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Abstract

We consider global attractors Ay of dissipative parabolic equations
Up = Ugy + f(xa uvuév)

on the unit interval 0 < z# < 1 with Neumann boundary conditions. A
permutation 7 is defined by the two orderings of the set of (hyperbolic)
equilibrium solutions u; = 0 according to their respective values at the two
boundary points 2 = 0 and z = 1. We prove that two global attractors, A;
and A, are globally C° orbit equivalent, if their equilibrium permutations
and 7, coincide. In other words, some discrete information on the ordinary
differential equation boundary value problem u; = 0 characterizes the attrac-
tor of the above partial differential equation, globally, up to orbit preserving

homeomorphisms.



1 Introduction and result

On the unit interval 0 < 2 <1, the interplay of linear diffusion with nonlin-
ear, spatially heterogeneous reaction and drift terms can be modeled by the

scalar parabolic partial differential equation
(1.1) Up = Ugy + [z, u,u,).

Equations of this form arise in many applied contexts. We just mention
population dynamics in mathematical biology [CS80], reactor dynamics in
chemical engineering [Ari75], viscosity limits to hyperbolic conservation laws
[Smo83], clustering effects in astrophysics [Wol92a], [Wol92b], and phase
transitions in materials sciences [CP88], [FH89].

The present paper aims at a global analysis of the long time behavior of
the infinite dimensional dynamical system (1.1). For definiteness, we impose

Neumann boundary conditions
(1.2) u, =0, forax=0,1.

Let f be twice continuously differentiable: f &€ C?%. By standard semi-
group theory, the (local) solutions u = u(¢,z) of (1.1) with initial condition

u(0, z) = up(x) then define a dynamical system
(1.3) 0 <t~ ult-)eX,

see [Hen81] or [Paz83]. The state space X can be picked here as the Sobolev
space H? of z-profiles
(1.4) z— u(t,z)

with Lebesgue square integrable second z-derivative u,,, intersected with the

appropriate Neumann conditions,
(1.5) X = H*([0,1],IR) N {u, =0 at = 0,1}.
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By Sobolev embedding, the z-profiles are at least once continuously differ-

entiable, X C C'. Moreover, the time-t maps
(1.6) ug — u(t, ;up) € X

are compact for ¢ > 0, by the smoothing action of diffusion.

We assume the nonlinearity f to be dissipative: there exists a fixed large
ball B C X which attracts each solution. In particular, solutions (1.3) are
defined for all ¢ > 0, and for any ug € X there exists tg = to(ug) > 0 such
that u(t,-) € B, for all t > 5. Then our dynamical system possesses a global
attractor A;. This set can be characterized as the maximal compact invariant
subset of X. It is also the smallest subset of X which attracts all bounded
sets. Equivalently, Af consists of all those ug € X which, for ¢ = 0, lie on an
orbit u(t,-) € X of (1.1) which is defined and uniformly bounded for all real
times ¢, both positive and negative. See [Hal88], [Tem88], [Lad91], [BV89]
for reference. We state explicit sufficient conditions for f to be dissipative,

which we assume to hold in this paper. There exists a constant Cy such that
(1.7) fz,u,0) - u <0

for |u| > C1, and moreover there exist continuous functions a, b as well as an

exponent v < 2 such that

(1.8) | (@, u, p)| < a(w) + b(u)|p”

for all @,u,p. For dissipativeness under conditions (1.7), (1.8), viz. for
bounds on sup |u,|, see [Ama85], theorem 5.3. We defer a discussion of

these rather restrictive conditions to section 8.

Let & C X denote the set of equilibria, that is, of solutions u € X of the
Neumann boundary value problem for the second order ordinary differential
equation

(1.9) 0=y + fz,u,u,).
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We assume all equilibria to be hyperbolic, that is, the linearized equation

with Neumann boundary condition n, = 0, for « = 0,1, possesses only
the trivial solution n = 0. Here the partial derivatives f, and f, of f =
f(z,u,p) are evaluated at u = u(x), p = u,(x), for some equilibrium u € &;.

Equivalently, the real part of all eigenvalues A of the linearization

(1.11) AN =Nee+ fpna+ fa

is nonzero, for all v € &;. In fact, all eigenvalues must be real, because
the Sturm-Liouville problem (1.11) is selfadjoint, under an appropriately
weighted L? scalar product. We note that hyperbolicity of &; is a generic
assumption on f, see [Smo83], [BP8T].

By the implicit function theorem, hyperbolic equilibria are isolated in X.

Because £ C Ay is compact, the set of equilibria is finite
(1.12) E={u,.. . uMN).

Here the numbering is chosen such that

(1.13) ut <u? <. < Ul at 2z =0.

Indeed, the equilibria are strictly ordered by their values at = 0, due to
uniqueness of the initial value problem for (1.9) and because u* = 0 for all £,
at = 0. For the same reason, the equilibria can be ordered by their other

boundary value, at = 1. This defines a permutation 7 = 7y such that

(1.14) uW <™ < <™ at e =1,

bl

Note that the permutation 7; only encodes ordering information on the
boundary value problem for the ordinary differential equation (1.9). We

call 7; the shooting permutation associated to the equilibria of f.
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To compare the global attractors Ay, A, of (1.1) for different dissipative
nonlinearities f, g, we recall the usual notion of C° global orbit equivalence of

A and A, there exists a homeomorphism
(1.15) H: A — A

which maps f-orbits {u(t,-) € X|t € IR} C Ay onto g-orbits, preserving the

time direction of the orbits. We use the notation
(1.16) A; = A,

for global orbit equivalence. With this definition we can now state our main

result.

Theorem 1.1 Let f,g € C? satisfy dissipation conditions (1.7), (1.8). As-
sume they possess only hyperbolic equilibria with associated shooting permu-
tations my,m,. Then the global attractors Ay and A, are globally orbit equiv-
alent, Ay = A, if

(1.17) Ty = Ty

An outline of the proof will be given in section 2. The proof itself fills sections
3 to 7. We conclude with a detailed discussion, in section 8. We conclude
this introduction indicating the two main features which make our theorem

work: Morse structure and nodal properties. For a survey see [Fie89)].

The Morse, gradient, or variational structure of (1.1) is given explicitly, for
f = f(z,u) independent of p = u,, in terms of the Lyapunov functional V
on X defined by

11
(1.18) Viw = [ <2(ux)2 - F(x,u)) dz.
0
Here F'is a primitive function of f with respect to u, that is F, = f. Inserting

solutions u(t, ) of (1.1), we obtain

(1.19) %V(u(t,-)) _ —/l(ut)zd:c.

0
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In particular, V' is bounded on the compact attractor Ay, and is strictly
decreasing with time, except of course on the equilibrium set £;. A similar,
though less explicit, Lyapunov functional V' : Ay — IR with these properties
also exists in the general case where f = f(z,u,p) is allowed to depend on

P = Uy, see [Zel68], [Mat88].

By its Morse structure, our global attractor A; decomposes into equilibria &;
and their heteroclinic or connecting orbits. These orbits, by definition, limit
onto (different) equilibria for ¢ — 400 and t — —oo, respectively. Indeed,
%V = 0 on a- and w-limit sets, and therefore these sets are given by a single,

isolated hyperbolic equilibrium, each. In short
(1.20) Ay = &; U {heteroclinic orbits}.

Investigation of the geometry of the heteroclinic set is an ongoing topic of
research. We mention [Hen81], [Hen85], [Ang86], [BF88], [BF89], [AF88],
[FRO1], for partial results on equations of the form (1.1). Recently, [FR94]
have settled the question for which u’,u/ € &; there does exist a heteroclinic
connection from u' to u’. The complete answer can be given by an explicit
and constructive process, which only uses information on the equilibrium
permutation 7;. The precise global geometry of the connections, however,

remains unresolved.

The crucial importance of nodal properties for the qualitative understanding
of equations of the form (1.1) was first noted by [Mat82]. Take any two
solutions w'(¢,-),u*(¢,-). Let z(u' — u?), for fixed ¢, denote the number of

strict sign changes (nodes) of the z-profile z — u'(¢,2) — u*(¢, z). Then
(1.21) te z(ul(t, ) — u?(t, )

is nonincreasing with time ¢. In fact, z(u'(¢, ) — u?(¢,-)) drops strictly when-

1

ever the z-profile u' — u? possesses a multiple zero u' —u? =0, ul —u2 = 0.



L w2 satisfies

Indeed, the nodal property follows because the difference @ := u
a (time-dependent) linear parabolic equation. For comprehensive nodal prop-
erties in the linear case see the recent account by [Ang88]. The autonomous

linear case is classical [Stu36], [Pol33].

Nodal properties have many important, and sometimes surprising conse-
quences. For example, just by hyperbolicity of the equilibria £ alone and
without further genericity or nondegeneracy assumptions on f, our dynami-
cal system (1.1) turns out to be Morse-Smale, see [Hen85], [Ang86]. In fact,
unstable and stable manifolds W* and W* of any two equilibria necessarily
intersect transversely, by the above nodal property. Together with the Morse
structure this makes our dynamical Morse-Smale system structurally stable:
small dissipative perturbations of the nonlinearity f to f yield global attrac-
tors Ay, A7 which are globally (C 9) orbit equivalent. In finite dimensions this
result is due to Palis and Smale, see [Pal69], [PS70], [PAM82]. The infinite
dimensional case is due to [Oli83]; see also [HMO84].

In view of Morse-Smale stability our strategy for a proof of our theorem
seems simple. If we find a homotopy 7,0 < 7 < 1, from f° = f to f! =g,
such that the equilibrium set ;- remains hyperbolic throughout, then Ay
and A, are orbit equivalent by Oliva, Palis, and Smale. Indeed we can cover
the compact parameter interval 0 < 7 < 1 by finitely many open intervals
of structural stability. In the next section we explain why matters are not
all that simple, in fact, and how our proof takes a few more meanders before

completion.
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2 Outline of proof

Throughout, let the assumptions of theorem 1.1 hold. In this section we ex-
plain our overall strategy of proof for our theorem on global orbit equivalence.
Structural stability of Morse-Smale systems will be the main actor, though
mostly somewhat behind the scene. We first explain the difficulty which a
naive homotopy f7 is facing, in the spirit of the end of the introduction sec-
tion 1. We then indicate how discretization will help, in section 3. Section 4
is devoted to normalizations which involve dissipativeness. Our crucial trick,
gaining additional freedom for homotopies, is the insertion of additional,
artificial discretization points, in section 5, which essentially produce a high-
dimensionally unstable suspension of the original global attractor Ay in an
augmented discrete system. Sections 6 and 7 will highlight the additional
freedom gained by augmented discretization. In fact, the additional freedom
reduces the question of finding a suitable homotopy f”, on the augmented
discrete level, to a purely topological result on the fundamental group of a
certain space of diffeomorphisms. With those details at hand, the outline of

proof given below will then have solidified into a complete proof.

Let us first try the most naive, standard homotopy
(2.1) ff=01-7)f4+79, 071,

between dissipative nonlinearities f, g with global attractors Ay, A,. By dissi-
pation condition (1.7), (1.8) global attractors respect bounds |u| < Cy, |u,| <
(', uniformly in ¢, . Modifying f, ¢ to become

(2.2) f=g9=—u,

for |u| > 2C; or |u,| > 2C5, as explained in section 4 below, ensures dis-
sipativeness throughout the homotopy. The homotopy parameter 7 induces

a bifurcation diagram for the sets £+ of equilibria. If all equilibria remain
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hyperbolic, for all 0 < 7 < 1, then the Morse-Smale property implies equiv-
alence of A; and A,. However, bifurcations of saddle-node type could occur,
for some 0 < 7 < 1. Saddle-nodes are lethal for our Morse-Smale proof.
To understand the difficulty in avoiding saddle-nodes, we use a shooting, or

“time” map approach to the equilibrium ODE (1.9), alias

Uy = P

with Neumann boundary conditions p = 0, at = = 0,1. At z = 0, consider

the line of initial conditions
(2.4) u=a, p=0,

parametrized by a € IR. Letting = evolve forward, according to (2.3), we

obtain solutions u(xz;a), p(z;a) and the shooting curves
(2.5) a v S§(a) == (u(z;a), p(x;a)) € IR?

in (u,p) space. See for example [FR91], [Roc91], [FR94] and the references
there. Each shooting curve is a planar C'? Jordan curve. Their collection for

0 < 2 <1 defines the shooting surface
(2.6) S (ma) o (o S3(a) € [0,1] x R?

in (x,u,p) space. Note that the equilibria &; are described by the values a

at intersections of ij:l with the u-axis:
1) $51(a) = (u(e = 1;a),0),
corresponding to the Neumann boundary condition

(2.8) plz =1;a) = 0.



Figure 2.1: A stylized shooting curve ijzl for the Chafee-Infante problem,
(37)% < A < (47)2.

It turns out that &; is hyperbolic if, and only if, S'le intersects the wu-axis
transversely. If 577 ! touches, and crosses the wu-axis during a homotopy
f7, then a saddle-node bifurcation of equilibria occurs. Clearly, saddle-node
bifurcations might occur during a naive standard homotopy f™ = (1 —7)f +
7g, with destructive consequences for the geometry of the global attractors
Agr.

There is a very special case though, where the naive, standard homotopy

(2.1) works well. If the shooting surfaces of f and ¢ coincide entirely,
(2.9) Sy =19,

then S- is independent of 7, also at # = 1. Consequently, the global attrac-
tors Ay and A, are then orbit equivalent. Therefore it will be sufficient to
focus on just the shooting surfaces, when constructing a less naive homotopy
I

As a simple specific example, we consider the Chafee-Infante problem [ChaT74],
[C174]

(2.10) flz,u,p) = du(l — u?).

As in all dissipative systems, there exists a lowest and a highest equilibrium

u,u; here u = —1, u = +1. In the (u,p)-plane the shooting curve points
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south-west, to the left of the lowest, and north-east, to the right of the highest
equilibrium. Also observe the transverse intersections of szl with the u-axis

1

corresponding to the equilibria v, ..., u?. Numbering the equilibria along the

shooting curve szl provides the Chafee-Infante permutation
(2.11) Tr=(2 8)(4 6)

in the case of Fig. 2.1. Parenthetically we note that the Morse indices, or
unstable dimensions, of all equilibria are also determined by 7; see again

[Roc91], [FR94].

Consider a less naive homotopy f7 from f to ¢ next; this homotopy should
preserve the transverse intersections of ijrzl with the wu-axis, enacting a
Morse-Smale application. Since 7; = m,, by assumption, there exists a dif-
feotopy

(2.12) w’

of the (u, p) plane, ©° = id, which provides a deformation from ijzl to S;”:l,
such that transversality of the curves to the u-axis is preserved throughout
the homotopy. Our proof would be complete, if we could now find a homotopy
f7 such that for z =1

(2.13) St = ¢T(S%)-

But we cannot. The obstruction lies in the second order system (2.3) which
constrains the evolution of shooting curves S%. Indeed, let n € IR? denote a
unit normal to S% at (u,p), and o the normal speed of propagation of the

curve 5§ in the direction of n, as z increases. Then ¢ is the normal projection
of the vector field (2.3), that is,

=n- p .
(2.14) o= ( f(eup) )

Varying f freely, this does not impose any restriction on the speed o, unless

n = (1,0) is horizontal. In that latter case, S§ possesses a vertical tangent
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(pictorically: a nose), and

(2.15) o =p.

Summarizing: higher noses move faster to the right, as x increases. It is this
constraint on the shape of the shooting surfaces S¢, S, which we could not
overcome in our attempts to construct a homotopy f7 which preserves the
Morse-Smale type hyperbolicity condition (2.13) throughout 0 < 7 < 1. Such
a homotopy might in fact exist. But we did not secure a general algorithm

for constructing one.

Therefore we discretize, in section 3. The discrete equations take the form

(2.16) Wi = filtiot, i Uiyr),

¢ = 0,...,n, where each f; has strictly positive partial derivatives with re-
spect to its off-diagonal entries u;_; and ;4. Following [FO88] we call (2.16)

a Jacobi system. The Neumann boundary conditions become
(2.17) U_q1 1= Ugy,  Upyq = Up.

The global attractor of (2.16) is orbit equivalent to Ay, for equidistant sym-
metric finite difference approximations f; and large enough n (see section
3). Dissipativeness is also inherited (see section 4). We denote the global

attractor of (2.16), (2.17) by Ay, again.

We now describe the crucial trick, a n(m — 1)/2-dimensionally unstable
suspension of A; in a singular perturbation manner, which will gain us
enough additional freedom to realize the shooting curve diffeotopy ¢”. For
i=0,....,n, k=1,....m—1and for 0 < j := i+ k/m < n we define the
augmented discrete system as

u; = fz’(ui—l/mauiaui+1/m>

(2.18)

Elj = Uj_1/m + Ujt1/m-
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Here m > 5 is chosen congruent 1 mod 4. We keep Neumann boundary

conditions (2.17) in the adapted form

(2.19) U_ijm 1= U0y  Unii/m = Un,

and let v = (o, Uijms- s Un—1/m,>Un) € IR*"*'. The linear (n + 1)-
dimensional subspace

(2.20) M = {uj_1/m + tjp1/m = 0, for all noninteger 0 < j < n}

is invariant under (2.18) because m =1 (mod 4). Note that M contains the

original global attractor Ay since
(2:21) Uit /m = Uikl

on M. For small ¢ > 0, the invariant manifold M is normally hyperbolic
with n(m — 1)/2-dimensional strong unstable and strong stable fibers. The
maximal compact invariant set ,Zlf of (2.17), (2.18) therefore coincides with

Aj;. These facts will be proved in section 5, see lemma 5.1.

In section 6 we study the analogue of the shooting curves 57 for the aug-

mented discrete system (2.18), rewritten as a Jacobi system

(2.22) Ui = Ji(%1/m, i Wisam),
J=0,1/m,... n. For equilibria, &« = 0, we obtain
(2'23) 0= fj(uj—l/‘mv ujvuj-i-l/m)'

Because the off-diagonal derivatives are strictly positive, these equations can

be solved for u;11/,,, defining the shooting recursion

(2.24) Wit1fm = (U1 s ).
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Note that the partial derivative of c,of with respect to u;_y/,, is strictly nega-
tive. Given such a ¢;, we may also conversely define f; by f; 1= w;11/m —¢;,

and obtain a system (2.22) with Jacobi structure.

Rewriting (2.24) as a system

Ui = Vi_i/m
(2.25) o Y

vi = @5(Uj-1/m; Vj-1/m)

we see that the diffeomorphisms I/)Jf replace f-evolution maps from x = (j —
1)/n to & = j/n, in the continuous case. Also, for non-integer j, the map ¢]f

is a pure rotation R by 90 degrees,

(2:26) & (ujm1pmy Vj-1/m) = B(tjr/ms Vim1jm) = (Vi1 /ms —Ujm1m)-

In particular

(2.27) cp;(uj_l/m,vj_l/m) = —Uj_1/m

for non-integer j. If 7 = ¢ is integer, then 1/)lf was already defined by the

original discretization f;. Let the shooting quadruple

(2.28) Of =l 0. 00]

be the composition of any four consecutive »-maps with non-integer j,..., 7+
3/m. Clearly gZNJjC = 1d in this case of four rotations by 90 degrees. In Lemma
6.1 we prove that, by small perturbations of ‘P;+3/ma‘:9;+2/ma the shooting
quadruple 1/~)Jf can be forced to realize any diffeomorphism near identity. This
is the crucial additional freedom which will enable us to complete a non-naive
structurally stable homotopy from A to A,. Indeed, between any two maps
; with integer ¢ we have now inserted (m — 1)/4 € IN shooting quadruples

1/~Jj, each of which can realize any near identity diffeomorphism.

Our non-naive homotopy is constructed, in section 7, as follows. Consider
the diffeomorphisms

(2.29) Ol =l o o,

7
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¢t = 1,...,n, which accumulate diffeomorphisms 1/)1)[ , ¢ integer, defined by
(2.25). For g, we define UY analogously. Comparing with (2.13) we observe
that ¥/ induces the permutation 7, by the discrete shooting curve intersect-
ing the diagonal transversely in the original attractor region {|u| <, |v|] < 1};
see section 6. Here we assume n is chosen large enough, of course. Similarly,
V¢ induces 7, = 7y, for large n. In a neighborhood (2 of the attractor region,

we now prescribe homotopy paths
(2.30) v, 0<7<1

from U/ = U0 to WY = W! in the space Diff () of diffeomorphism of 2. We
will assume \Il{ = 0¥ = U7, outside €2, without loss of generality. At the end
point ¢ = n, corresponding to x = 1, we specifically prescribe W] to provide
a diffeotopy 7 of the discrete shooting curves from f to g, analogously to
the construction of ¢]_; in the continuous case; see (2.13), (7.9). Moreover

we choose a standard homotopy

(2.31) O = (L= 7)) +7of

of diffeomorphisms (2.25) at integer values j = ¢ = 0,...,n — 1. The maps
; at non-integer values of j between n — 1 and n will compensate for this
mortal sin against hyperbolicity and the Morse-Smale property during the
homotopy 0 < 7 < 1.

In section 7, lemma 7.2, we will prove that there exists a continuous two-
parameter family W(7,¢&) € Diff (), 0 < 7,& < 1 of interpolating diffeo-

morphisms, which compensates for the mortal sin (2.31). More precisely, as

indicated in Fig. 2.2

\D(Taf = 0) = \D;—l
03 WrE=1) = ()7

lI;(T = 0,6) qji—l

LIj(’]— = 175) = \I};qz—l



g
l'I',n-l
1
interpolate
W W1,
f
qJn-1
0

Figure 2.2: Constructing interpolating diffeomorphisms.

This fact uses essentially triviality of the fundamental group m; of the space

Diff () of diffeomorphisms of € which fix 92:

by Smale’s theorem. See lemma 7.1 below.

In the final step of our proof we fix m large enough to sufficiently discretize
the &-variable in the interpolating family of diffeomorphisms W(7,¢). In fact,

all diffeomorphisms

(2.34) U7 o= (7, Epg) 0 (U(7,64)) 7

with & :=4k/(m —1), k=0,...,(m —5)/4, are uniformly close to identity
in Diff (). They can therefore be realized, at last, by quadruple shootings
;ZN)j as in (2.28). This is the pay-off out of the freedom gained by n(m —1)/2-

dimensionally unstable suspension of the global attractors As and A,.

Returning to the cumulative shooting maps W7, a Morse-Smale homotopy

nI

is realized between the suspended attractors ./le and ./Zlg and, consequently,
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between the original attractors Ay and A,. Therefore, Ay and A, are indeed

globally C? orbit equivalent, and our main theorem will be proved.
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3 Discretization

As outlined in section 2, we discretize the original semilinear parabolic equa-
tion

(3.1) Up = Ugp + [, u,uy).

In fact, equidistant semidiscretization in z of step size 1/n and the method

of lines in ¢-direction yield

(3.2) U = filtir, i, wiga),

¢t =0,...,n, with f; given explicitly by

(3.3) filtiz1, uiy tipr) = n2(ui_1 — 2u; + wig1) + fe/n,ug, n(u; — uimq)).

Clearly, u; represents u at @ = ¢/n. As noted before, Neumann boundary
conditions become

(3.4) U_1 := Uy, Upyl i= Up.

We do not advocate (3.2)—(3.4) as a particularly efficient discretization from
a numerical point of view. Rather, we prefer this discretization because, for

large enough n, it preserves

(i) nodal properties of solutions,
(ii) the Morse-Smale structure,
(iii) the global attractor Ay, up to orbit equivalence, and

(iv) the shooting permutation 7.

Properties (i)—(iii) are essentially known and are surveyed below. Property

(iv) will be addressed in section 6.
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Recall that u := (uo,...,u,) € IR™™" will also denote solutions of (3.2), in
addition to denoting solutions of (3.1); context will avoid confusion. Prop-
erties (i),(ii) hold for general systems (3.2), (3.4), if only f; has positive
off-diagonal partial derivatives, alias Jacobi structure, as in (2.16). This is
indeed the case for the discretization (3.3) and large n, by our dissipation

normalization (2.2).

Let the zero number z(u) denote the number of strict sign changes of the

sequence of coordinates ug, ..., u,. Then
(3.5) t = 2(ul(t) — (1))

is noncreasing with time ¢, just as in the continuous case (1.21). In fact,
z(u'(t) — w*(¢)) drops strictly at ¢ = ¢, whenever a component ¢ of the
nontrivial difference 5 := u! — u? vanishes and the difference components

¢ + 1 are of equal sign (“multiple zero”),

(3.6) 1i(to) = 0, and 7;_1(to) - N9i1(to) = 0,

for some i = 0,...,n. In case n,_; - niz1 > 0 this follows easily from the

monotonicity properties of f;, which imply
(3.7) sign 7; = sigh 1;_1 = sign 7,41

at t = to. For the general case see [MPS90], [FO88]. This settles claim (i).

The Morse-Smale structure (ii) of the finite dimensional system (3.2), (3.4)
follows from the dropping properties (3.5), (3.6) of the zero number z; see
[FO88], [Ang86]. As in the PDE case outlined in the introduction, hyperbol-
icity of all equilibria automatically entails transversality of their associated

stable and unstable manifolds.

The properties (iii) and (iv) consider the particular nonlinearities f; given by

semidiscretization (3.3). First note that (3.2), (3.4) is a dissipative system,
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in that case. Indeed |u;| > 2Cy or |n(uiy1 — w;)| > 2C5 imply
(3.8) W = filttimy, iy wipr) = 02 (wimg — 2u; + wigr) — w;

In particular ||u|| := max|u;(t)| decreases with time, as long as ||u| > 2C}.

By dissipativeness, (3.2)-(3.4) possesses a compact global attractor A%. Orbit
equivalence of A% to the global PDE attractor Ay was announced in [Hal94],
see p. 24. A proof is in preparation [Rau95]. We indicate our own viewpoint,
for convenience. Let d = dim Ay = max{i(u)|u € £} be the maximal Morse

index of any equilibrium v = u(z) € £;. Define a projection
(3.9) P: A; — R

letting (Pu); := u(i/n), ¢ = 0,...,n, denote actual values of the z-profile w.
By nodal properties on Ay, the projection P is injective if n+1 > d. In fact,
P turns out to be a diffeomorphic embedding of A; into IR"*' [Mat95]. The
main step here is to show that A; possesses a unique d-dimensional tangent
plane everywhere; not only on the d-dimensional unstable manifolds of its
most unstable equilibria, but also, by a limiting procedure, on their closure

which constitutes all of A;. Along the lines of [FR94], section 3, these claims
are consequences of the nodal properties (3.5), (3.6) for the flow induced,
by linearization, on the Grassmannian of d-planes. Along any heteroclinic
orbit from u to u € &;, for example, these d-planes limit onto the span of the
first d eigenfunctions of the target equilibrium @. They are then propagated
further down in Ay, along W*(@), as unique tangent planes of a non-unique
generalized d-dimensional “center”-unstable manifold. At @, of course, this
generalized center-unstable manifold is tangent to the eigenfunctions of the
first d eigenvalues. Propagating along W*(a), its tangent spaces remain

unique even though the generalized center-manifold is non-unique.

With the embedding P at hand, it is then relatively easy to compare the flow

on Ay with the flows on the d-dimensional global attractors A7, for large n.
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Indeed, for n — oo, all equilibria become hyperbolic, converging to £; with
eventually constant Morse indices. Their unstable manifolds converge, uni-
formly in C!, and so do the unique d-dimensional tangent planes, on the at-
tractors A%, to the non-unique center-unstable manifolds constructed above.
The final observation is C° structural stability of Morse-Smale flows under
C*'-small perturbations. Therefore A; and A% are globally orbit equivalent,

for large n.

Henceforth, we will fix such a large n and denote A} by Ay, again. Also the

ambiguity of notation in our u seems thoroughly justified, by now.
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4 Dissipation

In this section we discuss conditions for and elementary consequences of
dissipativeness, as defined in the introduction, for the continuous PDE case

and the (augmented) discrete system.

Recall the dissipation conditions (1.7), (1.8) for the original PDE (1.1), (1.2).
Dissipation, together with the parabolic comparison principle alias strong
monotonicity (e.g. [Smo83], [Hir88], [Mat86]) implies that (1.1) possesses a

maximal and a minimal equilibrium
(4.1) U, U € Sf - .Af

in the global attractor A;. Indeed wu,u arise, respectively, as w-limit
sets of large positive or negative initial conditions (taken for example z-

independent). After a linear transformation u — ,
(4.2) u:=a(x)d + b(x)

weé may assume

(4.3) u(z) = +1, u(x)=-1,

without loss of generality. Indeed the transformation (4.2) preserves the form
of the PDE (1.1). In terms of the original 2-dependent equilibria @, u in (4.1),
the coefficients a, b in (4.2) read

(4.4) a=(i—u)/2, b=(a+u)2

Solutions , like u itself, therefore satisfy Neumann boundary conditions
because a,, b, = 0 at = 0,1. We can now assume (4.3) to hold without loss

of generality.

Lemma 4.1 Let (4.83) hold and consider u € As. Then |u(z)| <1 holds for

all z.
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Proof: We argue indirectly, assuming w(z) > 1 without loss of generality.
Since u € Ay, the a-limit set of u is an equilibrium v~ € &;. Since z(u — 1)
is nondecreasing, in backwards time, and by maximality of « =1 in &, the

zero number z of u~ — 1 is nontrivial:
(4.5) z(um —1) > 1.

Now let ug(x) > u~(z),1 be another initial condition. Necessarily w(ug) = 1.

But because z is nonincreasing, in forward time,
(4.6) z(1—u") < z(up—u)=0.

The contradiction (4.5), (4.6) proves the lemma. a

As mentioned in the outline, (2.2), we now replace the dissipation conditions

(1.7), (1.8) by the simpler condition

(47) f(x,u,p) = U,

for |u| > Cy or |p| > 2C. Here C' is a constant specified below.

Lemma 4.2 Let f satisfy the dissipation conditions (1.7), (1.8) for |u| >
C1 > 1, with the normalization (4.3).

Then |u] <1 < Cy and |u,| < C on the global attractor Ay, for some con-
stant C. Moreover, there exists a nonlinearity f = f(:c,u,p) € C* which

(i) coincides with f on A; and in fact on the larger set where |u| <
(1+C1)/2 and |p| < 1.5C,

(ii) satisfies (4.7), and

(1ii) possesses the same global attractor
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(4.8) Af = Ay,
of course with the same dynamics on it.

Proof: The bound
(4.9) lu] <1

on A; was proved in lemma 4.1. The bound
(4.10) luy| < C

follows from compactness of the global attractor A; C X C C' under dissi-
pation conditions (1.7), (1.8) on f. The gradient bound (4.10) depends on
C1,a,b,7, but not on f. Without loss of generality, we assume a(u) > |u| in

our construction of C.

We construct f as follows. Let V C IR? be a small open neighborhood of the
set where |u| > Cy or |p| > 2C, such that the open dissipation conditions
(1.7), (1.8) stillhold on V. Let f := (1—7)f —7u, choosing 0 < 7 = 7(u,p) <
1 with 7 = 0 outside V, and 7(u,p) =1 for |u| > C; or |p| > 2C. Then

(1) f(xvuap) = f(.T,u,p>, for (u,p) g_ﬁ v,

(i) f(z,u,p) = —u, for |u| > Cy or |p| > 2C, and

(i) f satisfies (1.7), (1.8) on V.

Note that (iii) holds, with the same C4, a, b, v, by convexity of the dissipation
conditions (1.7), (1.8) with respect to f. Clearly (i), (ii) above imply (i), (ii)
in the lemma.

To see that (iii) implies (iii), we first note that & = £;. Indeed, in view of
the bounds (4.9), (4.10), the nonlinearities f cannot possess an equilibrium

u such that (u(z),u,(z)) € V, for any fixed z or 7. To see that Ay = A,
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just recall from (1.20) that Ay is the union of unstable manifolds W§(u) of
u € &;. Because |u| <1 < O, |u,| < C on Ay, we conclude Wr}f(u) = W}‘(u)
for all u € &7 = &;. Taking the union over u € &}, this implies (iii), A; = Ay,

and the lemma is proved. a

We note that 77 = 7, for the associated equilibrium permutations, because
A; = Ay implies £ = &;. Therefore we can assume (4.7) to hold for f and

¢ in our proof of theorem 1.1, without loss of generality.

We now consider discrete equations with positive off-diagonal partial deriva-
tives,

(4.11) U = filwiog, iy wig1),

for : = 0,...,n, as in (2.16), (2.17). An obviously sufficient condition for

dissipativeness of such Jacobi systems is, in general,
(412) uifi(u,'_l, Us, UH—I) <0

for |u;| > max{2C, |u;_1], |wit1]}, ¢ = 0,...,n. Indeed, ||u|| = max;{|u;|}
then decreases monotonically down to level 2C. In our particular case, where
fi arises by discretization (3.3), condition (4.7) is obviously satisfied. The
global attractor of (4.11) is again called Ay, in view of section 3. Our nor-
malization (4.3) still holds, because all f;(£1,£1,41) = 0. Therefore lemma

4.1 carries over to the discrete case.
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5 Unstable suspension

In this section we discuss augmented discrete systems

U = fi(Wic1/m, Ui, Yig1/m)

(5.1)

EUj = Uj1/m T Ujt1/m

introduced in (2.18). Here 0 < ¢ < n and ¢ > 0. For integer 0 < k < m,
the noninteger values 0 < j := ¢+ k/m < n indicate the artificially inserted
values u; which augment the original system. We impose Neumann boundary
conditions (2.19) on the flow of (5.1). Our aim is to recover the global

attractor Ay of the original discretized flow
(5.2) W = filtioa, iy uig)

with Neumann boundary conditions (2.17). We will find Ay unstably sus-

pended, in the linear subspace

(5.3) M := {uj—l/m + w41/ = 0, for all noninteger 0 < j < n}

Lemma 5.1 Assume m = 1 (mod 4), m > 5. Then the subspace M of
dimension n + 1 is invariant under the flow (5.1), (2.19).

The discretized flow (5.2), (2.17) is equivalent to the flow on M by the flow
preserving linear isomorphism
I: R — MCIR"™!
(5.4)
(u07 Uty -y U’n) — (U’Oaul/ma s 7un)
defined by the sign alternation
Uitk/m = (_1)19/2““

(5.5)
Uisi—gym = (=1 Puip,
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forali=0,...,n—1, and all even k =2,...,m — 1. In particular
(5-6) Uit1 = Uit1/m

holds for this embedding, : = 0, ..., n.

For small e > 0, the subspace M is uniformly normally hyperbolic in IR™™ 11,
The dimensions of the strong stable and the strong unstable fibers are equal,
each given by

(5.7) n(m —1)/2.

In particular,

(5.8) A; = I(A))C M

is the maximal compact invariant set, alias the set of bounded solutions, of

the augmented discrete system (5.1), (2.19).

Proof: Because m =1 (mod 4), the map [ is indeed a well-defined linear
isomorphism between IR and M. In particular dim M = n + 1. Also (5.5)
implies %; = 0, for noninteger j. This proves flow invariance of M. Because
m =1 (mod 4) we may choose k := m — 1 even, in (5.5). Because k/2 is still
even, this implies (5.6) for ¢ = 1,...,n — 1. For ¢ = 0,n equality (5.6) follows
from the respective Neumann boundary conditions (2.17), (2.19). Inserting
(5.6) into the first equation of the augmented discrete system (5.1) immedi-

ately recovers the original discretized flow (5.2), proving flow equivalence.

To prove the normal hyperbolicity of M, for ¢ N\, 0, we follow standard
singular perturbation reasoning. For small ¢ > 0 and rescaled time ¢t, the

fast time transition layers are given approximately by the equations
(5.9) Uj = Uj—1/m + Ujt1/m,

for all noninteger 0 < 7 < n as above. The approximation is of class C*,

for any k. Since u; = 0 for integer ¢, in fast time, the values of u;iq/,, for
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integer ¢ = 7+ 1/m in (5.9) are to be considered as constants. Therefore
the linearization of (5.9) at any point of M, coordinatized by ug, u1,. .., u,
according to relations (5.5), decouples into n identical copies of equation
(5.9). In the first copy, j ranges from 1/m to (m—1)/m, only. The constants
u;, when linearized, provide Dirichlet boundary conditions ug = u; = 0, and
similarly for the other j-blocks. Eigenvectors of the right hand side of (5.9)
are therefore given by u; = sin(xj¢) with associated real, distinct, nonzero
eigenvalues

(5.10) Ae = 2 cos(ml/m),

¢=1,...,m—1. Counting A, > 0 and A, < 0 then proves (5.7). Since the
vector field inside M possesses globally bounded derivatives, normal hyper-

bolicity follows for small € > 0.
Normal hyperbolicity of M holds uniformly in IR""**, Indeed the flow (5.1)

is already linear in the u; equation. Moreover, the u; equation becomes
linear for large ||u||, due to definition (3.3) of f; and normalization (4.7) of
f. Therefore M is uniformly normally hyperbolic.

By uniform normal hyperbolicity of M, the maximal compact invariant set

R™ & M is a flow

./Zlf is contained in M. Because the isomorphism [ : |
equivalence and Ay is the maximal compact invariant set in IR"*", this implies

(5.8), A; = I(Ay), and the lemma is proved. 0
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6 Discrete shooting

In this section we study the analogue of the shooting curves S, introduced in
(2.5), for the augmented discrete system (2.17). We make free use of the nota-
tion (2.21)—(2.28) for the two-term shooting recursion cp;, J=0,1/m,... n,
the incremental shooting diffeomorphism 1/)]f in (uj,v;)-coordinates, the
shooting quadruples 1/;{ , and the cumulative shooting diffeomorphisms \Ilzf .
We define the discrete analogue 7% for the equilibrium shooting permutation
ms. In lemma 6.1 we show that 7y does not change under discretization or
augmentation. In lemma 6.2 we highlight the additional freedom gained by
augmentation: realization of arbitrary shooting diffeomorphisms near iden-

tity by shooting quadruples 1/~)Jf

The shooting permutation 7% can be defined for general discrete Jacobi sys-

tems

(6.1) w; = filti1, Uiy uip),

t = 0,...,n, for example with Neumann boundary conditions u_; =
Uy, Upir = Up. Assume the equilibrium set {u',..., vV} C IR™*! is finite.

Just as in the continuous case, the ordering at ¢ = 0,

(6.2) ud < ... <ul,

defines a permutation 7 = 77 by the ordering of the values

(6.3) urW < <t @)

at the other Neumann boundary ¢ = n.

The discrete analogue of the shooting curves S% are the C' Jordan curves
(6.4) S = wl(diag) CIR%.

Here \IJ{ is the cumulative shooting diffeomorphism, and diag = {u_y =v_;}

denotes the diagonal in IR®. As in the continuous case, the permutation T
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can also be viewed as relating the two possible orderings of the intersection
points

(6.5) ST diag ,

along the diagonal diag = {u, = v,}, and along S/, respectively. We note
that transverse crossings, in (6.5), indicate hyperbolic equilibria of system

(6.1), similarly to the continuous case.

Let 7y denote the original permutation associated to the equilibria &, let
7% denote the permutation associated to the discretization (3.2)-(3.4), and
finally 77" the permutation associated to the augmented system (2.17)
(2.18).

Lemma 6.1 Let n be large enough and m =1 (mod /), m > 1. Then

(6.6) Tp = 71';5 = ﬁ'}’m

Proof: The convergence of discretized equilibria is uniform in z, for n — oo,
if we interpolate linearly between the values u; at « = i/n. More precisely,
uniform convergence holds on bounded subsets of (u;, v;). The normalization
f = —ufor large |ul, |p| given in (2.2) and section 5 avoids the appearance of
additional “spurious” equilibria in the discretized equations which otherwise
might escape to infinity for n — co. This proves 7y = =%, by definitions

(1.13)~(1.14) and (6.2)~(6.3).

Since the augmentation (2.17), (2.18) does not change the cumulative shoot-

—~TNT

ing diffeomorphism W%, at all, the claim 7% = 77" is obvious. This proves

the lemma. O

Encouraged by lemma 6.1, we simply denote all three permutations in (6.6)

by 7y, from now on.
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We turn to realization of near identity diffeomorphisms by shooting quadru-

ples

(6.7) bi = jya/m O -0 Uj,

for noninteger j,...,j + 3/m. The unperturbed incremental shooting diffeo-
morphisms

(6-8) ¢j+k/m = R,

k=0,...,3, are pure rotations by 90 degrees, independently of the original
nonlinearity f. In particular, ;Z:j = td in the unperturbed case. To preserve
the Jacobi structure of the augmented system (2.17), under perturbation, we

require the incremental shooting diffeomorphism

(6.9) Vgt fm (W v50) = (Vs Pjigam (i, v5)),

N

J' = 7+ (k= 1)/m, to exhibit uniformly negative partial derivatives
8uj,goj/+1/m. Note that the unperturbed case is

(610) Soj’-{—l/m(uj’avj’) = Uy

Lemma 6.2 Let 1/~Jj, for noninteger j, be any diffecomorphism of IR® with
Jacobian uniformly 6-close to identity, for some 0 < 6 < 1/2.

Then there exist four mappings ¢;,...,0j43/m as in (6.9), such that their
composition quadruple (6.7) realizes the prescribed diffeomorphism 1/~JJ-.

More explicitly, the partial derivatives of ;,..., @ 13/m can be chosen S

-5
close to those of the unperturbed case (6.10).

Proof: Without loss of generality, let 3/ = 0,...,3/m. Simplifying notation,
in this proof we write 1, for gZNJj, replacing 3’ by 0,1,2,3, and j = 3’ + 1 by
1,2,3,4. We then have to realize

(6.11) th = thy 093 09hy 0 2y
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near identity. In fact, we do not perturb

Therefore it suffices to prove that 4 03 can realize any diffeomorphism —

which is é-close to —id in C?.

In terms of ¢4, 3, we can rewrite ¥4 0?3 as

(6.13) (¥4 0 P3)(u, v) = (@a(u; v), Pa(v, ps(u, v))).

This defines 3,3 in terms of the given diffeomorphism —1, trivially. We

note two obvious estimates for the partial derivatives 03, da¢s :

|1-|-81993|

6.14
( ) D23

< 6
< 6
In particular dy¢3 < 0 holds uniformly, if we choose § < 1. Moreover, @3 is

o0-close to the unperturbed case.
Let ¢(u,v) denote the second component of the prescribed diffeomorphism
_12)7

(6.15) ’

1)

|51<P|

<
11+ 0| <

To realize 14 0 3 = —7]), we simply have to define
(6.16) o4 = p ot
With this definition, we now partially differentiate
(6.17) Pa(v, p3(u,v)) = p(u,v),
with respect to u and v, to obtain

82994'81993 = 3190

(6.18)
O1ps + Oapy - Oaps = Doy
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We have to show 014 < 0, uniformly. Inserting estimates (6.14), (6.15) into

the first equation of (6.18), we immediately see

(6.19) 024 = |O1p| [ |O1ps| < 6/(1—6).

Reinserting (6.19) into the second equation of (6.18) we find

)

Hence 014 < 0, uniformly, provided we fix § < 1/2. Moreover all (01¢;, 02¢;)

5

1—5-close to the unperturbed case. a

are
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7 Paths and loops of diffeomorphisms

This section contains details of the construction of our final, non-naive Morse-
Smale homotopy in our class of augmented discretized systems (2.18). For
an outline and notation see (2.29)-(2.34). We first define the planar region
2, outside of which the nonlinearities f and ¢ produce identical incremen-
tal and cumulative shooting diffeomorphisms. We then review the explicit
construction of the prescribed homotopies W7, ¢ = 1,...,n. Facts concerning
their relation to ) are collected in lemma 7.1. In proposition 7.2 we state the
property 71 (Diff (2)) = 0, which is used for the construction of the interpo-
lating cumulative shootings W(7,¢), in lemma 7.3. We conclude with a final
discretization of ¢, which realizes the homotopy of cumulative shootings in

our augmented discretized system (2.18).

We construct the disc 2 C IR® as follows. Consider the original iterations
(u;, v;) for equilibria of the discretized system (2.16) or, equivalently, for the
unperturbed, augmented discretization (2.18); see (2.25). Fori =0,...,n—1
let

(7.1) Q{ = {(u_y,v_1) € IR?*| Jus| < 2C; and nl|u; — v < 205}.

The constants C7,Cy were used for normalization of f, g, in (2.2), and the

superscript f emphasizes f-dependence of the iteration. Denote
n—1

(7.2) o =) !
i=0

and let €2 be any closed planar disc such that

(7.3) Q20U

Consider any initial condition (u_1,v_1) ¢ Q. Then the f- and g-trajectories
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of (u_1,v_1) coincide, by normalization. In particular

ol = ¢
vl = of
(7.4) W o— w
sf = g9

holds outside €2, and on 99, for all © = 0,...,n; see (2.24), (2.25), (2.29),
(6.4) for notation. The equality of the shooting curves “outside " is meant

to hold for corresponding initial conditions u_; = v_; outside 2, of course.

For : = 0,...,n — 1 we will now fall back on our original, naive idea of a
standard homotopy for ¢;,¥;. Only for the iteration from:=n—-1tor=n

we will make use of the additional flexibility procured by augmentation. So,

fort=0,...,n—1and 0 <7 <1 define

ol = (L—1)pl + 74!

7.5
() 07 = (L= 7o

and let the cumulative shootings W7 be defined via composition of ¥, as

before. Similarly, we obtain shooting curves 57,7, as before. By definition

of Q, equations (7.4) expand to

ol = o1 = &
fo— gt =
(7.6) viom =
o= v = 9
Si= s = 5
outside ().
For the final step, ¢ = n, such a naive homotopy is of course prohibitive

because it does not preserve hyperbolicity. Instead we prescribe some planar
diffeotopy @7, in the spirit of (2.12), from ®° = ¥/ to ®! = V9 such that

transversality of the shooting curves to the diagonal is preserved throughout
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the diffeotopy:
(7.7) Q7 (diag)M diag
for all 0 < 7 < 1. Such a planar diffeotopy exists because 7; = 7, for

the shooting permutations of Sf = ®°(diag) and of S¢ = ®!(diag). By

normalization of f, ¢ outside ), we may assume

(7.8) U =07 =

n

there. The crucial task of this section is, now, to realize the prescribed
homotopy ®” by appropriate perturbations of the m—1 incremental shootings

Yvj, j=n—1+1/m,...,n —1/m, such that
(7.9) ST = U (diag) = 97 (diag)

holds for the cumulative shootings U7, in analogy to (2.13). The construction

of U7 is prepared in the following two lemmas.

Recall that Diff .(2) denotes the space of all diffeomorphisms of the planar
disc © which fix the boundary 99 pointwise. The topology on Diff () is
the C'-topology. As before, m; denotes the fundamental group.

Lemma 7.1

(7.10) 7 ( Diff .(2)) = 0.

Proof: This is Smale’s theorem, see [Cer68], appendix. a

We can now construct the two-parameter interpolation ¥(r,¢) mentioned
in (2.32), for ¢ = n. We have slightly changed notation: for clarity, the
prescribed path W7 of diffeomorphisms is distinguished as ®7, here, whereas
the notation W) is strictly reserved for cumulative shootings which are realized

by perturbations of augmented discrete systems in the sense of (2.18), (2.19).
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Lemma 7.2 In the above setting, there exists a continuous two-parameter
family ¥ = V(7. £), 0 < 7,6 <1, of planar diffeomorphisms with the follow-
ing properties (see Fig. 2.2 and (2.32). Let 7 := (1 — 7)o + 749, Then,
forall0 < 7,6 <1,

U(r,é=0) = ¥r_,
/] =1 T —lq)ﬂ-
U(r=0,¢) = v=
U(r=1,¢) = V5
Specifically outside ), we have
(7.12) U(ré&) = U7_,.

Proof: Outside ©, the definition (7.12) of U(7, ¢) fulfills all the requirements
of (7.11). Indeed, the second equality follows from (7.8) and the definitions
of ©,, ¥,. The remaining equalities hold trivially.

We now construct W(r,¢) inside 2. Let \il(T, €) be a contraction, in Diff . (£2),
of the loop

(7.13) T U(r,E=1) = (Yo U] _ )10,

0 <7 < 1. In fact, U(r,1) = id for 7 = 0,1, and, outside Q, for 0 < 7 < 1;
see (2.29), (7.5), (7.6), (7.8). Therefore @(T,f) € Diff .(2) indeed exists,

continuously in (7, &), by triviality of the fundamental group as observed in

lemma 7.1. Note that
(7.14) U(0,6) = U(1,6) = U(r,0) = id,

throughout 0 < 7,& < 1. With the help of U we can now easily construct ¥
as

(7.15) U(r, &) :=W]_ oWU(r,£).
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Then the second equation of (7.11) follows from (7.15) and (7.13). The
remaining three equations of (7.11) follow from (7.15) and (7.14). This com-

pletes the construction inside €.

A remaining issue is the C''-matching of the diffeomorphisms ¥(7,¢) along
99. Pulling this question back to ¥(r, ), via (7.15), it is sufficient to provide
diffeomorphisms which are identity in a small neighborhood of 0 in 2. This
is easy to achieve, by first performing the above construction in a slightly
smaller disc ¥ C €, and subsequently smoothing out the transition in a

small annulus around 9€ in €. This completes the proof of lemma 7.2.

In the remaining section we conclude our proof of theorem 1.1, specifying the
intermediate incremental discretization steps ¢; with noninteger 0 < j < n,

and summarizing the Morse-Smale homotopy from f to g.

For noninteger 0 < j < n — 1, we do not perturb ?; away from rotation by
90 degrees. In fact, we could do without any augmentations between ¢z = 0
and ¢ = n — 1. This follows because the homotopies 7, ¢ =0,---,n—1, are
all realized within the class of maps ¢ (u,v) with uniformly negative partial
derivatives d,¢7. Standard homotopy (1 — 7)¢! + 7¢? does the job. We
have nevertheless inserted all these artificial discretization points, just for

notational convenience.

It is for noninteger n — 1 < j < n, where augmentation seems really indis-
pensable. Following (2.34), we choose m = 1 (mod 4) large enough such that
each of the (m — 1)/4 diffeomorphisms

(716) \I;;k = \II(T, fk-i—l) o (\D(Tagk))_l

is é-close to identity in C'-norm. Here & = 4k/(m — 1), k =
0,...,(m-5)/4, 0 <7 <1, 6 <1, and ¥(r,¢) is choosen as in lemma 7.2.

By lemma 6.2, each of the diffeomorphisms can be realized as a shooting
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quadruple

(7-17) ;,k = ;—1+(4k+4)/m 0---0 ¢;—l+(4k+1)/m

with incremental shooting maps ¢;, ¢, respecting the partial derivative con-
dition of Jacobi systems. Only for 7 = 0,1, the incremental shootings are
rotations by 90 degrees; for in between 7 they are perturbed. With this choice
of homotopy, the cumulative shooting W7 realizes the prescribed diffeotopy

@7 of discrete shooting curves,
(7.18) Ul =07

for 0 < 7 < 1, as required essentially in (2.13). Indeed, (7.11), (7.16), and
(7.17) imply

Vo = ot gmotym O O Ynoagaym © Vi
= tpoVl 500V oW
(7.19) = b7 o W(T,{(no1yya) © U(T,0) 0 U7,
= ¢po¥(r,1)
= ¢7

which proves (7.18). This completes our construction of a hyperbolicity pre-
serving homotopy of shooting curves from SY to S¢, in an augmented discrete

context.

However, there still remains a last homotopy step. By (7.19), we have con-

structed a shooting homotopy, for all solutions of iterations

(720) 0= fj(uj—l/maujauj-{—l/m)a

with given ug, u_y/,,. We have not yet constructed a Morse-Smale homotopy

for the augmented discrete systems
(7.21) Ui = fi(W—1/ms Wi Wjra/m);
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under Neumann boundary conditions.

To complete this final step, consider nonlinearities f;, f] which are both dis-
sipative, as in (4.12), and in addition induce the same iteration via (7.20),

that is,
(7.22) 0i =,
for ¢; := g@f and all j. Here we think of

(7.23) Ji(W s Wy Wig1fm) = Wi ym — QiU 1/m, Uj)-

Note that sign fj = sign f;, and hence fj satisfies the same dissipation
condition (4.12) as does f; itself. We show that

holds for the corresponding maximal compact invariant sets (due to hyper-
bolic suspension, they are not attractors any more). Indeed, a standard
homotopy (1 — 7)f; + T_fj works: none of the iterations ;,%;, ¥;, or finally
the shooting curves SY changes at all during this homotopy. In particular,
the homotopy is automatically Morse-Smale. This implies (7.24). Using the

same argument on ¢, §, we summarize
(7.25) A= A= A; = A,

The first and last orbit equivalence are stated in (7.24). The central orbit
equivalence follows from (7.18), (7.19), because via construction (7.23) our

hyperbolicity preserving homotopy ¢7 induces a Morse-Smale homotopy ff
from f to §. This proves (7.25) and theorem 1.1. a
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8 Discussion

Equipped with the proof of our main result, theorem 1.1, we collect some
criticism, generalizations, and open questions. We begin with a discussion
of dissipation conditions, narrowing our view to f = f(x,u) and also widen-
ing it to more general semilinear and quasilinear PDEs. Keeping the space
variable x one-dimensional, we address other separated as well as periodic
boundary conditions. The latter case is basically as open as the case of
monotone feedback delay equations. For dissipative Jacobi systems, not nec-
essarily arising by space semidiscretization, we announce a result on global
orbit equivalence of global attractors in analogy to theorem 1.1, see theorem
8.1. It turns out that, from our global attractor point of view, the class of
all dissipative Jacobi systems is not richer than the class of all dissipative
PDEs (1.1). The question of the mininal dimension n + 1 of a Jacobi system
which realizes a given global PDE attractor of dimension d remains open,
however. We conclude with a discussion of the relation between connection
equivalence and orbit equivalence of global attractors, and with the problem

of a geometric, simplicial description of global attractors.

We recall our dissipation conditions (1.7), (1.8) which state that

(8.1) flz,u,0)-u < 0
|f(z,u,p)| < aluw)+ b(u)|p[”

for large |u|+ |p|. These conditions are by no means necessary. For example,
the second condition can be replaced with the crude unilateral constraint

(fz + fup)p < 0. We have used (8.1) in lemma 5.2 in order to normalize

(8-2) f@,u,p) = —u

for large |u| + |p|. Actually, only convexity of (8.1) with respect to f was

used. More generally, any cut-off which replaces a general, dissipative f by
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an f satisfying (8.2), while preserving the global attractor, would enable us
to assume (8.2) without loss of generality. Such a cut-off replacement can be
achieved in the class of abstract nonlinearities f : X* — X, where X“ de-
notes a fractional power space related to diffusion. See for example [MPS88].
But our present proof requires a cut-off f = f(,u,p) which preserves, for
example, the shooting description of equilibria and still does not enlarge the

global attractor Ay, the equilibrium set £, or the shooting permutation 7.

Generalizations to space dependent diffusion terms
(8.3) up = (@) Uz + flo,u, uy)

with uniformly positive ¢(z) can be achieved easily, for example, by a
reparametrization of x. The fully nonlinear, but still uniformly parabolic
and dissipative case

(8.4) ur = fla, u,ty, tpy)

is not sufficiently investigated on a technical level, at present, to apply our
ideas directly. We still expect global attractors to be characterized by shoot-
ing permutations, up to orbit equivalence. If this is the case, we argue below
that these "more nonlinear® equations will not generate additional Morse-

Smale attractor types beyond the semilinear case.

The maximal compact invariant set A; can also be associated to non-
dissipative nonlinearities f. This observation applies to equations with fi-
nite time blow up and, mutatis mutandis, to degenerate diffusion problems
of porous media type. For a recent survey see [|. In principle, our approach
via shooting permutations should be applicable to the structure of A; and
might, in conjunction with nodal properties, even lead to qualitative infor-
mation on some blow up trajectories. To our knowledge, this direction has

not been followed in the existing literature.
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Natural separated boundary conditions of mixed type can be written as

(I1—7)u—7u, =0 at =0

(8.5)
(1-—7T)u+7u, =0 at z=1

with 0 < 7 < 1. We have treated Neumann boundary conditions, 7 = 1, so
far. The Dirichlet case, 7 = 0, as well as the remaining mixed cases 0 < 7 < 1
can be treated along the same lines. We just redefine the (oriented) shooting
curves S§ as x = 1 images of the boundary condition (8.5) at = 0, under
z-shooting. Similarly, we adapt the shooting permutation 7; to encode the
discrepancy of orderings of equilibria along the (oriented) boundary condition
line (8.5), at # = 1, and along the shooting curve szl, respectively. Imposing

suitable dissipation conditions for f, theorem 1.1 remains valid:
(8.6) =71, = A=A,

Perhaps more surprisingly, all attractors already arise in the Neumann case
treated here, up to orbit equivalence. New structurally stable attractor types
to not arise, for any 0 < 7 < 1. For more details see [Fie96]. Adaptations to

mildly nonlinear boundary conditions seem feasible.

The case of periodic boundary conditions, z € S, is inherently more difficult.
Although a Morse-Smale structure persists, the variational structure is lost.
In fact, nontrivially time periodic solutions appear, for f = f(u,p) [AFS88].
Even in the gradient case f = f(x,u), where the Lyapunov functional (1.17),
(1.18) works, we do not possess an analogue of the shooting permutation 7.
Of course, the braid type of the equilibrium profiles in (x,u, p)-space comes

to mind.

Theorem 1.1 was proved via discretization

(8.7) w; = filwioy, Wi, wiga),
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¢t =0,...,n, subsequent augmentation, and a Morse-Smale homotopy. Skip-
ping just the initial discretization step, we immediately obtain the analo-
gous result for Jacobi systems (8.7) provided f; is also dissipative, as stated
in (4.12). We state this result next. Again A; denotes the global attrac-
tor of (8.7) for f = (fo,..., fs) and under Neumann boundary conditions
U_y = Uy, Upt1 = U,. The permutation 7y was defined in (6.2), (6.2) for

hyperbolic sets £ of equilibria.

Theorem 8.1 Consider Jacobi systems (8.7). Let f,g € C' satisfy dissipa-
tion condition (4.12). Assume &, &, are hyperbolic. Then m¢ = m, implies
A= A,

Proof: See sections 2, 4-7. O

Let A%* denote the set of all global attractors of spatially discrete dissipative
Jacobi systems (8.7) as in theorem 8.1, up to orbit equivalence. We do not
require (8.7) to arise by discretization. Similarly, let A" denote the same
set for spatially continuous PDEs (1.1) as in theorem 1.1. By discretization,

section 3, we know A" C A%,

Theorem 8.2 In the above setting,

(8.8) A = AT,

Proof: We show how (8.8) follows from further results in three related pa-

pers.

It remains to show A®" O A%*: the class (8.7) of spatially discrete Jacobi
systems is not richer than the class (3.2), (3.3) of spatially discretized sys-

tems. Consider any permutation 7, for (8.7). From the permutation ¢,

45



the Morse indices i(u¥) > 0 of equilibria u* € &, k = 1,..., N, can be
determined explicitly:

k=1

(8.9) z(uk) = Z (—1)l+1sign(7r;1(l +1)— W)TI(Z)).

=1
Here i(u!) = i(u’) = 0, by dissipation. See [FR96a] for a proof. Perhaps
not surprisingly, in view of discretization, the same formula is valid in the
spatially continuous case, see [FR94]. Moreover it turns out that any such

permutation 7 also arises as

(8.10) T;=m;s

for a suitable dissipative nonlinearity f , in the spatially continuous case, see
[FR96D]. As in section 3, let A% denote a suitable discretization of Az such
that

(8.11) Ay = A%

For n large enough we also conclude 77 = 7%; see lemma 6.1. Combined with

(8.10) this implies Tt =75 =T By theorem 8.1 we obtain
(8.12) AL A,

for these spatially discrete attractors. Together, (8.11) and (8.12) prove
A D A%s(8.8), and the theorem. O

By theorem 8.2, or section 3, any global attractor Az in A®" can be realized
as some attractor A; in A% — for example by discretization. This raises the
following open question: What is the minimal dimension n + 1, for given A 2
such that

(8.13) Ap = .Af*

for some dissipative Jacobi system f = (fo, fi,..., fa) of form (8.7)7 We

recall from (3.9) that the canonical projection

(8.14) P: A;— R,

46



(Pu); == u(x;), 0 <y <...<ux, <1, is injective and differentiable, for
(8.15) n41=dim A

However, the flow induced by P on PAf need not be a tri-diagonal Jacobi
system. Still the optimal bound (8.15) might be the answer to our question.
In view of our proof of theorem 8.2, the question reduces in principle to an in-
vestigation of realization of shooting permutations 7 by discrete cumulative

shootings.

In [FR94], we have introduced the weaker notion of connection equivalence.
Here global attractors Ay, A, are called connection equivalent, Ay ~ A, if
there exists a bijection h : & — &, between the equilibria which preserves
Morse index and the existence of heteroclinic connections. More precisely,
there exists a heteroclinic connection from u to @ in Ay if, and only if, there

exists a connection from h(u) to h(a) in A,. By definition,
(8.16) A=A, = A~ A,

In [FRY94], corollary 6.1 we have noted that 7y = 7, implies A; ~ A,. In
[FR94], (6.11) we have conjectured that 7; = 7, implies A = A,; this is
now proved in theorems 1.1 and 8.1. We ask, this time, whether the converse
of (8.16) also holds:

(8.17) A~ A, = A=A,

This is nontrivial because, in [Fie94], [FR94] we have found shooting per-
mutations 7, 7, with surprising connection equivalence A; ~ A,, in spite
of s, m, not being even conjugate. The simplest examples require N = 9
equilibria.

Although we have now examined orbit equivalence of global attractors in
much detail, we are still lacking a good geometric description. Given 7y, we

would like to be able to draw a "picture® of Ay, on a reasonably descriptive
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level of abstraction. One approach would attempt to obtain a simplicial
complex from the decomposition of A, into equilibria and their manifolds of
(transverse) heteroclinic connections. The combinatorics of such complexes,
tied in with the shooting permutations 7, might also hold the key to the
orbit equivalence question (8.17). At the same time, it might shed some
light on the surprising connection equivalences mentioned above. Providing
good geometric attractor models which tie in with their dynamics remains a

challenge!
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