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Abstract

We consider Neumann boundary value problems of the form wu,, +
f(z,u,uy) = 0 on the unit interval 0 < z < 1 for a certain class of dissipative
nonlinearities f. Associated to these problems we have: (i) meanders in the
phase space (u,u;) € IR?, which are connected oriented simple curves on the
plane intersecting a fixed oriented line (the u-axis) in n points corresponding
to the solutions; and (ii) meander permutations 7¢ € S(n) obtained by order-
ing the intersection points first along the u-axis and then along the meander.
The meander permutation 7, is the permutation defined by the braid of so-
lutions in the space (z,u,u;). It was recently shown by Fiedler and Rocha
that m; determines the global attractor of the dynamical system generated
by the semilinear parabolic differential equation u; = uz, + f(z, u,u,), up
to C° orbit equivalence. Therefore, these permutations are of considerable
importance in the classification problem of the (Morse-Smale) attractors for

these dynamical systems.

In this paper we present a purely combinatorial characterization of the set
of meander permutations that are realizable by the above boundary value

problems.



1 Introduction

The term meander was introduced by Arnold in [Arn88] to denote a connected
oriented non-self-intersecting curve in the plane intersecting a fixed oriented
base line in n points. The intersections are assumed to be strict crossings.
The permutation defined by ordering the intersection points, first along the

base line and then along the meander, is called a meander permutation.

Meanders arise in a natural way in the study of second-order boundary value
problems with separated boundary conditions. To be specific, consider a

Neumann boundary value problem

Ve + f2,0,0,) =0 , 0<2<1
vy =0, z=0or1l,
having exactly n solutions. Let u = u(z,a) denote the solution of the asso-

ciated initial value problem
Ugg + f(z,u,u;) = 0,
(1.2) u(0,a) = a,
uz(0,a) = 0.
If the solution u(-, a) is defined for 0 <z <1 and all a, the set

(1.3) S :={(u(l,a),u,(1,a))|a € IR}

is a curve in the phase plane (u,u;) of (1.2) intersecting the horizontal line
u, = 0 at exactly those n points which correspond to the solutions of (1.1).

If the intersections are strict crossings, then S is a meander.

This shooting method (1.2) of solving boundary value problems (1.1) has
far reaching consequences when applied to the determination of stationary

solutions of scalar semilinear parabolic equations

(1.4) Ut = Ugy + f(z,u,u,) , 0< <1

u, =0, z=0o0r1l.



In fact, although all the information encoded in the meander § is obtained
from the ODE (1.2), Fiedler and Rocha [FR96] have recently shown that the
meander permutation corresponding to S contains sufficient information to
determine the global attractor of the PDE (1.4) up to global orbit equiv-
alence. We next describe this result in some detail. It provides the key
motivation for the main result of the present paper which deals with the
realization of meander permutations by boundary value problems. Strangely
enough, the quite elementary realization question of which permutations ac-
tually arise in second order two point boundary value problems seems to have

escaped the attention of the quite extensive literature on the subject.

For smooth f € C?, the equation (1.4) generates a local semiflow in an ap-
propriate Sobolev space X, for example the state space X C H?(0,1) of
functions u : [0,1] — IR with Lebesgue square integrable second z-derivative
Uz, and vanishing u, at © = 0, 1; see [Hen81], [Paz83]. Under additional con-
ditions on the nonlinearity f, the dynamical system is global and dissipative,
that is, the solutions of (1.4) are defined for all ¢ > 0 and there exists a large
ball B C X attracting all solutions. Sufficient conditions on f ensuring this
are sign conditions of the form f(z,u,0)-u < 0 for |u| large enough, uni-
formly in z, and growth conditions of the form |f(z, u, p)| < ¢;(u) + co(u)|p|”
for v < 2 and some continuous functions ci, o, (see [Ama85]). In the follow-
ing, for brevity, a nonlinearity f satisfying these assumptions will be called
dissipative. Finally, dissipative dynamical systems (1.4) possess global at-
tractors Ay, which are maximal compact invariant subsets of X and attract
all bounded sets. See [Hal88], [Lad91], [BV89], for example.

The infinite dimensional dynamical system (1.4) has been widely studied and
the characterization of its global attractor Ay has made significant progress.

Generically in f, the flow defined by (1.4) is Morse-Smale ([Hen85], [Ang86]),

and its global attractor possesses a Morse decomposition. In this case, the set



A is composed of a finite set of hyperbolic equilibria and a set of heteroclinic
orbits connecting them. Let v;,j = 1,...,n denote the solutions of (1.1),

ordered by their values at z = 0, that is
(1.5) V<V <o <v,,atr=0.

Then, & = {v1,...,v,} is the set of equilibria of (1.4). Reordering &;

according to the values of v; at x = 1 defines a permutation 7 € S(n)
(1.6) V(1) < VUn2) <7 < Upn) , AL T = 1.

This permutation m = 7y is the meander permutation corresponding to the
meander (1.3).

The globally minded way of comparing flows for different nonlinearities is
to compare the corresponding attractors through the notion of global orbit
equivalence. Two attractors Ay and A, are globally orbit equivalent, Ay =

A, if there exists a homeomorphism
(1.7) h: .Af — .Ag

mapping orbits of A; onto orbits of A, preserving the time direction.

Then, under the above conditions, Fiedler and Rocha have shown

Theorem 1.1 [FR98]. The global attractors A; and A, are globally orbit

equivalent if their meander permutations coincide. In short:

(1.8) Tr=my, = A=A, .

This result continues a long line of research on the set of heteroclinic orbit
connections for (1.4). For reference we point out [Zel68], [CI74], [Mat78],
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[CS80], [Mat82], [Hen85], [Ang86] [BF88], [BF89], [FRI1]|, [Roc91] and
[FR98]. The approach opens good perspectives for the classification of Morse-
Smale attractors for the semilinear parabolic equations (1.4). However, one
should also address the modeling question of determining all meander per-
mutations actually realizable by (1.2). In this paper we present a purely
combinatorial characterization of the set of these realizable meander permu-

tations.

In the following, a permutation 7 € S(n) with n odd is called dissipative if it
satisfies 7(1) = 1 and 7(n) = n. Furthermore, as already mentioned in the
first paragraph, the permutation 7 is a meander permutation if it arises from

a meander.

The shooting meander (1.3) determines the Morse indices of the equilibria
v, € & of (1.4), k = 1,...,n, that is, the dimensions of the corresponding
unstable manifolds, i(vy) = dim W*(vg), (see [Roc85] for a proof). In fact,

these indices are determined explicitly by the meander permutation m =

(1.9) i) = (1) sign (174G +1) 77 (5)

where an empty sum denotes zero, (see [FR96], Proposition 2.1). On the
other hand, given any permutation 7 € S(n) one can always define an index

vector (ix)1<k<n using (1.9) or, more practically, using the recursion

1w = 0,
(1.10)
ik = ip+ (=1)Fsign (m 1k +1) — 7 L(k))
for k=1,...,n—1. Then, a permutation 7 will be called Morse if its index

vector satisfies 7y > O for all 1 < k < n.

We say that a permutation 7 is realizable by a boundary value problem (1.1)

if there is a nonlinearity f such that
(1.11) T="y.
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We denote by M S the (generic) set of nonlinearities f for which the semiflow
generated by (1.4) is Morse-Smale. Our main result in the present paper is

the following characterization of the realizable permutations

Theorem 1.2 A permutation m € S(n) is realizable with a dissipative non-
linearity f in MS if and only if n is odd and 7 is a dissipative Morse meander

permutation.

The “only if” part of this theorem follows from the characterization of the
shooting meanders (1.3) gathered in [FR96|, Proposition 2.1. In fact, it is
just a restatement of earlier work by Fusco and Rocha; see [FR91], [Roc91]
for example. We prove the “if” part in Section 4, using induction. We
construct dissipative Morse meander permutations 7 € S(n) from realizable
permutations 7’ € S(n — 2) by a realizable deformation of the corresponding
meanders. In Section 2 we present a characterization of the shooting surfaces
generated by the initial value problem (1.2) in terms of the nonlinearity f.
This characterization is necessary for the construction of the realizable defor-
mations of the meanders (1.3). In Section 3 we introduce an index vector that
is helpful in understanding the sequence of necessary meander deformations.
For an alternative proof of theorem 1.2, with more emphasis on combinato-
rial rather than analytical aspects, see [Wol96]. Finally, in Sections 5 and
6, we illustrate our construction by an example, discuss some aspects of the
nonuniqueness of this construction, and explore implications of the realiza-
tion for the classification of attractors of Morse-Smale dynamical systems

generated by semilinear parabolic equations and their space discretizations.
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2 Characterization of shooting surfaces

The proof of Theorem 1.2 is based on a geometric characterization of the man-
ifold of solutions of equation (1.2) developed by Fusco and Rocha in [FR91].
This characterization allows the construction of nonlinearities f correspond-
ing to a desired solution manifold for equation (1.2). This, in turn, allows the
construction of families of nonlinearities performing realizable deformations
of the meanders (1.3), to be used in the construction of the realizable per-
mutations. For completeness, we recall the results of [FR91] and add some

details necessary for our purposes.

To each nonlinearity f we associate a shooting surface
(2.1) St (z,a) = (7, u(z,a), uz(z,a)) € [0,1] x IR

defined by all trajectories of the initial value problem (1.2), ¢ € IR. For
simplicity, here we assume that all trajectories of (1.2) are defined for 0 <
x < 1. This will always be the case when f satisfies, for example, a sublinear
growth condition on u and v. We can clearly include such a condition in the

construction of our nonlinearities. Then, let
(2.2) S a = (u(z,a), ug(z,a)) € R?

denote the section of Sy at x. The curve S}”Zl corresponds to the meander &
defined in (1.3) and, therefore, determines the meander permutation 7y. On

the other hand, S}ZO always corresponds to the u-axis.

Let K; C [0,1) x IR* denote the set of points (, u, p) of the shooting surface
Sy where the tangent to Sf in the (u,u;) plane is vertical. Then, Kj is
defined by the condition

(2.3) Uq(z,a) =0

for the partial derivative u, of the parametrization of Sy. We call Ky the

critical set. Note that K is indeed the set of critical points of the projection
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of the shooting surface Sy onto its (x, u) coordinates. Since on Sy, u, and p,
cannot vanish simultaneously we have that u,; = p, # 0 on K. The implicit
function theorem therefore implies that the critical set Ky is a one dimen-
sional manifold, locally parametrized over a. The tangent to the trajectory of
(1.2) passing through the point (z,u,p) € Sy has the form (1, p, — f(z, u, p)).
By (2.3), the tangent space to the manifold Sy therefore also contains the
vector (1,p,0), at every point (z,u,p) € K. This provides a local constraint
which a smooth two dimensional manifold S, has to satisfy in order to be
realizable, that is, such that S, = &y for some nonlinearity f. Given S, let
K, denote its critical set: the subset of points (z,u,p) where the tangent
to S in the (u,p) plane is vertical. The critical set K, is required to be
a smooth one dimensional manifold and, at every point (z,u,p) € K,, the

tangent space to the manifold S, must also contain the vector (1, p, 0).

This condition together with a nondegeneracy condition on S, in a neighbor-
hood of its critical set K, is necessary and sufficient for S, to be realizable
(see [FRI1] for details). The nondegeneracy condition is the following. Let
¢ 1 S, — IR denote the vertical p-component of the normal vector to S,. On
the critical set K, this function £ is zero. Then, the nondegeneracy condition
is

(2.4) VE#0 on K, ,

the gradient being with respect to the manifold parameters, S, : (z,a) —
(z,u(z, @), p(r,a)) € [0,1] x IR?.

To summarize, we have the following characterization of realizable manifolds.

Theorem 2.1 [FRI1]. For k > 1, consider a C**? smooth two dimensional
manifold S, C [0,1] x IR®. Assume the {x = 0} section is the u-azis, and S,
is tangent to the field of planes

(2.5) ¥ (z,u,p) = (z,u,p) + span {(0,0,1), (1,p,0)}
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at its critical subset K, C S,. Finally, assume the nondegeneracy condition
(2.4). Then there is a C* smooth nonlinearity f such that S, = S;.

The nonlinearity f is uniquely determined on S, and extends smoothly (albeit

nonuniquely) to [0, 1] x IR?.

This characterization puts most of the constraints for the realization of a
manifold S, on its critical subset K,, allowing the rest of the manifold to
vary freely. The critical set K, must be an integral curve of the field of planes
(2.5). This fact will be used later to compute curves K, with a prescribed
(u, p)-projection.

An immediate consequence of the constraint on the critical set K; is an
equivalent constraint on the section curves Sf. As z varies, the curves S7
move such that its points (u, p) € S} with vertical tangent move with normal
velocity equal to p. These curves Sf correspond to deformations of any
given section curve Sf:mo, and are only constrained by the information on
the critical set K;. Therefore, the knowledge of the (u,p)-projection of the
critical set K, is sufficient for the construction of deformation curves S7

corresponding to a realizable manifold S,.

However, given an arbitrary curve K° satisfying the integrability condition
it is not possible, in general, to assert the existence of a realizable global
manifold S, = Sy such that its critical set K, = Ky C &y satisfies K, = K 0.
For example, there are closed curves K° satisfying the integrability condition,
but no smooth manifold Sy can have a closed curve as part of its subset
K;. This is a consequence of the parametrization over a of the critical set
K. Therefore, in our realization proof we proceed step by step avoiding all
global problems with the construction of shooting surfaces. In each step we
construct the desired manifold by deformation of a previously given shooting

surface Sy through a realizable deformation of its section curves Sf. This



deformation is obtained by extending Sf to values z > 1. At the very end
of this iterative extension process, the result is rescaled back to the interval
0<z<1.

To set up a sequence of deformation steps leading to the final result we need
to consider the detailed structure of the critical set Ky. We have seen that
K; is a one dimensional manifold, locally parametrized over a. Since the
orbits of (1.2) correspond to the curves a = const. on Sy, the critical set
K is everywhere transverse to the orbits of the flow on Sy defined by (1.2)
([FR91], Proposition 1.4).

The dissipativeness of f implies that on the shooting surface Sy the projection
(z,u,p) = (z,u,0) is a local diffcomorphism for large |u|. Therefore, the
critical set Ky is a finite union of connected curves, Ky = |J; K;, and each
critical curve K starts and ends at points with x = 1, corresponding to

points of 7= with vertical tangent.

Let z = ¢j(a) denote the parametrization of the z-coordinate of the critical
curve K; obtained from (2.3) by the implicit function theorem. Differentiat-

ing (2.3) with respect to a we obtain
(2.6) Uaa(45(a), @) + pa(g;(a), a)gj(a) = 0 .
Therefore, on K; the following relation holds

(2.7) d(a) = -

uaa
2

Consider a point (z,u(z,a),p(z,a)) on K; where ¢; < 0. Then, the second
derivative u,, has the same sign as p,. Hence Sf folds clockwise, at that
point, going up if p, > 0, or going down if p, < 0. At points where q;- > 0,
the section S folds anticlockwise in a similar way. See Fig. 2.1.

In the (z, a)-space the curves ¢; are nonintersecting graphs over a. At z =1,

they therefore start in a point with q;- < 0 and terminate, again at x = 1,
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Figure 2.1: Stylized section curve S}”Zl with the folding points (clockwise +
and anticlockwise -) and corresponding stylized function graphs ¢;, j = 1,2, 3,

in (z, a)-space.

in a point with q;- > 0. Generically in f, the g; are Morse functions: all
critical points are nondegenerate, and all critical values are mutually distinct
and different from z = 1. In this generic case we conclude that the critical
curves K always start at points with z = 1 corresponding to points of 8;521
where this section curve folds clockwise, and terminate at points where 8?21
folds anticlockwise. See Fig. 2.2 for an example including section curves at

different values of z.

In particular, the curves g; define a unique one-to-one correspondence be-

tween clockwise and anticlockwise folding points in the (z, a)-space.

In the following section we introduce an index that, for certain curve sections
(canonical meanders), allows the determination of the folding type of the
vertical tangent points directly from the corresponding permutation 7. This
folding index will be explored in the construction of the realizable meander

permutations.
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Figure 2.2: Three section curves S corresponding to a Morse function g;.

3 The folding index

Every smooth meander with only strict crossings with its base line can be
isotopically transformed into a meander such that the arcs joining its inter-
section points with the base line are semicircles. Moreover, one can take
the unbounded (first and last) arcs of the meander such that the meander
possesses a vertical tangent at any intersection points with the base line. See
Fig. 2.1 for an example of a meander in this stylized form. We will always
number the intersection points 1,...,n along the meander §. This corre-
sponds to the ordering (1.5). Therefore, their position along the baseline will
be m71(1),...,7 ' (n), that is, the position at z = 1 of the kth equilibrium
(numbered by the order at z = 0) is 7 (k).

Let n € IN be odd and let 7 € S(n) be a dissipative Morse meander permuta-
tion. To the permutation 7 we associate an index vector o, = (0(k))1<k<n

in the following way:

o.(1) = oz(n) =0,

or(k) = 3ligs1 — k], 1<k <n.

Here i), are defined as in (1.9), (1.10).
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Let S denote a meander in the above special form corresponding to the

permutation 7. The index o,(k) compares the adjacent indices iz, ; and

ix_1, indicating the sign of their difference. Indeed, using (1.10) we have that
(_1)k+1

(3.2) o.(k) = 5 [sign (W’l(k +1)— W’l(k))

—sign (71'_1(]{2) — 7k — 1))] ;

for 1 < k < n. In particular o.(k) € {—1,0,1}. By construction, S has a
vertical tangent at each point k. Since (i;)1<x<n count completed clockwise
half-turns of the tangent to the meander S along its orientation, o, (k) deter-
mines the folding type of the meander S at the point k. If o,(k) = +1, then
S folds clockwise at the point k. If o, (k) = —1, then S folds anticlockwise.
If 0,(k) = 0, then S does not fold at k. In this last case, the vertical tangent
can be eliminated by a simple perturbation of the curve & without introduc-
ing any further vertical tangents of S. Let S denote such a perturbation of
S. Then, the meanders S and S share the same permutation 7. This form
S will be called the canonical form of the meander. To prove Theorem 1.2

we will show the existence of nonlinearities f such that S}”Zl =3.

The purpose of working with S rather than S is two-fold. On the one hand it
avoids the consideration of the (nongeneric) degenerate situation where the
extension of the critical set K to the section at x = 1 contains an isolated
point. On the other hand S also avoids the consideration of points k& with
index iy = 0 where S has a vertical tangent. In fact, a meander with such a
point would not be realizable by any f due to the following restriction. Let
Y = ¥(z, a) denote the angle swept by the unit tangent vector to the section
curve a — SF(a) as T varies from 0 to z. Then, ¢ € (—§,+00) and the

equilibrium v, with initial value u(z = 0,a) = @ has index

(3.3) ir = 1 + Integer part of [9(1,a)/7] ,

13



(see [Roc85]). This prohibits vertical tangents at equilibria with i, = 0.

As it was already pointed out, the indices (ix)1<k<n correspond to the com-
plete clockwise half-windings of the tangent vector to the canonical meander
S along its orientation. Since 7 is dissipative we must also have i,, = i; = 0.
Moreover, (1.10) implies that 4, 1 = i; = 1. Therefore, the folding index
defined in (3.1) satisfies

(3.4) ;; (k) =0 .

In particular, the meander S must have as many clockwise as anticlockwise
folding points. (A different proof of this observation was given at the end of

Section 2.) Defining
(3-5)  p=p(m) = #{k: on(k) = +1} = #{k : 0z (k) = -1} ,

our realization of 7 by a nonlinearity f with S}”Zl = S must be such that
the corresponding set Ky = K; U ...U K, is composed of ;. curves pairwise
connecting the points with o,(k) = +1 to the points with o, (k) = —1.

Since n is odd and i; =4, = 0, we always have p(m) < 252, When p(r) =0,
our canonical meander is very simple and we will show through an example
that the permutation 7 is realizable. When p(7) > 0, our proof of Theorem
1.2 proceeds by induction with respect to u(7) and odd values of n. In fact,

in Section 4 we prove the following

Lemma 3.1 Given a dissipative Morse meander permutation m € S(n),
n > 3, there is a dissipative Morse meander permutation ©' € S(n — 2)
with p(n') < u(m) such that a canonical meander S corresponding to T can
be obtained by a realizable deformation from a canonical meander S' corre-

sponding to m'.

After a finite number of steps one must have p(7') < p(7) and eventually

reach p(7') = 0 completing the induction.
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To identify the desired permutation 7', we look at the folding index vector
(0x(k))1<k<n- Along an oriented section curve S§=', a point with o, (k) = —1
must have another point with o, (k') = +1, k' < k, preceding it. In fact, we

have the following
Lemma 3.2 Ifo,(j) =0 forj=1,...,k—1, then o,(k) > 0.

Proof: Indeed, if £ is even then i, = 0 for all odd v < k£ — 1 by (3.1). Hence
0x(k) = 3igy1 > 0. If k is odd, then ¢, = 1 for all even v < k — 1. Hence
o(k) = %(z’kﬂ —1). Moreover, i, = 0 for all odd v < k — 2. Therefore,
ik = ig_2 + 20-(k — 1) = 0. Now (1.10) implies 0 < 41 = i =1 = 1.
Consequently o, (k) = 0. This proves lemma 3.2.

We now describe the explicit construction of the reduced permutation 7’
from 7, which is at the heart of lemma 3.1. Our description also serves as
an outline for the proof given in Section 4. Define k to be the first point
of anticlockwise intersection, o,(k) = —1. Let ¢ denote the last clockwise

intersection, o,(t) = +1, preceding it. In other words,
(3.6) Kk = Ky :=min{j : 0,(j) = =1}

(3'7) L=l = max{j 1] <K, o'ﬁ(j) = +1} .

Note that the shooting surface S of our realization of 7 must have a critical

curve K; connecting the point ¢ to the point &, if p(7) > 0.

The immediate purpose of the meander deformation process leading to the
permutation 7’ is the removal of the points ¢ and « + 1. This process is best

illustrated by sketching examples.

We consider the case where ¢ is even (at even points, the meanders S and S
cross the w-axis from the upper half-plane into the lower half-plane); ¢ odd

can be treated similarly. Clockwise winding, o,(1) = +1, implies 771(:) >
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Figure 3.1: Meander deformation in the simplest case, ¢ even and 7 !(:) =
7 e+1)+ 1.

7 '(¢ + 1). In the simplest case we have 7 '(:) = 7 '(+ + 1) + 1. Then
the arcs of the meander S between the points ¢« — 1 and ¢« + 2 look like the
first illustration in Fig. 3.1. Recall that the points are numbered along the

meander.

In this case there are no points of S on the wu-axis between ¢ and ¢ + 1.
Therefore, the “nose” region bounded by the arc of S joining the points ¢ —1
to ¢ + 2 and a half circle in the upper half-plane joining these same points
does not contain any other points of the meander S. Our deformation, then,
consists simply in the retraction of the arc of & to the half circle. This
nose retraction is also illustrated in Fig. 3.1. It is a simple task to adapt
this deformation to the canonical meander S. The actual realization of this
deformation using canonical meanders will be presented in the next Section.
It leads to a meander S’ with permutation 7' satisfying p(n') < p(m). Strict
inequality will hold only when k = ¢ + 2.

In the case 7 '(:) > 7 '(+ + 1) + 1 there are points of S between ¢ and ¢ + 1
on the u-axis and the nose retraction operation must proceed very carefully.
Still, there is a tubular neighborhood of the arc of § between ¢+ 1 and ¢ + 2
which has no other points of S, see the shaded region in Fig. 3.2. Our

meander deformation in this case consists in the parallel transport of points
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Figure 3.2: Meander deformation by parallel transport of the points between

77 (e) and 7 (s + 1), ¢ even.

of S along this tubular neighborhood. This leads to a meander S with a
corresponding permutation @ € S(n) satisfying @ '(¢) = # (¢ + 1) + 1,
where ¢ = 1, = 17. As the proof unravels, it will be clear that by suitable
deformations the above tubular neighborhood can be made large enough to
accommodate parallel transport. Then, an application of the previous nose
retraction operation to the meander S leads to the desired permutation 7’
with p(7'") < p(m). Therefore, in this case the process of identification of the
permutation 7’ and its subsequent deformation realization consists of two
operations: from 7 € S(n) to 7 € S(n) (a nose cleaning deformation) and

from 7 to 7’ € S(n — 2) (the nose retraction).

The realization of the nose cleaning parallel transport will also be presented

in the next section.
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4 Proof of the realization theorem

In this section we prove Lemma 3.1 and, therefore, by induction we obtain
the realization Theorem 1.2. An outline of the relevant constructions was

given at the end of the previous section.

As pointed out already, when u(7) = 0 our canonical meander is particularly
simple. Indeed, 7 = (12 ... n) with n odd due to dissipativeness. See
Fig. 4.1 for an example with n = 7. In this case the permutation 7 is
realized by the boundary value problem (1.1) with, for example, the following
nonlinearity

n 2

(4.1) f=f(v)=)\H(k—v),O<)\<ﬁ.

k=1

In fact, one easily verifies that (1.1) with this f has exactly the n constant
solutions v, = k, with £ = 1,...,n. These solutions are the equilibria of the
corresponding problem (1.4). For the indicated range of A, the equilibria are
hyperbolic and have Morse index i(vy) = 0, if k is odd, and i(vg) = 1, if & is

even. The critical set K in this case is empty.

When p(7) > 0 our induction involves two steps. In the first step we de-
termine the permutation 7’ € S(n — 2) described at the end of the previous
section. This permutation sets up the process of nose cleaning and nose re-
traction. The permutation 7’ has either u(7n') = pu(n) — 1 or u(n') = u(n).
In either case we show that 7' € S(n — 2) is a dissipative Morse meander
permutation. Therefore, 7’ is realizable by the induction hypothesis. There
is a nonlinearity f’ with a shooting surface Sy such that &' = S% ! is a

canonical meander with permutation n’. Let S, = Sp.

The second step consists in extending S, to z > 1, introducing a family of
section curves {S? : > 1} which corresponds to the meander deformations

described before. As x increases from 1, these section curves evolve from the
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Figure 4.1: Meander S with permutation 7 = (1 2 ... n).

canonical meander S’ with permutation 7’ to a canonical meander S with the
desired permutation 7. Therefore, if the extended manifold S, satisfies the
conditions of Theorem 2.1, there exists a dissipative nonlinearity f realizing
it, that is, Sy = S.. Rescaling the z-variable back to the interval [0, 1],

afterwards, completes the proof.

Before proving these two steps, we consider the extension process in more
detail.

4.1 Realization of deformations and parallel transport

The canonical form of the meander S*=! = S is very convenient for the
application of Theorem 2.1. All points of S with a vertical tangent occur
at points k£ on the u-axis and are nondegenerate in the sense that they are
folding points (with a folding index o, (k) # 0). These are the points of the
section curve ST=! belonging to the critical set K,. To verify the conditions
of Theorem 2.1 we need to consider only the evolution of these points as x
increases from 1. Mainly, K, must be an integral curve of the plane field
(2.5). As z varies, these points have to move with normal component of the
velocity equal to p. Hence, as long as these points remain on the u-axis,
they will have p = 0 and the corresponding set K, will be a straight line
(u = const., p = 0). Therefore, an extension S, of the form S* = S for
x > 1 satisfies the conditions of Theorem 2.1. We use this fact to restrict

our section curve deformations to an open set (u,p) € U C IR?, preserving
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Figure 4.2: Integral curve of (2.5) with (u,p)-projection corresponding to a

half circle.

its shape outside U. For example, in the meander deformation represented
in Fig. 3.1 we take a neighborhood U containing the shaded region. During
the deformation for z > 1, we continue the critical curves K, with (u,p)-
projection in U along integral curves of the plane field (2.5). In order to
remain in the shaded region throughout the extension, we choose critical
curves whose (u, p)-projection correspond to half circles. An integral curve
of the plane field (2.5) with (u, p)-projection corresponding to the half circle
{(u,p) : (u—1up)®+p*=r%u> 0} has the form u = up —rcos(z — 1), p=
rsin(z—1) for 1 < x < 1+m. The curve in the (z, u, p)-space resulting from
joining this arc to the two line segments corresponding to u = ug +7r, p =0
is continuous but not C'. However, we can smooth out this curve near the

points with x = 1 and x = 1 + 7r obtaining a C'*° smooth integral curve of
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Figure 4.3: Manifold S, containing the curve K, and section curves S¥,

1=1,2,3,4 corresponding to a nose retraction deformation.

(2.5). All it takes is a C°° smoothing of its (u,x)-projection, followed by a
du

definition of its p-component as the derivative p = 9. We use this type of
curves to continue the critical set K, in the region of deformation. Therefore,
in an z-interval of length 7 we can achieve a smooth deformation that moves
one point of the set K, from a position with coordinates u = ug—7r, p=0
to a position with coordinates v = uo + 7, p = 0 (see Fig. 4.2). Once
the critical curve K, is defined, it is easy to define the shooting surface S,
through the family of its section curves S7. In fact, we preserve the fibration
of (z,u,p) € IR® by lines parallel to the p-axis: hence the name “parallel
transport”. S, does not contain any further folds or other points of tangency
to the field (2.5) except the points of the critical curve K,. This is illustrated

in Fig. 4.3.

During parallel transport, our meander deformation involves several compo-

nents of the critical set K,. To continue these components for x > 1 we use
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Figure 4.4: Parallel transport introducing a gap between us and us.

curves with (u, p)-projections corresponding to half circles, all with the same
radius (see Fig. 4.4). This ensures that, as z increases from 1, all the folding
points of &7 involved in the deformation have the same height p. Therefore,
all these points move with the same speed Z—Z, allowing for the realization of
the parallel transport. The manifold S, is, also in this case, easily defined by

giving its section curves S7. See illustration in Fig. 4.5.

We now address the proof of Lemma 3.1.

4.2 Determination of 7 from 7

Let n be odd and m € S(n) be a dissipative Morse meander permutation such
that u(m) > 0. The leading point to be removed in the operation is identified

by the clockwise winding ¢ = ir; see (3.7). In this subsection, we explicitly
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Figure 4.5: Manifold S, and two section curves &% for a parallel transport

deformation.

describe the formal reduction process from 7 € S(n) to 7' € S(n — 2), see
(4.2), (4.3) below. We also prove that 7', thus defined, inherits from 7 the

property of being a dissipative Morse meander permutation.

Following the outline on the previous section, we consider separately two
cases regarding the relative positions along the base line of the points : and
v + 1. If these positions, m~'(:) and 7~'(¢ + 1), are consecutive we use a
nose retraction like the illustration in Fig. 3.1. Otherwise, we proceed in two
steps: a parallel transport — nose cleaning — like the illustration in Fig. 3.2,
followed by a nose retraction. Besides these, we also consider separately the
cases of even or odd ¢, corresponding to the two different directions in which

the meanders can cross the base line.

Consider the case ¢ even, see Figs. 3.1, 3.2. The simplest case corresponds to
771(t) = 771(t+1) + 1 — the nose retraction. The permutation 7' € S(n —2)

is then obtained from the permutation 7 simply by deleting the points with
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order ¢ and ¢ + 1 along the meander, and reordering all the points along the

base line. More specifically, but less transparently,

7(7) if 1<j<7m'(t+1) and () <t
m(j)—2 if 1<j<7'(t+1) and 7(j)>ct+1
m(j+2) if 7)) <j<n-2 and w(j+2)<:

7(j+2)—2 if 71(1)<j<n—2 and 7(j+2)>:+1

(4.2)(5) =

For example, the first line of (4.2) refers to those points j on the base line,
which are to the left of 771 (1+1) and are traversed before the (-th intersection

along the meander: 7(j) < ¢.

The permutation 7’ is dissipative because 1 < ¢ < n. Also, by construction
(i.e. the nose retraction depicted in Fig. 3.1) 7’ is a meander permutation.
Finally, since the retraction does not change the number of clockwise half-
windings of the unit tangent to the meander at the points 1,2,...,0— 1,0+

2,...,n we conclude that #’ is Morse.

If + is odd, the same result holds. The simplest case now corresponds to the
condition 771(¢ + 1) = 7 1() + 1. To obtain 7’ it is then only necessary to
interchange 7~ (¢ + 1) with 77!(¢) in (4.2).

If ¢ is even, but 771 (1) > 771 (++1)+1, we first consider the parallel transport
deformation (alias nose cleaning) leading to the permutation 7 € S(n). See
Fig. 3.2. This permutation is obtained by interchanging the ¢; intersection
points strictly between 7 !(:) and 7 !(: 4 1) in the base line order with the
dy points between 771(:+1) and 77!(¢+2) (including these end points). The
base line orders within the two exchanged sets are preserved, respectively.
Note that 6 =7 (o) =7 '(t+1)—land b =7 '(t+1) =7 't +2)+ 1.

24



With interpretation similar to (4.2), we therefore obtain

n(j)  if 1<j<at(t+2)
7(j+0) if 7 +2)<j<m(t+2)+d
w(j—6,) if 7w le+2)+6 <j<m (1)

n(j) if ) <j<n

4.3) 7)) =

Again, one verifies immediately that 7 is dissipative. Furthermore, 7 is a
meander permutation by construction (the deformation by parallel transport
depicted in Fig. 3.2). Finally, 7 is also Morse since parallel transport does
not change the number of clockwise half-windings of the unit tangent to the

meander at the reference points.

As before, if ¢ is odd and 771(z) > 771(+ + 1) + 1 a similar result holds. To
obtain 7 it is only necessary to interchange 7~*(¢) with 77(¢ + 2) in (4.3)
and take 6 =7 (t+2) -7+ 1)+ 1land o =71t + 1) — 71 (e) — L.
To conclude, given a dissipative Morse meander permutation 7 € S(n), (4.3)
leads to a dissipative, Morse, meander permutation ©# € S(n). Applying
(4.2) to T one obtains the desired dissipative Morse meander permutation
7' € S(n — 2). This proves the first part of Lemma 3.1.

4.3 Realization of m from =’

We complete the proof of Lemma 3.1 by showing that 7 € S(n) is realizable
from a realization f’ of the permutation ©' € S(n — 2). We need to show
that the inverse nose cleaning deformations leading from 7’ to @ € S(n — 2)
and m € S(n) are always realizable by extending S, = Sy to some interval
1<z<TwithT >1.

First, we note that the realization of 7 from 7« by parallel transport is very

simple. Turning again to Fig. 3.2 we see that in order to perform the
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Figure 4.6: Realization of 7 from 7 in two steps: a. Introduction of a gap

between 7' (1) and 7~ '(¢++1); b. Interchange of points by parallel transport.

deformation by parallel transport it is necessary to have a sufficiently large
gap between the points 77!(2) and 77(¢ + 1) on the base line. This is easily
achieved by an initial parallel transport (as one depicted in Fig. 4.4) of
m~ (¢t + 1) and all the points to the right of it. Extending S, to an interval
with 7" =1 4+ & provides as large a gap as necessary. A subsequent parallel
transport, taking the desired points to the enlarged gap (see Fig. 4.6), realizes

the permutation 7 from 7 by a further extension of S, to 1 <z < T = 1+427.

The inverse nose retraction realization of 7 (or 7, if necessary) from 7’ is
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most delicate in the case where k, = ¢, + 2, see (3.6), (3.7) and Fig. 3.1. In
this case, ¢, + 2 is a folding point of the meander corresponding to 7 folding
anticlockwise, o, (1, +2) = —1. Referring back to Fig. 3.1, the deformation
leading from 7’ to m corresponds, pictorially, to a nose creation where a pair
of folding points is introduced. Hence, this is the case where p(7) = p(7')+1.
We start with an extension of S, to some interval 1 < xz < 1+ ¢¢, such that
a cusp arises at S close to the point corresponding to ¢,. Locally, such

a cusp corresponds to a manifold of the form

(4.4) u=(x—1—¢e1)p— %(p — )% + &3

Note that, indeed, the (x,u)-projection of the critical curve K, in a neigh-
borhood Vi of (x =14 €1,u = €3,p = €3) is a cusp. As z increases beyond
1+ €4, it corresponds to the appearance of a pair of points on SF with verti-
cal tangents and opposite folding indices 0. Therefore, for £ > 1+ £; a new
connected component K, is added to the critical set K, which becomes
K, = Ui<j<, K;- To continue S, for values of z > 1+ ¢, € > &1, we adjust
the parameters €2, (€;),=1,2,3, in such a way that one of the branches of the
cusp continues as a straight line and the other as a sinusoidal curve as de-
picted in Fig. 4.7. As the (z,u)-projection of the critical set K, traverses
the sinusoidal curve, its (u, p)-projection describes a half circle with a pre-
scribed radius. This continuation of the cusp only needs to be C! smooth,
resulting in an integral curve to the plane field (2.5) which is only contin-
uous. Smoothing out near 0V;» as before, we obtain a critical curve K,
which is C* smooth and leads to the desired deformation (a nose creation).
If necessary, we use a preparatory parallel transport as above to introduce
a sufficiently wide gap between the points where we need to insert “our”
nose. This completes the realization of the permutation 7 from 7’ with an

extension of S, to an interval with 7' =1+ ¢ + 2.

The realization of 7 (or 7) from 7’ in the case where k, > ¢, + 2 does
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Figure 4.7: Introduction of a fold corresponding to the appearance of two

folding points and creation of a “nose” deformation.

not require the introduction of a cusp. In fact, by (3.6) and (3.7), in this
case we have o, (tr +2) = 0(ty +1) = 0 and o,(¢;) = +1. One can then
show that o,/ (t,7) = +1 and the meander corresponding to 7’ has a clockwise
folding point at the point ¢,» = ¢,. Therefore, the nose retraction deformation
required to realize 7 from 7’ only involves the extension of an existing critical

set K, as illustrated in Fig. 4.3. This concludes the proof of Lemma 3.1.
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5 Example

As a specific example, we consider the realization of the permutation
(5.1) 7=(1107438925611) € S(11)

to illustrate our construction. Note that 7 is a dissipative Morse meander

permutation. In fact, its Morse vector is given by
(5.2) (tk)1<k<11 = (0,1,2,1,0,1,2,3,2,1,0) ,

and Fig. 5.1 shows a meander with permutation w. Then, the iteration
procedure of nose cleaning and nose retraction used in our realization proof
(see Lemma 3.1 and the end of Section 3), leads to the following sequence of

dissipative Morse meander permutations:

)
)

m =7 = (1107438925611) € S(
1107894325611) € S(
ms = 185672349)€5(9)

( 11
( 1
(

my = 7 = (1652347)€S5(7)
(
(

g = T =

(5.3)

1236547) € 8(7)
12345) € S(5)

Ts = T4
g = Ty =
The corresponding canonical meanders S', 1 < 4 < 6, are shown in Fig. 5.1.

Notice that we use twice the parallel transport operation of nose cleaning

and three times the nose retraction.

Our realization of 7 leads to a manifold S, with section curves 8% = S™¢
for1 <i<6and 0 <z <129 <...< x5 =1. The section curve S has
three clockwise and three anticlockwise folding points corresponding to the

folding index vector
(54) (Uw(k))ISkfll = (0, +1, 0, —1, 0, +1, +1, 0, —1, —1, 0) .
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Figure 5.1: Sequence of reduced meanders S° with permutations m;, 1 < i <
6.

Therefore, the critical curve set K, has three connected components, K, =
K, U Ky U K3, and the stylized form of the graphs of the corresponding
functions ¢;, j = 1,2, 3, is shown in Fig. 5.2. The graphs of these functions
bring forward the existence of a natural partial ordering > on the set {g; :

j = 1,2,3}. In the present case we have ¢i,q2 > ¢3. The example in Fig.
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Figure 5.2: Stylized graphs ¢;, j = 1, 2, 3, corresponding to the curves K of
the manifold S,, with partial ordering ¢, ¢> > ¢3.

2.1, in contrast, shows the ordering ¢, > ¢ > ¢3. This partial ordering is,
in any case, encoded in the folding index vector o, and can be derived from
it. This completes our construction of a shooting surface and of f such that
ny =, for 7w given by (5.1).

It is clear that our construction of the realizable manifold S, is non-unique.
Many other sequences of section curves and corresponding meander permu-
tations can lead to a realization of the same permutation 7. However, the
same partial ordering > must be present in all the realizations of 7 and,
is therefore a characteristic invariant of these realizations. The number of
curves ¢; determined by o is equal to the minimum number of folds appear-
ing in any manifold S, realizing 7. Then, the partial ordering > determines
the order of appearance of the minimal set of folding points in the section
curves S, as z increases. Therefore, we have just exhibited one particular
way of constructing a realization of $*=! with the minimum number of folds,

alias minimal number of connected components of the critical set K.
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6 Discussion

Theorem 1.2 settles the modeling question raised in [FR96] and referred to in
the Introduction. All dissipative Morse meander permutations actually arise
from (1.4). We recall in Table 5.1 the number m(n) of different dissipative

Morse meander permutations = € S(n), for odd n < 17.

n |1 357 9 11 13 15 17
mn) |1 1 2 7 32 175 1083 7342 53372

Table 5.1: Numbers m(n) of dissipative

Morse meander permutations in S(n).

Theorem 1.1 asserts the global orbit equivalence of all Morse-Smale global
attractors for (1.4) corresponding to the same dissipative Morse meander
permutation w. Therefore, m(n) is an upper bound for the number c(n)
of orbit equivalence classes of attractors with n hyperbolic equilibria. This
number is, in general, smaller than m(n). For example, the conjugating

linear homeomorphisms

(6.1) (h(v))(z) = —v(z), (h(v))(2) =v(=2), (h(v))(z) = —v(-2z)
applied to (1.4), lead respectively to transformed permutations, (see [FR96)),
(6.2) (R S

Here 7 denotes the reflection 7 = (n,n — 1,...,1) € S(n). Therefore, the
Morse-Smale attractors associated to 7 and the permutations in (6.2) are
trivially globally orbit equivalent. Moreover, orbit equivalence fails to dis-
tinguish some Morse-Smale attractors for (1.4) not related by (6.1). This
reduces the number of equivalence classes ¢(n) < m(n) even further. See

[Fie94] for specific examples with n = 9.
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The realization problem which we have addressed here for general nonlinear-
ities f = f(z,u, uy) also arises naturally for various subclasses. For example,
the combinatorial characterization of those permutations m = 7 associated

to nonlinearities

(6.3) fu), flug), f(z,u), f(x,uy), f(u,us)

is, to our knowledge, open. It is of course related to modelling questions

concerning spatial (in-)homogeneity and presence or absence of drift terms.

Elementary symmetry issues are also relevant in this context. For example

consider f = f(x,u,p) such that

(64) f(x,u,p):f(l—x,u, _p) .

Then (h(v))(x) = v(—=) is an automorphism of the attractor, and mp = 7'
is an involution. It is unclear, at present, whether or not symmetric f, in the
sense of (6.4), realize all involutive dissipative Morse meander permutations.
Analogous questions can, and should, of course be asked, and answered,
at least for the other automorphic symmetries 7 = 7771, 7 = 77 1771
indicated in (6.2).

The problem of computing the numbers m(n) is related to classical important
problems in combinatorics which are largely unsolved (see [Ros84], [LZ92]).
In addition to the asymptotic behavior for large n of the number of dissipative

meander permutations in S(n), the following estimates are known:
(6.5) cat(n) < ¢(n) < m(n) < cat?(n)

where cat(n) denote the Catalan numbers —— (2") We refer to [LZ92], [LZ93]

n+l\n
and [Wol96] for more details.

By space discretization of (1.4) one obtains dissipative Jacobi systems. These

have the form

(6.6) Uy = fi(Ui1,usUi41) , i=0,...,7m
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where each f; has strictly positive partial derivatives with respect to the
off-diagonal entries. Moreover, the Neumann boundary conditions take the
form

(6.7) U1 i= Uy 5 Ups1 = Uy -

Apart from being finite dimensional, these systems have exactly the same
properties as the semilinear parabolic systems (1.4). In particular, they pos-
sess attractors which are Morse-Smale when all the equilibria are hyperbolic,
[FO88]. Let A% denote the set of all (equivalence classes of) global Morse-
Smale attractors for (6.6) — the spatially discrete case. Similarly, let A%™
denote the set of all global Morse-Smale attractors for (1.4) — the spatially

continuous case. Then, using Theorem 1.2 one can prove that
(68) Acont — Adisc ,
([FR98], Theorem 8.2). Therefore, the class of Morse-Smale attractors for

Jacobi systems (6.6) exactly matches the class for (1.4).

Let AM5 denote the above class of Morse-Smale attractors. Surprisingly
enough, this class is also fairly independent of the separated boundary con-
ditions used. It is argued in [Fie96] that the class of attractors for (1.4) with

mixed type linear boundary conditions

ToUg(.,0) — (1 — 70)u(.,0)
Titg (-, 1) + (1 —7)u(., 1)

b

0
(6.9) .

does not depend on the parameters (79, 71). By this homotopy, A% includes
also the case of Dirichelet boundary conditions. Moreover, it even includes

mildly nonlinear boundary conditions of the form

(6'10) Uw(ao) = go(U(-, 0)) ) U’w('a 1) = gl(u('7 1)) -

Therefore, with such separated boundary conditions one cannot leave the

class AMS.
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For the Jacobi systems (6.6), Morse-Smale attractors with the same permu-
tation are Morse-Smale homotopic (see [FR98]). It is not known if the same
statement holds for (1.4). We recall that along a Morse-Smale homotopy
all the (transverse) intersections of stable and unstable manifolds, and their
filtration of submanifolds corresponding to the different rates of approach to
the equilibria (see [FR91]), are preserved. For this reason, the corresponding
heteroclinic connections should be part of a detailed geometric description of
the attractors for (1.4). We believe this information to be useful simultane-
ously for the study of the cell structure of the attractors, and for obtaining

a stronger notion of attractor equivalence.

For periodic boundary conditions, however, the full picture is still far from
understood. For most recent progress we refer to [MN97]. The classification
and geometric characterization of the attractors for all such systems remains

a challenging open problem.
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