m−1, ξm) = (κl+m−1, ξ1)

we have that (κ5−l, ξl) = 1 for l ≤ 4 and (κl, ξm) = 0 for l + m − 1 ≤ 5. By construc-

tion {ξ−1, ξ−2} and {κ−2, κ−1} are bi-orthogonal and since (κ3, ξ4) = (κ4, ξ3) = 0 the proof is

complete.

./

3 Equations on a spatial center manifold

Since the generalized eigenspace of the operator AR at R = R0 is 6-dimensional and the resol-

vent estimate (2.21) holds, the spatial center manifold theorem in the form of [Mie88] can be

used to derive the 6-dimensional ODE system that depends on small parameter γ0 = R − R0

and describes the nonlinear spatial dynamics in a vicinity of the equilibria. This theorem is

the basis of the Kirchgässner reduction and covers the case of spatial dynamics generated by

elliptic problems in cylindrical domains with an infinite number of eigenvalues of the associated

linearized problem in both the left and right half of the complex plane.

As a consequence of the symmetries and the related conserved quantities Ĩ1(ψ), Ĩ2(ψ) de-

scribed in Lemma 2.2, the 6-dimensional ODE system on the center manifold can be further

reduced to a 4-dimensional system. Indeed, Ĩj(ψ), j = 1, 2 generate functionally independent

first integrals Ij(·) of the system on the center manifold. The resulting 4-dimensional ODE

problem inherits the reversibility of the original problem and possesses a line of equilibria which

corresponds to the family of solutions Ψ∗. To study the dynamics in a vicinity of this line we

will use the first integral I3(·) generated by Ĩ3(ψ) and blow up the singularity on the level set

I3 = 0. This step requires lengthy calculations of the coefficients of the corresponding Taylor

expansions which will be done explicitly.
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To derive the nonlinear spatial dynamics of (2.9), (2.12) in the vicinity of the origin on the

spatial center manifold MR, we choose the projector P0 : X → M(R0) onto the generalized

eigenspace M(R0) of the eigenvalue λ0 = 0 to be

P0ψ = (ψ, ξ−2)κ−1 + (ψ, ξ−1)κ−2 +
4∑
j=1

(ψ, ξ5−j)κj (3.1)

and denote Q0 = (id−P0). See (2.24), (2.26), (2.28), (2.34), (2.37) and Lemma 2.4. By

construction, the spectral projectors P0 and Q0 commute with AR0 . If we decompose

ψ = ψP + ψQ, ψP ∈ P0X, ψQ ∈ Q0X, (3.2)

accordingly, then the stationary Navier-Stokes problem (2.10, 2.12) takes the form

∂x1ψP = AR0ψP + P0(B(ψP + ψQ, ψP + ψQ) +

+(R−R0)P0A1(ψP + ψQ)), (3.3)

∂x1ψQ = AR0ψQ +Q0(B(ψP + ψQ, ψP + ψQ) +

(R−R0)Q0A1(ψP + ψQ)). (3.4)

For Reynolds numbers R in a small neighborhood JR0 of R0, the center manifold theorem

asserts the existence of neighborhoods YP ⊂M(R0), YQ ⊂ Q0(X) of the origins in the generalized

eigenspace M(R0) and its orthogonal complement Q0(X) and a smooth function

Φ : J × YP −→ YQ ∩ D(AR0)

with the following properties:

(i) Φ(R0, 0) = 0, and ∂ψP
Φ(R0, 0) = 0;

(ii) MR = graphΦ(R, ·) is a local invariant manifold of (3.3), (3.4) – the center manifold;

(iii) Every solution of (3.3), (3.4) that remains in the neighborhood,

(ψP(x1), ψQ(x1)) ∈ YP × YQ

for all x1 ∈ R, lies on MR.

This theorem reduces the problem of the local spatial dynamics of system (2.9), (2.12) (i.e. the

spatial structure of solutions of the Kolmogorov problem which are uniformly small in x1) to

the 6-dimensional ODE

∂x1ψP = AR0ψP+P0 (B (ψP+Φ(R,ψP), ψP+Φ(R,ψP)) + γ0A1(ψP+Φ(R,ψP ))) , (3.5)
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where γ0
def= ε2 = R−R0. In local coordinates γ̂ = (γ0, γ−2, γ−1, γ1, . . . , γ4) defined by

ψP = γ−2κ−2 + γ−1κ−1 +
∑4
j=1 γjκj , (3.6)

equation (3.5) can be written as 7-dimensional ODE system

γ̇j = Fj(γ̂), j = 0,−2,−1, 1, 2, 3, 4; Fj : R7 7→ R (3.7)

with γ̇0 = 0. The coefficients of the expansion of Fj(γ̂) up to second order does not depend

on Φ(R,ψP). The higher order terms Fj,kγ̂k, |k| > 2 and the coefficients of the expansion of

Φ(R,ψP) can be derived recursively. Expand

Φ̂(γ̂) =
∑

|k|≤n0

Φ̂kγ̂
k + O(|γ|n0), where Φ̂(γ̂) := Φ(R0 + γ0, ψP). (3.8)

We substitute the expansion (3.8) into equation (3.4),

d

dx1
Φ̂(γ̂) = AR0(ψP)+Q0

(
B
(
ψP+Φ̂(γ̂), ψP+Φ̂(γ̂)

)
+ γ0A1(ψP+Φ̂(γ̂))

)
(3.9)

and express γ̇j from (3.3). Comparing coefficients we obtain an infinite set of equations. For

instance,
0 = AR0Φ̂1001000 +Q0A1(κ1),

0 = AR0Φ̂0002000 +Q0B(κ1, κ1),

2Φ̂0002000 = AR0Φ̂0001100 +Q0 (B(κ1, κ2) + B(κ2, κ1)) ,

Φ̂0001100 = AR0Φ̂0000200 +Q0B(κ2, κ2).

Solving these equations, we obtain:

Φ̂0002000=


R0r2U

0

−2

0

, Φ̂0001100=


−2R2

0r
2h+ 2R2

0r
2(Ur2U − U ′r3U + 2/R2

0)

−2R0r3U

4R0r2U

0



Φ̂0000200=


Φ̂1

0000200

2R2
0r

3h− 2R2
0r

3(Ur2U − U ′r3U + 2/R2
0)

Φ̂3
0000200

−2R0r3U

.
(3.10)

where Φ̂1
0000200, Φ̂

3
0000200 can readily be found. The following lemma summarizes several proper-

ties of system (3.7).

Lemma 3.1
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(i) Parameter dependent system (3.7) is reversible with respect to involutions

Ŝ1
def= diag(1,−1, 1,−1, 1,−1, 1), Ŝ2

def= diag(1,−1, 1, 1,−1, 1,−1)

for cases (A), (B), respectively.

(ii) System (3.7) is invariant under shifts γ−1 → γ−1 +const., i.e. F(·) doesn’t depend on γ−1.

(iii) There are three first integrals

(a) I1(γ̂) = γ−2

(b) I2(γ̂) = γ−1 + ϕ2(γ̂), with function ϕ2 satisfying ∂γ−1ϕ2

∣∣
γ̂=0

= 0

(c) I3(γ̂) = K0γ4 + ϕ3(γ̂), with ∂γ4ϕ3|γ̂=0 = 0.

(iv) F3(γ̂) = γ4.

(v) Family (2.15) of x1-independent solutions Ψβ2 = Ψ∗|β1=β3=0 = (Vβ2 , β2, 0, 0) of the Lemma

2.2, is contained in the level set I3(γ̂) = 0. For small β2 the family is given by γ−2 = γ−1 =

γ4 = 0, γ1 = β2 + O(β2), γ2 = 0, and γ3 = −(R0K0)−1β2γ0+cβ3
2+O(β3

2).

(vi) I3(Ŝj γ̂) = (−1)j+1I3(γ̂)

Proof. Reversibility with respect to Ŝ1 or Ŝ2 follows from the general statement of [Mie88]

since S̃1(κ−1) = S̃2(κ−1) = κ−1, S̃1(κ−2) = S̃2(κ−2) = −κ−2, and S̃i(κj) = (−1)i+j+1κj for

j = 1, · · · , 4. The second statement does not follow directly from [IA92, Mie88] since the

symmetry group κ−1 → κ−1 + const. of (2.9) is not compact. It is not difficult, however, to

adjust the proof to the present case and to see that the function Φ(γ0, ψP) can be chosen to be

independent of γ−1.

Existence and symmetry properties of the first integrals I1, I2, I3 of system (3.7) on any

center manifold are inherited from the corresponding conserved quantities Ĩ1, Ĩ2, Ĩ3 of lemma

2.2. Claims (iii) follow from the explicit calculations.

Since (B(·, ·), ξ2)L2 = 0 claim (iv) follows from (3.3) and direct calculations, see (2.11).

Statement (v) follows from the relation Ĩ3(Ψβ2(x2)) = 0 and normal hyperbolicity of the
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center manifold. For small β2 the solution Ψβ2 can be expanded into the power series

Ψβ2 =



(R0 + γ0)
∞∑
j=0

rj+1Uβ2
j+1

β2

0

0


.

Therefore

(Ψβ2 , ξ−1) = 0, (Ψβ2 , ξ−2) = 0,

(Ψβ2 , ξ4) = β2 + O(β2), (Ψβ2 , ξ3) = 0,

(Ψβ2 , ξ2) = − γ0β2

R0K0
+ cβ3

2 + O(β5
2) + O(γ0β

2
2), (Ψβ2 , ξ1) = 0,

(3.11)

where

c = K−1
0 R2

0〈(r2U)2〉, (3.12)

and (Ψβ2 , ξ3) = 0 due to the condition (B).

./

In this article only the case β1 = γ−2 = 0 of vanishing first integral I1 and degenerate family

I1, I2, I3 will be considered. For γ−2 6= 0 the family of solutions (3.11) can be parametrized by the

values of the first integrals and the phenomenon of bifurcation without parameters disappears.

Remark 3.2
In fact, going beyond our present setting, the general situation γ−2 6= 0 should be considered

in the time dependent frame and with full use of the Galilean invariance of problem (1.1).

The equation for γ−1(x) obviously decouples, but γ−1(x) can be also determined from the

first integral I2 = 0 of lemma 3.1. Therefore problem (3.7) reduces to the 5-dimensional ODE

system

γ̇j = fj(γ), j = 0, 1, · · · , 4; γ = (γ0, γ1, . . . , γ4) ∈ R5, (3.13)

where fj(γ) = Fj(γ0, 0, 0, γ1, . . . , γ4). Recall that γ0 is a parameter and γ̇0 = 0.

Remark 3.3
System (3.13) is Šj-reversible with Š1

def= diag(1,−1, 1,−1, 1) or Š2
def= diag(1, 1,−1, 1,−1) for

cases (A), (B), respectively.
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Remark 3.4
We do not give the full description of the local dynamics of system (3.13) and our study is

restricted to the problem on the integral manifold

M = {γ : I3(γ) = 0},

where I3(γ) := I3(γ0, 0, 0, γ1, γ2, γ3, γ4) is a first integral. Motivated by the normal form theory

(see [IA92] and section 5) it is expected that in appropriate coordinates the problem yields a

3D reversible integrable equation. Such kind of reduction appeared in the paper [Ioo00], where

travelling waves of the Hamiltonian Fermi-Pasta-Ulam model were studied.

However we prefer direct and elementary way of the study and avoid using a normal form

transform. To find the reduced system we express γ4 from the relation I3(γ) = 0 via implicit

function theorem (see lemma (3.1) item 3) and then substitute it into the first three equations

of (3.13).

Since the one-parameter family of solutions Ψβ2 lies in M we arrive at a problem which

is strongly degenerate. This leads to specific difficulties, including the analysis of bifurcations

without parameter as discussed in [FLA00a, FL01, FL02]. There is an essential difference

between our problem and those discussed in these papers since system (3.13) is reversible and

depends on the additional parameter γ0.

We denote the restricted problem as

γ̇M = fM(γM), γM = (γ0, γ1, γ2, γ3), (3.14)

a 3-dimensional ODE system with small parameter γ0. The following lemma is a direct conse-

quence of lemma 3.1 and the equivariant implicit function theorem.

Lemma 3.5 The integral manifold M contains the line of equilibria Ψβ2. Furthermore, system

(3.14) with parameter γ0 is defined in a neighborhood of 0 ∈ R4 and is reversible under the

actions of S1
def= diag{−1, 1,−1} and S2

def= diag{1,−1, 1} for cases (A) and (B), respectively.

Note that the trivial action of the reversor on parameter γ0 is not included in this notation.

Our next aim is to simplify problem (3.14) in order to facilitate a description of solutions

which remain close to the line of equilibria. The structure of the linear part of (3.14) and the

explicit expression for the line of equilibria enables us to find local coordinates, such that the

dynamics of (3.14) is described by a single equation of third order, and the equilibrium curve

coincides with the coordinate line γ1 = const.
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To find the leading terms of system (3.14) we have to start from the restriction of system

(3.13) to the integral manifold I3(γ) = 0. This yields

γ4 = γM4 (γM) =
∑

|k|≤n0

γM4,kγ
k + O(‖γM‖n0)

via the equivariant implicit function theorem. For I3(γ) we have the expansion∣∣∣∣∣∣I3(γ)−
∑

|k|≤n0

I3,kγ
k

∣∣∣∣∣∣ = O(‖γ‖n0). (3.15)

We now introduce the ordering in the space of power exponents k ∈ N5 which singles out the

”lower order” monomials I3,kγk responsible for the dynamics in a vicinity of the singularity.

For a fixed weight s ∈ (R+)5 we consider the group action

gsθ(γ) = (θs0γ0, θ
s1γ1, · · · , θs4γ4), (3.16)

with group parameter θ > 0. Recall that function φ(γ) is called (quasi) homogeneous with

respect to the group gsθ (or short: s-homogeneous) if

φ(gsθ(γ)) = θσφ(γ), (3.17)

for all θ > 0 and some scaling exponent σ ≥ 0. The exponent σ is called the order of s-

homogeneity (shortly s-order) of the function φ and is denoted as ordsφ.

In a same way ODE system γ̇j = fj(γ) is called s-homogeneous if it is invariant under the

group action gsθ, i.e. functions

fj(γ), j = 0, 1, · · · , 4

are s-homogeneous of the order σ + sj .

Suppose now that φ ∈ Cn0+1(R5) and

φ(γ) =
∑

|k|≤n0

φkγ
k + φ̃(γ), where φ̃(γ) = O(|γ|n0). (3.18)

For any weight s we define the s-homogeneous truncation of a function φ(γ) as follows. First

the order of the truncation is defined as σ0
def= min{(s,k) | φk 6= 0}. Next the sum

trσsφ(γ) def=
∑

(s,k)=σ0

φkγ
k (3.19)
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that corresponds to the summation of all s-homogeneous monomials with s-order σ0 is called

the s-homogeneous truncation of the function φ(γ) if for some µ > 0,

φ̃(gsθγ) = θσ0O(θµ). (3.20)

Similarly s-homogeneous truncation of the smooth vector field
∑
fj(γ)∂γj can be defined as

γ̇j = trσ+sj
s fj(γ) j = 0, 1, · · · , 4 (3.21)

if the corresponding truncations of fj(γ) are defined.

Lemma 3.6 The s-homogeneous truncation Î3(γ) of I3(γ) with s = (2, 1, 2, 3, 4) is given by

Î3(γ) = K0(γ4 − γ̂M4 (γM)),

where
γ̂M4 (γM) := tr4

s#
γM4 (γM)

= γM4,(1,0,1,0)γ0γ2 + γM4,(0,2,1,0)γ
2
1γ2.

(3.22)

with s# = (2, 1, 2, 3).

Proof. For ψ ∈ X let [ψ]j denote the j-th component of the vector ψ. Then for γ−1 = γ−2 = 0

we have
I3(γ) := 〈[

∑
j γjκj + Φ̂(γ)]4〉 − (R0 + γ0)〈[U [

∑
j γjκj + Φ̂(γ)]2〉

− 〈[
∑
j γjκj + Φ̂(γ)]1[

∑
j γjκj + Φ̂(γ)]2〉.

(3.23)

Since γ2 +R2
0〈Ur2U〉γ2 = 0 we get

I3(γ) = R0〈Ur2U〉γ0γ2 +K0γ4 −K0γ
M
4,(0,2,1,0)γ

2
1γ2 + φrest(γ) (3.24)

and hence

γM4,(1,0,1,0) = (K0R0)−1. (3.25)

To determine the coefficients of γM4,(0,2,1,0), we substitute the expressions for γ̇1, γ̇2, γ̇3 from

(3.7) into γ̇4 =
∑3
j=1

∂γM4 (γM)
∂γj

γ̇j and compare the result with the expansion of f4(γ). It follows

that

γM4,(0,2,1,0) = 1
2f4,(0,1,2,0,0). (3.26)

Denote B0(φ1, φ2) = B(φ1 + φ2, φ1 + φ2) − B(φ1, φ1) − B(φ2, φ2). From (3.5), (3.13) follows

that
f4,(0,1,2,0,0) =

(
B0(κ1, Φ̂0000200) + B0(κ2, Φ̂0001100), ξ1

)
= 〈

[
B0(κ1, Φ̂0000200) + B0(κ2, Φ̂0001100

]
4
〉.



24 Andrei Afendikov, Bernold Fiedler, and Stefan Liebscher

and explicit calculations with the use of (3.10) yield

γM4,(0,2,1,0) = c, (3.27)

where c = K−1
0 R2

0〈(r2U)2〉 is defined in (3.12). Notice that from

I3(Sjγ) = (−1)j+1I3(γ) (3.28)

follows that

φrest(gs
#

θ γ) = θ4O(θµ), for some µ > 0

and hence the proof is finished. ./

It is left to notice that fM2,(1,1,0,0) and fM2,(0,3,0,0) are defined from (3.11). As a consequence we

have that polynomial system

γ̇0 = 0,

γ̇1 = γ2,

γ̇2 = γ3 + (K0R0)−1γ0γ1 − cγ3
1 ,

γ̇3 = (K0R0)−1γ0γ2 + cγ2
1γ2

(3.29)

is the s-homogeneous truncation of system (3.14) for s = (2, 1, 2, 3).

System (3.29) is equivalent to a single equation of third order

d
dx1

(
γ̈1 − 2

1
R0K0

γ0γ1 +
2
3
cγ3

1

)
= 0. (3.30)

Note that (3.30) can be considered as the s#-homogeneous truncations of the equation

d
dx1

(
γ̈1 − 2

1
R0K0

γ0γ1 +
2
3
cγ3

1

)
= Q

(
γ0, γ1,

d
dx1

γ1,
d2

dx2
1

γ1

)
. (3.31)

which can be derived via the implicit function theorem from the restriction of (3.14) to the

integral manifold I3(γ) = 0. As we indicate in section 5 below, equation (3.30), which has been

obtained by a subsequent quasihomogeneous truncation so far, is also a reversible normal form

in the sense of [IA92],[Ioo00] and of [FLA00a, FL01]. For U(x2) =
√

2 sinx2 our calculations

give c = −1/3 and
d

dx1

(
γ̈1 +

2
3
γ0γ1 −

2
9
γ3

1

)
= 0. (3.32)

Finally we obtain the following statement.
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Lemma 3.7 If condition (A) is fulfilled then

Q(S#
1 (γ#)) = Q(γ#),

and Q(γ#)(x1) is even if γ1(x1) is odd. Under the condition (B)

Q(S#
2 (γ#)) = −Q(γ#)

and Q(γ#)(x1) is odd if γ1(x1) is even.

The proof uses the equivariant implicit function theorem.

Remark 3.8 For the Kolmogorov forcing (1.5), where U =
√

2 sinx2, problem (3.31) is re-

versible with respect to S1 and invariant under −I = S1S2. Hence Q◦ (−I) = Q and there exists

a reversor, S2, with 2-dimensional fixed-point set. For F (x2) =
√

2 sinx2 + ω sin 2x2 the only

reversor, S1, has a 1-dimensional fixed-point set. This case is much more complicated and will

be discussed in [AFL08].

According to the definition of s-homogeneous truncation after the scaling

τ = (γ0)1/2x1, (γ0)1/2Γ = γ1 (3.33)

we arrive at the equation

d
dτ

(
d2

dτ2
Γ− 2

1
R0K0

Γ +
2
3
cΓ3

)
= O(γ1/2

0 ). (3.34)

and therefore the term Q(γ#) can be considered as a perturbation for small γ0.

4 Small solutions close to Kolmogorov flow

With the results of the previous section at hand we are able to study small solutions that are

uniformly close in x1 to the Kolmogorov flow with forcing term (1.5).

After some normalization, the truncated equation (3.32), reads

˙̇ẏ + ẏ − 3y2ẏ = 0. (4.1)

Higher order terms have to respect both reversibilities S1, S2 : R3 → R3 = {(ÿ, ẏ, y)}. The

complete discussion of such problem can be extracted from [Ioo00], pp.854-864, where travelling

waves of the Hamiltonian Fermi-Pasta-Ulam model were studied.
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pair, y
0, 1

4

het

centers

nodenode

Figure 4.1: Flow (4.1) with Θ-foliation (left) and triangle of bounded solutions in the Θ-H-plane

(right).

The simple exhaustive geometrical presentation is given below to fix notations and for the

convenience of the reader. We describe first the set of bounded solutions of equation (4.1). Inte-

grating (4.1) once, we obtain well known Duffing equation which is the integrable Hamiltonian

system

ÿ + y − y3 = Θ, (4.2)

with energy

H = 1
2 ẏ

2 − 1
4y

4 + 1
2y

2 −Θy

= −ÿy + 1
2 ẏ

2 + 3
4y

4 − 1
2y

2
(4.3)

on any fiber Θ ≡ const.; see Figure 4.1.

The equilibria of (4.2) are exactly the trivial equilibria, i.e. the intersections of the Θ-fibers

with the y-axis, y3 − y + Θ = 0. We encounter saddles at points |y| >
√

3/3, and centers for

|y| <
√

3/3. Centers exist on fibers |Θ| < 2
√

3/9 and are accompanied by two saddles, in each

fiber. Nontrivial bounded solutions of (4.2) exist on fibers {|Θ| < 2
√

3/9}; only these fibers have

more than one intersection with the equilibrium line. The values of Θ and H corresponding to

the equilibrium line form an algebraic curve Θ = y − y3, H = 3
4y

4 − 1
2y

2, in the (Θ,H)-plane.

They bound a curved triangle with two cusp points and one crossing; see Figure 4.1. The cusp

points correspond to the degenerate equilibria at y = ±
√

3/3. The crossing point corresponds
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Figure 4.2: “Periodic bubble”: set of bounded solution of equation (4.1) (left) and Poincaré

section (right).

to the equilibria at y = ±1.

We consider the set of all bounded solutions of (4.1), next. Here boundedness refers to

both positive and negative time. We first observe that the set of all bounded non-equilibrium

trajectories is itself bounded. Its interior consists of the centers {|y| <
√

3/3, ẏ = 0, ÿ = 0}

and of periodic orbits yΘ,H

per around them. Its boundary is provided by the line of equilibria and

the homoclinic orbits yΘ,H

hom to the saddles {
√

3/3 < |y| < 1, ẏ = 0, ÿ = 0}. The two sets of

homoclinic orbits meet at the pair of heteroclinics y
0, 1

4

het to the saddles y = ±1 in the fiber Θ = 0.

This periodic bubble is shown in Figure 4.2.

4.1 Persistence

Note that all bounded non-equilibrium trajectories, except the heteroclinic pair, intersect the

(y, ÿ)-plane, i.e. the two-dimensional fix space {ẏ = 0} of the reversibility S2. At the intersection,

trajectories are necessarily perpendicular to the fix space. In particular, the intersections are

transverse.

The heteroclinic pair intersects the one-dimensional fix space Fix(S1) = {y = 0, ÿ = 0}

of the reversibility S1, i.e. the ẏ-axis. The heteroclinics are images of each other under the
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oddness involution symmetry S1S2 = − id. Transversality is achieved by the intersection of the

one-dimensional fix space {y = 0, ÿ = 0} with the two-dimensional strong-stable manifold of an

interval of saddles W ss({y ∈ (−1 − σ,−1 + σ), ẏ = 0, ÿ = 0}), σ small. This follows easily by

tracking the values of H and Θ along the saddles and along Fix(S1), respectively. The same

holds true for the saddles near y = +1 and their strong unstable manifolds.

With these preparations we are now able to investigate the influence of perturbation which

respect both reversibilities.

Let us first discuss the flow outside a small neighborhood of the cusps and the crossing, in the

(H,Θ) triangle. This excises the critical equilibria |y| =
√

3/3 with double zero eigenvalue, and

the pair of heteroclinics connecting the equilibria at y = ±1. Under higher order perturbations,

all trivial equilibria then remain in Fix(S2) and retain their nature as saddles or centers. The

homoclinic orbits are preserved because the transverse intersection of the strong unstable mani-

folds of the saddles with Fix(S2) is structurally stable. The periodic orbits persist because they

intersect Fix(S2) transversely in two different points; this fact is preserved for large periodic

orbits by the structural stability of transverse intersections and for small periodic orbits near

the centers by the aforementioned persistence of the centers.

Transverse intersection of the two-dimensional strong-stable manifold of the saddles W ss({y ∈

(−1 − σ,−1 + σ), ẏ = 0, ÿ = 0}) with Fix(S1) is also preserved, under small perturbations.

Moreover, W ss itself is foliated by the one-dimensional strong stable manifolds of the individual

saddles. Therefore there exists a saddle y = yhet ≈ −1, such that its strong-stable manifold

W ss(yhet) intersects Fix(S1). By the reversibility S1 it consequently also intersects the strong-

unstable manifold W uu(−yhet) of y = −yhet ≈ +1. By oddness symmetry S1S2 = − id we have

a corresponding heteroclinic orbit between the same equilibria in the opposite direction. The

heteroclinic pair therefore persists.

Basically, the periodic bubble persists in this case due to the very strong structure that is

provided by the reversibility S2 with a two-dimensional fix space. In fact, the described picture

remains valid in the case of only one reversibility S2 with 2-dimensional fix space. However,

the heteroclinic pair need not be symmetric any more. Existence is nevertheless guaranteed

by the transverse intersection of the strong stable and strong unstable manifolds, W ss({y ∈

(−1− σ,−1 + σ), ẏ = 0, ÿ = 0}) and W uu({y ∈ (1− σ, 1 + σ), ẏ = 0, ÿ = 0}), of the saddles near

the unperturbed heteroclinic pair.

With the results of this section the proof of Theorem 1.1 is finished.
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Let us recall that for fixed spatial period 2π/α Kolmogorov problem was studied in [Yud65,

Yud66, AB86, Afe95]. However the limit α → 0 in these papers is singular and Theorem 1.1

explains that in fact this singularity is artificial and depends on the method of analysis. The

persistence of homoclinic solutions was established first in [AK98a] with analytical arguments.

The proof of persistence of heteroclinic solutions was given in [Ioo00], pp. 862-863.

5 Comparison with the abstract normal forms

In the section 3 we obtained the reduced system (3.34) after a center-manifold reduction, and a

suitable s-weighted rescaling. In this section, we discuss the normal form of a reversible Takens-

Bogdanov point along a line of equilibria from an abstract point of view and compare it with

the reversible nilpotent normal form in the sense of Belitskii, Iooss and others. As it turns out,

for systems with both S1 and S2 reversor both normal forms yield a rescaled system of the same

structure.

Consider any sufficiently smooth system

ż = f(z, µ), z ∈ R3, µ ∈ R, (5.1)

with a trivial line of equilibria

0 = f(0, 0, z3, µ), for all z3 ∈ R, µ ∈ R (5.2)

and with a nilpotent linearization

A := Df(0, 0) =


0 0 0

1 0 0

0 1 0

 . (5.3)

(In the Kolmogorov problem, z = (γ1, γ2, γ3) parametrizes the resulting dynamics on the re-

stricted center manifold M, and µ = γ0 is the parameter. The line of equilibria corresponds to

the x1-equilibrium family Ψβ2 .) Additionally, we require reversibility with respect to reflection

through the z2-axis:

f(S1z, µ) = −S1f(z, µ), with S1 :=


−1 0 0

0 1 0

0 0 −1

 . (5.4)
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(This symmetry with a one-dimensional fixspace corresponds to the symmetry S1 of the Kol-

mogorov flow.) The case of a second reversibility

f(S2z, µ) = −S2f(z, µ), with S2 :=


1 0 0

0 −1 0

0 0 1

 (5.5)

is then equivalent to oddness of f ,

f(−z, µ) = −f(z, µ), (5.6)

by S1S2 = − id.

Transversely to the plane {(0, 0, z3, µ) | z3, µ ∈ R} of equilibria, the linearization of the flow

possesses a geometrically simple and algebraically double eigenvalue at z3 = µ = 0. In classical

bifurcation theory this is called a Takens-Bogdanov bifurcation. In our case, however, z3 is

not a parameter. In particular, there is no flow-invariant foliation transversely to the plane of

equilibria through the singularity. Therefore, we call (5.1–5.3) a reversible Takens-Bogdanov

bifurcation without parameters.

In [FL01] this type of bifurcation has been studied without the additional reversibility. In

fact, a 4-dimensional system with a plane of equilibria and a nilpotent linearization with a

(3×3)-Jordan block, but without additional parameters, was considered. Alternatively, a 3-dim

system with one distinguished parameter and a line of equilibria has been studied there, under

the same transverse linearization requirements. It was shown that both viewpoints coincide in

the rescaled normal form system, to leading order in the rescaling parameter. In particular,

a normal form was calculated under the constraint that the normal form transformation must

preserve the plane of equilibria. Adjusting the calculations of [FL01] to additionally preserve

the reversibility S1, we obtain the following normal form.

Lemma 5.1 There exist polynomial coordinate transformations which preserve the plane of equi-

libria and the reversibility S1 such that system (5.1–5.4) takes the form

ż1 = z1z3h1(2z1z3−z2
2 , z

2
3 , µ)+z2h2(2z1z3−z2

2 , z
2
3 , µ)+z2

2h3(2z1z3−z2
2 , z

2
3 , µ),

ż2 = z1,

ż3 = z2.

µ̇ = 0.

(5.7)
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with suitable formal Taylor series h1, h2, h3, up to any finite order. (Note the restriction

h2(0, 0, 0) = 0 due to the prescribed linearization.) In case of the additional oddness (5.6),

h1 and h3 vanish identically.

Looking for solutions in a small neighborhood of the origin, we impose the following scaling

by small 0 < σ < σ0:

z1 = σ3z̃1, z3 = σz̃3,

z2 = σ2z̃2, µ = σ2µ̃,
(5.8)

and σt = t̃. (In fact, this is the same scaling as in lemma 3.6.) Inserting into the normal form

(5.7) and omitting tildes, as well as terms of order σ2 and beyond yields

ż1 = z1z3h1(0, 0, 0) + z2µ∂3h2(0, 0, 0) + z2z
2
3∂2h2(0, 0, 0) + z2

2h3(0, 0, 0),

ż2 = z1,

ż3 = z2.

µ̇ = 0.

(5.9)

Setting y := z3 and normalizing coefficients yields

˙̇ẏ + µ1ẏ + 3µ2y
2ẏ = ãyÿ + b̃ẏ2, (5.10)

with µ1, µ2 ∈ {−1, 1}, generically. In case of the additional oddness symmetry (5.6), both ã and

b̃ vanish.

Note that for three-dimensional systems with a reversibility of 2-dimensional fix space, equi-

libria in this fix space generically form curves. See for example [FLA00a] p. 25. Therefore for

3D systems with additional S2 reversor our normal form with no surprise coincides in the lead-

ing terms with the nilpotent normal form as given in [IA92] (see I12,I18). Additional oddness

appears due to the symmetry relation S1S2 = −I. The nilpotent normal form for 3D systems

with S2 reversor was used in [Ioo00], where such ODE problem is encountered by investigating

traveling waves of the Hamiltonian Fermi-Pasta-Ulam model.

In near-symmetric cases we may assume ã and b̃ to be small:

ã = εa, b̃ = εb, where 0 < ε� 1. (5.11)

Notice that this case is not covered by [IA92, Ioo00] theory since the existence of curves of

equilibria is not generic for systems with S1 reversor.
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Now it is time to compare the abstract calculation with the Kolmogorov-flow example (3.34).

Note that R0 = 1, K0 = −3, c = −1/3 for the original Kolmogorov flow, see (3.32).

Remark 5.2 System (5.10) has the same structure as the reduced near-Kolmogorov flow (3.34).

Specifically, for the near-Kolmogorov forcing F (x2) =
√

2 sinx2 +ω cos 3x2 as in (1.12), we have

µ1 = +1, µ2 = −1.

This proves that the calculations of section 3 in fact yield a normal form in the rescaled

equation. The remaining terms of lowest order in the rescaling parameter are in fact determined

by the third-order structure of the linearization and the symmetries alone. Further simplifica-

tions due to the complete normal-form procedure occur only in higher-order terms which are

not needed in our analysis.

The cases with only one reversor S1

˙̇ẏ ± ẏ − 3y2ẏ = εayÿ + εbẏ2.

possess unbounded sets of bounded orbits and will be addressed in [AFL08].
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