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INTRODUCTION 
 
One of the central problems of nonlinear dynamics is the 
analysis of the global bifurcation, which occurs at 
homoclinic loops and in one parameter family of periodic 
orbits under small perturbations. The study of these special 
orbits comes from the fact that, homoclinic orbits serve as 
possible cause of complicated dynamics. It has become 
apparent that homoclinic and heteroclinic orbits are often 
the mechanism for the chaos and transient chaos 
numerically observed in physical systems in higher 
dimensions. Indeed, homoclinic and heteroclinic orbits are 
of great importance from an applied point of view .for 
instance, they form the profiles of traveling wave solutions 
in reactions in reaction-diffusion problems. Their existence 
can be a source of chaotic dynamics in three-dimensional 
systems. In static-dynamics analogies, a homoclinic orbit 
corresponds to a spatially localized post-buckling state 
(see, for example, [1] and references therein). From the 
abstract point of view, the theory of homoclinic bifurcation 
is fairly well understood. However this theory is not 
accessible to persons in the applications. Several papers 
have been devoted to discussion of specific examples, 
which illustrated some proprieties of homoclinic points. 
The purpose of this work is to give an explicit computation 
of the Melnikov function for any perturbed polynomial 
ordinary differential equation. This function plays a 
fundamental role in the theory of homoclinic bifurcation.  
Furthermore, this method is one of the few analytical 
methods for determining the threshold of homoclinic 
chaos. 
 
MELNIKOV METHOD FOR PLANAR SYSTEM 
 
In the simple pendulum, the homoclinic orbits separate 
merely two qualitatively distinct motions, namely, the 
librational motions inside the homoclinic loops and the 
rotational motions outside the homoclinic orbits. Recall 
that in the context of planar ordinary differential equations 
the name separatrix is often given to what we have called 
the homoclinic orbits. This because the one dimensional 
orbits separate the two planes into disjoints parts. In 
continuum mechanics homoclinic and heteroclinc orbits 
often arise as structures separating two distinct phases of 
the continua. More specifically, they may arise in the 
phase space of the Euler-Lagrange  Equation associated 
with minimizing some type of functional energy of a 
system . For more information, see for instance [2] and 
references therein. 
According to Peixoto's theorem [3], the bifurcations that   
take place in planar analytic systems are either local  

bifurcations that occur near a non-hyperbolic equilibrium 
point or periodic orbit of the system, or global bifurcation 
that occur near saddle-saddle connection or near one of the 
cycles in a continuous  band of cycles. 
The Melnikov method gives us an excellent tool for 
determining the parameter values for which a limit cycle 
bifurcates from a homoclinic (or heteroclinic) loop and for 
determining the number of limit cycles in a continuous 
band of cycles that are preserved under perturbations.  
We establish the Melnikov theory for perturbed planar 
systems of the form 
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Figure 1: phase portrait of the system (1) for 0ε = . 
The Melnikov [2] function for the equation (1)  along a 
homoclinic or heteroclinic orbit is defined as  
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Note that the Melnikov function determine the relationship 
between the distance between the saddle separatrices of (1) 
along a normal line to homoclinic orbit )(0 tγ above at the 

point ).0(0γ  This done [3] by integrating the first variation 
of the system (1) with respect to ε .  The Melnikov distance is 
then proportional to the derivative of the Poincaré map with 
respect to the parameter ε  in an interior of the neighborhood 
of the separatrix cycle.  
For sufficiently small ε , there is analytic function 
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Let consider for the study of Melnikov function of a planar 
polynomial oscillator of pendulum type perturbed by an arbitrary 
non dissipative analytic function  in the form 

),( xgε  (3) 
where  the potential V(x) is polynomial function of degree n  and 

 is an analytic function in the form 
nm
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MAIN RESULTS 

 
The unperturbed system of  (1) is Hamiltonian, then 0. =∇ . 
Hence, the Melnikov function is given by 
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We assume that the potential related to the system  (3) for  0=ε   
has a non degenerate local maximum at x=0 i.e., the system has 
an equilibrium of saddle type with the associated Hamiltonian  

 at this level.  
u

Since 2E is non-degenerate local maximum of the potential 
at x=0, we can write 
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that the perturbation (g  is reversible in time. Since 
Melnikov function depends linearly on g, we only have to 
compute 
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whereγ is a suitable path on the Riemann surfaceℜ of 

) .  Note that all integral  live on the Riemann 

surface and they define meromorphic functions given by 
(6). Following an elementary exposition [4] about the 
elliptic integrals, we generalize it to the abelian integrals 
and we can write. 
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This is  (n-1)-term recursion for )(λmM . We need to 

compute only to evaluate all integrals. 
For example, for n=1 or 2, it is related to elementary 
function that are connected with the circular functions, for 
n=3 or 4 it is related to elliptic functions and for n > 4 it is 
related to hyperelliptic functions. We will glimpse into of 
Riemann surfaces to develop the last case. We study then 
compact Riemann surfaces ℜ of genus g, which are 
surfaces of the algebraic functions in the form: 
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where g is a topologically invariant property of a surface 
defined as the largest number of nonintersecting simple 
closed curves that can be drawn on the surface without 
separating it.  For example, the Riemann sphere has 
genus zero. In the hyperelliptic case 

21)/2-(ng ≥=  with n is the degree of )(~ xV .  
This is property of genus g allows to prove that the both 
cases  n odd and even are equivalents.   
So, the algorithm described above can  be simplified.  
Indeed, the integration of the problem then reduces the 
solution of Jacobi inversion problem [5] associated with 
the curve (7). 
We  will show in this frame how the Melnikov function 
is related to Theta function as a generalization of the 
Weierstrass elliptic function (for the degree of the 
potential n=3 and 4).   The general theta function of the 
first order is denoted by );( Auθ  where the matrix 
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parameters )( kjjk ≤α . The numbers jkα are 
called the moduli of the theta function. The variables 

 are called the arguments of the theta function. 
Thus 

gu,...,1

∑
Ζ∈

+=
gm

t umAmiAu )]2([2exp);( πθ  

 
DISCUSSION AND CONCLUSION  

 
The problem of homoclinic bifurcation of planar system  
(3) can be reduced to the study of three cases depending 
of the degree of the potential function.   

 
We establish then the connection with the modern 
language of Mathematics of the so-called Inversion 
problem of Jacobi. Furthermore, the number of zeros of 
Melnikov function for planar ordinary differential 
equations gives the upper band of number of limit 
cycles. Therefore, the solution of the difficult problem  
in this theory. 
This problem was posed in 1900 by David Hilbert as 
one of the problem in his famous list of outstanding 
mathematical problems at the turn of the century [3]. 
Our results may be can contribute to the solution of the 
weakness version of the 16  Hilbert’s problem. th

The most groundbreaking results were that for a given 
planar polynomial ordinary differential system, it is 
possible to express the Melnikov functions with 
−θ function or generalized Weierstrass functions  

The rapid convergence of the −θ function allows us to use 
easily the numerical simulations.  
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