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Abstract of “Grow-Up Solutions and Heteroclinics to Infinity for Scalar

Parabolic PDEs”

by Nitsan Ben-Gal, Ph.D., Brown University, May 2010

In recent years, there has been a great deal of interest surrounding the study of

the asymptotics and global attractor structure for scalar parabolic PDEs which are

either dissipative or undergo finite-time blow-up. This thesis presents solutions to

the asymptotics and connection problems for slowly non-dissipative scalar PDEs, i.e.

the final remaining class of scalar parabolic reaction-diffusion equations. Such PDEs

produce solutions that neither blow up nor are dissipative. These “grow-up” solutions

grow to infinite norm in infinite time, and it is the added challenges they introduce

that are overcome in this thesis.

In the pursuit of this result, a number of new concepts are defined, including

slowly non-dissipative PDEs, non-compact global attractors, and the completed in-

ertial manifold. Many of the underlying assumptions used in the study of dissipative

PDEs are inapplicable to slowly non-dissipative PDEs. Thus, concepts must be re-

defined and techniques updated or extended. The effects of a slowly non-dissipative

nonlinearity on the global bifurcation diagram are investigated, and the y-map, a tech-

nique critical to solving the connection problem for dissipative systems, is extended

to slowly non-dissipative PDEs and a wider range of boundary conditions.

The completed inertial manifold is introduced and proven to exist for certain

classes of slowly non-dissipative equations. The development of this new structure

and its advantageous characteristics provide the tools necessary to prove convergence

for grow-up solutions which form heteroclinic connections to infinity. The asymp-

totics of grow-up solutions are determined, and via combining the various expanded

techniques, a full decomposition of the non-compact global attractor is produced for

a generic choice of nonlinearity. The results are studied for a selection of interesting

cases and are shown to hold for both Neumann and Dirichlet boundary conditions.



CHAPTER 1

Introduction

There has been a great deal of work in recent decades devoted to understanding

the asymptotic behavior of scalar parabolic partial differential equations. For clari-

fying the properties of those equations whose solutions remain bounded, we have La-

dyzhenskaya, Hale, Smoller, Matano, Chafee and Infante, Henry, Brunovský, Fiedler

and many others to thank. For those equations which experience finite time blow-up,

we can likewise thank Fila, Matano, Giga, Kohn and many others. In both of these

regions, there has also been a significant amount of study on the global attractor of

those solutions which remain bounded. But these two categories do not encompass

the full scope of behaviors which such equations may produce.

There is a middle ground which has yet to be addressed: partial differential equa-

tions for which some solutions exist for all forward time, are boundable for any fixed

positive time t > 0, and whose norm becomes infinite as t → +∞. Such behavior

arises, for instance, from equations of the form

(1)
ut = uxx + bu+ g(u)

u(0, ·) = u0,

where the usual nonlinearity f(u) = bu+g(u) is comprised of a positive linear growth

term and a bounded, “well-behaved” nonlinear term. In this thesis we will address

such solutions, henceforth referred to as grow-up solutions, determining when they

occur and their asymptotic behaviors. In addition, we will address what it means

for such systems to have a non-compact global attractor, and shall provide a method

for explicitly describing all elements of the unbounded attractor for a generic class of

linearly growing nonlinearities. Such a non-compact attractor will include elements

connecting to or contained within infinity. We will describe what it means to be an

“equilibrium at infinity”, in what sense a bounded stationary solution can connect to
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such equilibria, and how these equilibria and their heteroclinic connections provide

the missing pieces of the connection problem for linearly growing scalar parabolic

PDEs.

This research ties together a number of different techniques in infinite-dimensional

dynamical systems, as well as expanding many of these techniques beyond the restric-

tion of dissipative systems. Classical semigroup theory in regards to equations of the

form (1) provides for the existence of immortal solutions, i.e. solutions which ex-

ist globally for all forward time. Further, we can guarantee the existence of eternal

solutions (those which exist globally for all time both backwards and forwards) for

solutions in the unstable manifolds of equilibria, and it is these very solutions that

require our attention.

We introduce the concept of a non-compact global attractor, an object comprised

of eternal solutions to (1), which attracts all bounded sets in the underlying Hilbert

space. For a dissipative reaction-diffusion system we are guaranteed the existence of

a classical global attractor: the minimal compact, connected, invariant attracting set

for the entirety of the Hilbert Space. But the linearly growing nonlinearity given in (1)

straddles the line between dissipativity and finite-time blow-up. The semigroup that

Equation (1) generates is neither point dissipative nor compact dissipative. Thus,

the minimal attracting set in H2∩{Boundary Conditions} is non-compact. But the

linear growth term is sufficiently slow that all solutions are guaranteed to exist in

forward time, i.e. all solutions are immortal. It is in this situation that we refer to

the dynamical system generated by (1) as a “grow-up” system, for while no solutions

achieve infinite norm in finite time, some solutions will do so in infinite time. Thus,

while there exists some minimal invariant set which attracts all solutions and informs

the behavior of the overarching system, this global attractor is non-compact. We

henceforth refer to dynamical systems displaying these characteristics as slowly non-

dissipative systems, in contrast to the fast non-dissipativity displayed in systems with

finite-time blow-up.
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Due to the non-dissipativity of the system and the non-compactness of the at-

tractor, we cannot obtain convergence results through only those techniques used in

the dissipative form of the problem. The stumbling block that arises in the slowly

non-dissipative system is the inability to prevent a change in nodal properties for

unbounded solutions at t = ∞ using only the techniques required in the dissipative

case. Thus, we prove the existence of inertial manifolds in order to bridge this gap.

Inertial manifolds are finite-dimensional Lipschitz manifolds which contain all invari-

ant sets of their corresponding evolutionary equation and exponentially attract all

solutions. The existence of such manifolds reduces the study of a global attractor

from an infinite-dimensional problem to a finite-dimensional problem, with its atten-

dant advantages. Thus, the inertial manifold is of great use to the study of nonlinear

evolutionary equations, and we are immensely grateful for the work produced by Sell,

Temam, Foias, Chow, Lu, Mallet-Paret, Robinson, and others.

Until now, inertial manifolds have only been shown to exist for dissipative sys-

tems; in this thesis we shall prove the existence of continuously differentiable inertial

manifolds for a general class of slowly non-dissipative equations. While the inertial

manifold is a versatile tool, for a desirably broad class of nonlinearities we are only

able to construct an inertial manifold which is Lipschitz with values in L2. But L2

allows for a great deal of irregularity, thus we proceed to prove that the inertial

manifold is Lipschitz with values in C1 as well. Since inertial manifolds contain all

invariant sets for a dynamical system, including the unstable manifolds of equilibria,

we are able to study the limit of a grow-up solution in the C1-norm. The use of the

C1-norm ensures that the nodal properties of our grow-up solutions are unchanged

at t = ∞.

We thus parlay our work on inertial manifolds into the final step necessary to de-

termining the asymptotics of grow-up solutions and solving the connection problem

for the non-compact global attractor. The first main result, Theorem 7.4, proves that

such grow-up solutions connect to those equilibria at infinity which are not blocked
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by a bounded equilibrium. Theorem 8.1 and its corollary then combine the implica-

tions of Theorem 7.4, classical Conley index theory, and results on the existence of

heteroclinics between bounded equilibria in a slowly non-dissipative system to pro-

vide a complete decomposition of the attractor. In Theorem 8.1 we prove that every

bounded hyperbolic equilibrium connects to all those bounded equilibria and equilib-

ria at infinity which are not blocked, and determine explicitly which connections are

blocked and which exist. In the corollary, we detail all elements of the non-compact

attractor, including those within infinity.

In order to prove these results, we proceed as follows: In Chapters 2 and 3 we will

lay the groundwork, introducing the standard tools which will be used most frequently

in the rest of the thesis: the Lyapunov functional, lap number, zero number, time

map, bifurcation diagram, and Morse index. We then prove that the class of linearly

growing nonlinearities will provide for the existence of grow-up solutions and non-

compact attractors.

In Chapter 3 we tackle the ODE problem resulting from the study of stationary

solutions to (1). We study the time map and the behavior of these solutions in the

phase plane in order to produce the global bifurcation diagram for a given choice

of g(u). The bifurcation diagram provides a major tool for the determination and

depiction of connections between bounded equilibria.

In Chapter 4 we return to the original PDE and restrict our focus to the nodal

properties of a certain subset of solutions to (1). We revisit a result of Fiedler and

Brunovský, the y-map, a functional which provides information on the nodal proper-

ties of solutions limiting in backwards time to a stationary solution. We extend their

work to the study of scalar parabolic PDEs with linearly growing nonlinearities.

Chapter 5 builds upon the results of Chapters 2, 3, and 4. It is here that we prove

the lemmas that determine when a heteroclinic from a given equilibrium is a grow-up

solution, as well as a quartet of blocking lemmas. These blocking lemmas describe

under what conditions a heteroclinic connection between two equilibria is prevented,

and are crucial to the full decomposition of the non-compact global attractor. Finally,
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we reduce the possible asymptotic behavior of any grow-up solution to a finite number

of equilibria at infinity.

In Chapter 6 we extend inertial manifold theory beyond the confines of dissipative

systems. We prove the existence of an unbounded inertial manifold for a class of slowly

non-dissipative systems, prove that this manifold is Lipschitz with values in C1 for

Equation (1), and in so doing, provide the final tool necessary to the proof of Theorem

7.4. We are able to determine the number of distinct types of heteroclinics connecting

to infinity which originate at a given bounded stationary solution through analysis

of the time map, phase plane, and bifurcation diagrams. The y-map allows us to

determine the nodal properties on each heteroclinic, and the existence of an inertial

manifold in C1
Lip ensures that these nodal properties hold even at time t = ∞. This

observation provides the key to studying the strong limits of grow-up solutions at

infinity.

In Chapter 7 we combine all these previous results in order to determine uniquely

the object to which an unbounded heteroclinic connects. We then establish and ex-

clude connections between bounded equilibria, which leads us to Theorem 8.1. Our

second main result, Theorem 8.1, provides a complete description of the connecting

orbit structure of the unbounded global attractor for the entire class of linearly grow-

ing nonlinearities f(u). For this result we must introduce and explicitly define the

concept of equilibria at infinity, which we do in the next chapter.

In Chapter 8, we make use of the Poincaré compactification, a crucial tool in

the study of behavior at infinity for partial differential equations. We apply the

thesis work of Juliette Hell on the Conley index at infinity to provide the connecting

orbit structure within this extended region of the global attractor. Additionally, the

Poincaré compactification provides a method to depict the unbounded portions of the

global attractor. This provides us with the final piece of the explicit decomposition

of the entire structure of the non-compact global attractor.

In Chapter 9, we will illustrate the results for a specific choice of nonlinearity:

f(u) = bu + asin(u). We present the results derived in the previous chapters for
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two distinct choices of coefficients b and a, and illustrate the bifurcation diagrams,

phase portraits, time maps, and global attractors for these choices. In chapters 2

through 9 we primarily address the case of scalar reaction-diffusion equations with

Neumann boundary conditions. In Chapter 10 we shall present the modifications

which allow the extension of Theorems 7.4 and 8.1 to the Dirichlet case. We show

that the necessary modifications are minimal and that the theorems, as well as the

majority of minor results, carry over to Dirichlet boundary conditions. Finally, in

Chapter 11 we shall summarize our previous results, address applications therein and

open questions for further exploration.
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CHAPTER 2

Grow-Up and Its Groundwork

1. Setting

The central equation of study in this thesis is the scalar reaction-diffusion equation

with Neumann boundary conditions

(2)
ut = uxx + f(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

where f(u) is linearly growing and well-behaved, specifically

(3)

f(u) = bu+ g(u),

b > 0, g(u) ∈ C2, g(u) bounded

g globally Lipschitz with values in L2.

Standard theory states that for nonlinearities f = f(x, u, ux) of class C2 we are

provided with a local solution semigroup u(t, ·) = S(t)u0, t ≥ 0, on initial conditions

u0 ∈ X [18, 24]. For the choice of nonlinearity presented in (3) this semigroup is a

compact, global C1-semigroup [18]. Presently we choose the underlying Banach space

X to be the Sobolev Space H2 intersected with Neumann boundary conditions. The

results derived in this thesis can also be proven for Dirichlet boundary conditions,

although there are notable changes in the bifurcation diagrams. This will be addressed

later, in Chapter 10, at which time we shall use H2 ∩H1
0 for the underlying Banach

space instead. In addition, let ‖ · ‖1/2 denote the H1-norm on H2, ‖ · ‖1 denote the

H2-norm on H2, and ‖ · ‖0 denote the L2-norm on H2. The notation here is chosen

to reflect the fractional power space concerned, i.e. the ‖ · ‖α norm corresponds to

the αth power space of − d2

dx2 .

7



One of the key tools we shall use to study the dynamics of (2) is the existence of

a Lyapunov functional

(4)

V (u) :=

∫ π

0

1

2
u2x − F (u)dx

F (u) :=

∫ u

0

f(s)ds

on X with the property that

d

dt
V (u(t)) < 0

along solutions u(t) ∈ X of Equation (2) and

d

dt
V (u(t)) = 0

at equilibria of Equation (2).

A second set of crucial tools are the lap number and zero number, which are

used to study nodal properties. The lap number, which was invented and studied

by Hiroshi Matano [22], is defined as follows: given a function u(x) on an interval

I = [0, π], we call u piecewise monotone if I can be divided into a finite number of

non-overlapping subintervals I1, I2, ...Im upon each of which u is monotone. There

exists a least value of the number m for which we can divide I as above. This value

is called the lap number of u, denoted l(u). If u(x) is a constant function, l(u) = 0.

For a function u = u(t, x) with x ∈ I and t ∈ R, the lap number is defined for

each fixed t, and thus l(u(t, ·)) is now an integer-valued function of t. As proven in

[22], for homogeneous Neumann boundary conditions, l(u(t, ·)) is nonincreasing in

forward time.

The zero number, as its name would indicate, determines the number of interior

zeros of a function. For any continuous function u(x) on an interval I, the zero

number z(u) = n for a nonnegative n which is the maximal element of N0∪{∞} such

that there is a strictly increasing sequence 0 ≤ x0 < x1 < . . . < xn ≤ π with u(xj) of

alternating signs, i.e.

u(xj) · u(xj+1) < 0 for 0 ≤ j < n.
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We note that the zero number of a constant function is set to be zero [4]. As with

the lap number, for a function u = u(t, x) with x ∈ I and t ∈ R, the zero number

is defined for each fixed t, and thus z(u(t, ·)) is now an integer-valued function of

t. Further, the lap number and zero number are related by the equation l(u) =

z(ux) + 1 for any continuously differentiable function u. As proven in [22, 23], the

zero number of a solution u(t, x) to Equation (2) with Neumann boundary conditions

is nonincreasing in forward time.

It is with these tools that we may determine when our infinite-dimensional dy-

namical system leaves the well-studied realm of dissipative semigroups and draws our

attention towards infinity. At this point we remind the reader of the definition of

dissipative dynamical systems, and introduce definitions for slowly non-dissipative

and fast non-dissipative dynamical systems.

Dissipative dynamical systems are those dynamical systems for which the semi-

group possesses a compact absorbing set B; i.e. for any bounded set Y there exists a

time t0(Y ) such that

S(t)Y ⊂ B for all t ≥ t0(Y ).

A dynamical system is considered to be fast non-dissipative, i.e. to experience finite-

time blow-up, if for some initial condition u0, the maximal time t∗ such that S(t)u0
exists and is unique for t ∈ [0, t∗) is finite, i.e. t∗ < ∞. A dynamical system need

only have one solution that experiences finite-time blow-up in order to be considered

a fast non-dissipative system.

A slowly non-dissipative dynamical system, or “grow-up” system, is a dynamical

system wherein all solutions are immortal, but there does not exist a compact absorb-

ing set. In other words, in a slowly non-dissipative dynamical system, the maximal

time t∗ such that S(t)u0 exists and is unique for t ∈ [0, t∗) is t∗ = ∞ for all u0 ∈ X,

but for at least one initial condition v0 there does not exist any tv such that S(t)v0
can be bounded for t ≥ tv in any appropriate norm. Heuristically, this means that

at least one solution experiences unchecked growth, yet it exists for all forward time.

9



To summarize, at least one solution achieves infinite norm, but only in infinite time.

Such a solution is called a “grow-up solution”.

Because the linear operator in Equations (2) and (3), A = d2

dx2 + bI, is a sectorial

operator, and the Nemitskii operator g is globally Lipschitz on L2 and bounded in

the L2-norm, it follows that all solutions to Equations (2) and (3) are immortal [18].

Thus, the dynamical system defined by Equations (2) and (3) is either dissipative or

slowly non-dissipative, but it cannot experience finite-time blow-up.

2. Non-boundedness

Due to the existence of a Lyapunov functional V , it is obvious that any initial

condition on which the Lyapunov functional has a lower value than at any equilibria

will not encounter any bounded equilibrium along its trajectory. But this alone is

not enough to ensure that the orbit progressing from such an initial condition will

not remain bounded. It is critical to determine what choices of b and g(u) will lead

to a semigroup S that is neither dissipative nor undergoes blow-up. The first step is

to show that trajectories which do not terminate at a bounded equilibrium cannot be

bounded for all time.

Lemma 2.1. Given an initial condition u0 and corresponding solution u(t, ·) to

Equation (2) which does not limit to any bounded equilibrium, and any r, T ∈ R+,

the solution u(t, ·) will leave the ball Br of radius r in X at some time t∗ > T .

The implication of this lemma is that no matter how big a ball in X we construct,

nor how long a time we wait, a solution which does not limit to a bounded equilibrium

will always leave this ball at some later time. If u(t, ·) cannot be bounded by any set,

no matter how large, it must eventually achieve infinite norm.

Proof. The existence of such an initial condition is easy to derive, and is done

in the next section, so for now we shall simply assume we already have such an initial

condition.

10



For b either positive, negative, or zero, the semigroup S generated by Equations

(2) and (3) is compact. One can clearly see that the semigroup S is a continuous

gradient system, as it contains a strict Lyapunov functional for all t ∈ [0,+∞], and S
is a continuous, compact semigroup. Thus, the LaSalle Invariance Principle applies.

We shall now proceed with a proof by contradiction.

Let us assume that we have an initial condition u0 whose corresponding solution

u(t, ·) does not limit to any bounded equilibrium. Let us also assume there exists

some T and r such that for t > T , u(t, ·) ⊂ Br. Since we can contain the forward

trajectory of u(t, ·) in Br for t > T , there exists some r̃(r, T ) such that u(t, ·) ⊂ Br̃

for all t ≥ 0. We may now apply the LaSalle Invariance Principle, which implies

that u(t, ·) must limit to some equilibrium contained in Br̃. But this contradicts

our initial assumption on u0. Therefore, there exists some time t∗ > T such that

u(t∗, ·) /∈ Br. �

3. Non-dissipativity

In order to ensure the existence of grow-up solutions for

(5)

ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

g(u) ∈ C2, bounded, g globally Lipschitz with values in L2,

we must first determine in what cases the semigroup S is non-dissipative, i.e. where

it fails to be point dissipative [16].

Lemma 2.2. There is at least one spatially homogeneous equilibrium of Equation

(5). If there is only one spatially homogeneous equilibrium, we shall denote it by η∗,

the unique value at which bu = −g(u) for u ∈ R. If there is more than one spatially

homogeneous equilibrium, we shall denote the equilibrium with smallest norm (all

considered higher norms being equivalent for spatially homogeneous solutions) as η∗.
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Proof. A constant function u(x) ≡ η is a spatially homogeneous equilibrium for

Equation (5) if and only if bη + g(η) = 0 or bη = −g(η). We recall that g(u) is

uniformly bounded, i.e. γ ≤ g(u) ≤ γ. Thus we may conclude that

(6)
bη + g(η) < −γ + g(η) ≤ −γ + γ ≤ 0 for η <

−γ
b

bη + g(η) > −γ + g(η) ≥ −γ + γ ≥ 0 for η >
−γ
b
.

Therefore, by the Intermediate Value Theorem, the function bη + g(η) must have

value equal to 0 at some point −γ
b
≤ η ≤ −γ

b
, therefore there is at least one function

u(x) ≡ η which is a spatially homogeneous equilibrium solution to Equation (5) �

Lemma 2.3. Given a scalar parabolic equation of the form (5), the corresponding

semigroup S is not point dissipative if b > 0.

Proof. For a given b > 0 and g as defined in (3) where γ ≤ g(u) ≤ γ, we are

able to use the time map and bifurcation diagram to determine an ordering of the

equilibria. We extract from this set those equilibria which are spatially homogeneous

solutions to Equation (5). As stated in Lemma 2.2, there will always be at least

one spatially homogeneous equilibrium for Equation (5). Let us denote the spatially

homogeneous equilibrium with maximal norm as v(x) = v. If there exist a positive

and negative equilibrium with the same norm which is maximal, we let v(x) denote

the positive equilibrium.

The set of spatially homogeneous stationary solutions u(x) = η will always be

bounded by −γ
b

≤ η ≤ −γ

b
, thus the choice of v(x) = v is well defined. We choose

a spatially homogeneous initial condition u0 such that |u0| > |v| + 2Γ
b

where Γ =

max
{|γ|, |γ|}. The value of the Lyapunov functional at the spatially homogeneous

u0, V (u0), is then restricted to be below not only V (v), the Lyapunov functional at the

“maximal” spatially homogeneous equilibrium, but below the value of the Lyapunov

functional at all spatially homogeneous equilibria. To illustrate this, let w(x) = w be

any spatially homogeneous equilibrium, and necessarily −|v| ≤ w ≤ |v|. Then,
12



V (u0) =

∫ π

0

1

2
(u0)

2
x −

b

2
u20 −G(u0)dx =

∫ π

0

0− b

2
u20 −G(u0)dx

−G(u0) = −
∫ u0

0

g(s)ds⇒ −Γ|u0| ≤ −G(u0) ≤ Γ|u0|

−G(w) = −
∫ w

0

g(s)ds⇒ −Γ|w| ≤ −G(w) ≤ Γ|w|

V (u0) =

∫ π

0

− b
2
u20 −G(u0)dx ≤

∫ π

0

− b
2
u20 + Γ|u0|

= π(− b
2
u20 + Γ|u0|) = −πb

2
u20 + πΓ|u0|

|u0| > |v|+ 2Γ

b
⇒ |u0| − Γ

b
> |v|+ Γ

b
> 0

⇒ (|u0| − Γ

b
)2 > (|v|+ Γ

b
)2 ⇒ −πb

2
(|u0| − Γ

b
)2 < −πb

2
(|v|+ Γ

b
)2

⇒ −πb
2
|u0|2 + πΓ|u0| < −πb

2
|v|2 − πΓ|v|

⇒ V (u0) < −πb
2
|v|2 − πΓ|v| =

∫ π

0

− b
2
|v|2 − Γ|v|dx

≤
∫ π

0

− b
2
|w|2 −G(w)dx = V (w)

⇒ V (u0) < V (w) for |u0| > |v|+ 2Γ

b
.

The value of the Lyapunov functional along the orbit beginning at u0 must neces-

sarily decrease as time moves forward. But due to the nonincrease of the lap number

[22], this orbit cannot contain any solutions which are non-spatially homogeneous for

t ≥ 0. Since the Lyapunov functional has higher value at all of the bounded spatially

homogeneous equilibria, they cannot be in the omega limit set of u0. Thanks to

Lemma 2.1, we know that an orbit not limiting to any bounded equilibrium cannot

remain bounded for all forward time, thus we have determined that the trajectory

u(t, ·) corresponding to the initial condition u0 does not remain in any bounded set

for all time. As we have now discovered at least one trajectory which does not remain

bounded for all time, it follows that the semigroup S is not point dissipative, and

thus is not compact dissipative, which is a stronger restriction.

Furthermore, we can explicitly determine the growth of the solution u0, because it

is a spatially homogeneous solution. As all solutions u(t, ·) on the trajectory beginning
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at u0 must be spatially homogeneous solutions, we may conclude that uxx(t, ·) = 0

for t ≥ 0. In addition, we have chosen u0 in a specific range |u0| > |v| + 2Γ
b
. Let

us first address u0 > 0. Recalling that |v| is the absolute value of the height of

the spatially homogeneous solution of maximal constant norm, this implies that for

u > |v| and u < −|v| there do not exist any spatially homogeneous solutions, therefore

bu+ g(u) < 0 for u < −|v| and bu+ g(u) > 0 for u > |v|.
Therefore, if u0 > |v|, ut = bu + g(u) > 0 for the corresponding solution u(t, ·),

thus u(t, ·) will remain a positive spatially homogeneous solution, growing for all time,

reaching an infinitely large positive spatially homogeneous solution in infinite time.

If u0 < −|v|, ut = bu + g(u) < 0 for the corresponding solution u(t, ·), and therefore

u(t, ·) will remain a negative spatially homogeneous solution, growing in magnitude

for all time, reaching an infinitely large negative spatially homogeneous solution in

infinite time.

Thus, for an arbitrary nonlinearity g(u) which is bounded and C2 and b > 0, the

semigroup S is non-dissipative. �

Remark 2.4. For certain choices of nonlinearities g, b=0 also yields non-dissipative

semigroups. An example of such a nonlinearity, g(u) = a sin(u), is addressed in

Chapter 9.
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CHAPTER 3

The Time Map and Bifurcation Diagrams

Three well known tools, the lap number, zero number, and Morse index, are

key to determining which heteroclinic connections are made and which are blocked.

This information is easily determined from the stationary global bifurcation diagram

of Equation (5), which is itself determined by the time map. In this chapter we

discuss the methods necessary to produce the global bifurcation diagram and discuss

a number of results on the time map and bifurcation diagram which are characteristic

of slowly non-dissipative systems.

1. The Time Map

The time map T (η, f) determines the period of a periodic solution to the second

order equation

(7) uxx + f(u) = 0

identified by either the initial condition (u(0), ux(0)) = (η, 0) when (7) is combined

with Neumann boundary conditions, or the initial condition (u(0), ux(0)) = (0, η)

when (7) is combined with Dirichlet boundary conditions. It is referred to as the time

map because it measures the “time” in x it takes for a solution in the phase plane

to travel from a point on the u-axis (or ux-axis respectively) to its first subsequent

intersection with the u-axis (or ux-axis) [3, 30, 37].

In Figures 1 and 2 we present examples of typical phase portraits of

(8)
uxx + bu+ g(u) = 0

g(u) bounded, C2, globally Lipschitz with values in L2.
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Due to the restrictions we have placed on our nonlinearity, our dynamical system

comes equipped with a Hamiltonian,

(9)

H(u, ux) =
1

2
u2x +

b

2
u2 +G(u)

G(u) =

∫ u

0

g(u)

which is a first integral of Equation (8). Thus, to obtain the phase portrait, we simply

plot the level curves of (9).
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Figure 1. Phase portrait for b = .15, g(u) = sin(u)

We further define the nth time map Tn(η, f) for any function f(u) as follows:

for Neumann boundary conditions, it is the “time”, measured in x, necessary for

a function v(x) to reach its nth intersection with the u-axis (excluding the starting

point), where v(x) is a solution to Equation (7) with v(0) = η, vx(0) = 0. An alternate

definition is that Tn(η, f) is the nth positive zero of the function vx(x) corresponding
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Figure 2. Phase portrait for b = .06, g(u) = −sin(u)

to a solution v(x) of Equation (7) which satisfies

(10) v(0) = η, vx(0) = 0,

whenever this zero exists.

Once we have determined the first intersection with the u-axis, the second one

is derived as follows: for Neumann boundary conditions, T2(η, f) = 2T (η, f). This

follows from the fact that (7) (and thus (8)) defines a conservative system. Thus, the

phase portrait reflects across the u-axis, and any curve which intersects the axis twice

in finite time will return along it’s mirrored trajectory to its starting point in the same

amount of time. As it has now returned to its point of origin, T3(η, f) = 3T (η, f)

and T4(η, f) = 2T2(η, f) = 4T (η, f). As one can quickly see, each nth time map is

derived from the first time map in the case of Neumann boundary conditions. This
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does not hold for Dirichlet boundary conditions; we shall address these differences in

Chapter 10.

Thus, we need to derive a formula which will allow us to explicitly determine

T (η, f). Luckily, for systems with a first integral, the formula is straightforward to

derive, though not necessarily to evaluate:

(11) T (η, f) =
1√
2

∫ α(η)

η

du√
F (η)− F (u)

with F (u) derived as in (4). In our specific case, keeping in mind that trajectories

move to the left if η > α(η),

(12)

T (η, b, g) =
1√
2

∫ α(η)

η

du√
b
2
η2 − b

2
u2 +G(η)−G(u)

, η < α(η)

T (η, b, g) =
1√
2

∫ α(η)

η

−du√
b
2
η2 − b

2
u2 +G(η)−G(u)

, η > α(η)

where α(η) is derived from the equation H(η, 0) = H(α(η), 0) with η �= α(η) and α(η)

existing on the same trajectory as η. Note that α(η) is unique for η corresponding to

solutions of Equation (8) with Neumann boundary conditions. When T (η, b, g) = ∞
it is possible that there is more than one trajectory originating from the point (η, 0),

such as two separate homoclinic orbits.

Although evaluating the time map analytically is possible only for a small number

of bounded nonlinearities, it is simple to create a numerical solver that can evaluate it

for any given input. All solutions of Equation (8) with Neumann boundary conditions,

which are equivalently stationary solutions of Equation (5), must be either spatially

homogeneous solutions or oscillatory solutions with lap number n ≥ 1. The spatially

homogeneous solutions will be fixed points in the phase portrait, while the oscillatory

solutions must take “time” π
n
, n ∈ N, to travel from the u-axis back to itself, thus

fulfilling the boundary conditions.

Brunovský and Chow [3] and Smoller and Wasserman [37] proved a number of very

useful properties of the time map. A number of theorems on the domain of definition,
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monotonicity properties, and relations between the time map and stationary solutions

are proven therein. We shall reiterate some of these results which are useful to note.

Firstly, the time map for a saddle point in the phase portrait defined by the

stationary solution u(x) ≡ η is T (η, b, g) = ∞ and lim
η→η±0

T ′(η, b, g) = ∓∞. Secondly,

let us define a δ-point in the phase portrait as the non-fixed point on a homoclinic

orbit where the homoclinic intersects the u-axis.

We introduce here some notation for phase plane analysis with Neumann boundary

conditions which will become useful in relating lap numbers to zero numbers. Because

of the reflective nature of the phase portrait across the u-axis and the structure of

the nonlinearity f(u) = bu + g(u), all homoclinic orbits in the phase portrait will

intersect the u-axis exactly twice, once at a saddle point, denoted by η and once at

another point which is the δ-point of the homoclinic, and between η and the δ-point

lies a center in the phase portrait, which is referred to as a β-point of the homoclinic.

These points are illustrated in Figure 3.
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saddle point

β−point

δ−point
homoclinic orbit

Figure 3. Close-up of a single homoclinic orbit for b = .15, g(u) =

sin(u) and its saddle-point, β-point and δ-point
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We note that on any given homoclinic in the phase portrait, lim
η→δ−0

T ′(η, b, g) =

+∞. In addition, if a homoclinic contains only one fixed point within, the time map

decreases monotonically from the saddle point η to the β-point, and increases mono-

tonically from the β-point to the δ-point, with the minimum inside the homoclinically

bounded region being achieved at the β-point, which is a center fixed point. It is pos-

sible to have more complicated behavior of the time map between η and the δ-point

if there exists more than one fixed point within.

We further define the β-function of any stationary solution of Equation (5) as fol-

lows. Any non-spatially homogeneous stationary solution v(x) must have lap number

n ≥ 1, i.e. it traces n halves of a periodic orbit in the phase plane. For any such pe-

riodic orbit there exists a spatially homogeneous stationary solution u(x) ≡ ηv which

corresponds to the fixed point (ηv, 0) in the phase plane around which v(x) rotates.

We define β(v) = ηv. If there is more than one fixed point encompassed within the

periodic orbit of v there are two possibilities, either v is contained within a homoclinic

which contains other homoclinics, or v is not contained in any homoclinics, and thus

is nested within periodic orbits. In the first case we define the β-function of v to

be the middle fixed point, for there will always be an odd number of fixed points

within a homoclinic in order to ensure periodic orbits. In the second case we define

the β-function of v to be the trivial solution, β(v) = η∗.

If v is a spatially homogeneous stationary solution such that v ≡ η, then β(v) = η.

For any v constrained to lie within a homoclinic orbit in the phase plane it follows

that β(v) is equal to the β-point of the immediately constraining homoclinic orbit.

For any nested solutions v1 and v2 for which there do not lie any fixed points between

v1 and v2 in the phase plane, it follows that β(v1) = β(v2).

For periodic orbits more complicated than those shown in Figure 3, the time map

is no longer necessarily monotonic, but can oscillate depending on the choice of g(u).

In the example studied in Chapter 9, wherein g(u) = a sin(u), a �= 0, the time map

oscillates around the value π√
b
. Thus, when b = n2 we have an infinite number of

orbits in the phase plane which fulfill both Equation (8) and the Neumann boundary
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conditions, and thus we have an infinite number of equilibria to our boundary value

problem, with increasingly large norm. This corresponds to the sinusoidal nonlinearity

having infinitely many points wherein g(u) = 0, and thus is not a behavior found for

many choices of g.

Before we continue, we will note a few specific behaviors of the time map which

play a part in the construction of the bifurcation diagram. Recall that the choice of

η corresponds to the left endpoint u(0) of an equilibrium solution of Equation (5).

Lemma 3.1. As u(0) approaches ±∞, the time map for η = u(0) for any choice

of g(u) and b fulfilling conditions (3) will approach the value π√
b
, i.e.

lim
η→±∞

T (η, b, g) =
π√
b
.

Proof. We choose |η| > max
{|η+|, |η−|}, where η+ is defined as the value η > 0

such that T (η, b, g) < ∞ for all η+ < η < ∞, and η− is defined as the value η < 0

such that T (η, b, g) <∞ for all −∞ < η < η−. Essentially, we choose to start with η

outside of all separatrices in the phase plane, as these contribute the only points where

the time map is infinite [3]. The dominance of the linear part of f(u) = bu + g(u)

ensures that the region of discontinuities of T is bounded. As we have chosen η

outside of the separatrices, it is ensured that α(η) is outside of the separatrices as

well. This is due to α(η) being determined by the solution to the equation

(13)
b

2
η2 +G(η) =

b

2
α2(η) +G(α(η))

where (α(η), 0) is the unique point on the phase plane trajectory containing the

point (u(0), ux(0)) = (η, 0) such that α(η) �= η. By definition of η±, it is clear that

bη + g(η) �= 0 for all |η| > max
{|η+|, |η−|}, and bα(η) + g(α(η)) �= 0 for all α(η)

corresponding to |η| > max
{|η+|, |η−|}. As dα(η)

dη
= bη+g(η)

bα(η)+g(α(η))
, it is clear that dα(η)

dη

is defined everywhere in the regions |η| > max
{|η+|, |η−|}.

Studying the Hamiltonian (9), and recalling that η and α(η) refer to points in the

phase plane where ux = 0, it is clear that solutions to 0 = uxx + bu + g(u) which are

outside of all separatrices must be nested. Therefore, dα(η)
dη

< 0 and lim
η→±∞

α(η) = ∓∞.
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Thus, lim
η→±∞

T (η, b, g) = lim
η→±∞

∫ α(η)

η
∓du√

bη2−bu2+2G(η)−2G(u)
. Recalling that γ ≤

g(u) ≤ γ and thus γη ≤ G(η) ≤ γη, and applying a change of variables xη = u

for η → ∞ and −xη = u for η → −∞ enables the following calculations:

lim
η→∞

∫ α(η)

η

−du√
bη2 − bu2 + 2G(η)− 2G(u)

= lim
η→∞

∫ α(η)
η

1

−ηdx√
bη2 − bη2x2 + 2G(η)− 2G(xη)

= lim
η→∞

∫ α(η)
η

1

−dx√
b− bx2 + 2G(η)

η2
− 2G(xη)

η2

=

∫ −1

1

−dx√
b− bx2

=
1√
b

∫ 1

−1

dx√
1− x2

=
π√
b

lim
η→−∞

∫ α(η)

η

du√
bη2 − bu2 + 2G(η)− 2G(u)

= lim
η→−∞

∫ −α(η)
η

−1

−ηdx√
bη2 − bη2x2 + 2G(η)− 2G(−xη)

= lim
η→−∞

∫ −α(η)
η

−1

−ηdx
|η|
√
b− bx2 + 2G(η)

η2
− 2G(−xη)

η2

= lim
η→−∞

∫ −α(η)
η

−1

dx√
b− bx2 + 2G(η)

η2
− 2G(−xη)

η2

=

∫ 1

−1

dx√
b− bx2

=
1√
b

∫ 1

−1

dx√
1− x2

=
π√
b
.

It is clear that as long as g(u) is bounded and C2, the limit of the time map as u(0)

approaches infinity remains the same. It is entirely dependent on the asymptotic

linearity, rather than the specific nonlinearity. �

2. Time Map for a Fixed Nonlinearity

Let us suppose we have chosen a nonlinearity g(u) fulfilling conditions (3) and

wish to produce its bifurcation diagram. We must first observe certain aspects of

its behavior with regard to the time map. Before plotting the time map, we must

study the phase portrait to see where solutions are capable of existing. Decomposing
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our standard second order differential equation uxx + bu + g(u) = 0 into a system of

differential equations

(14)
ux = v

vx = −bu − g(u),

it becomes obvious that the first graph of interest is that of bu versus g(u). As g(u)

is bounded, there exist values γ and γ such that γ ≤ g(u) ≤ γ for all choices of u(x).

We let η− denote the value of the leftmost intersection of bu and g(u) and η+ denote

the value at the rightmost intersection. Due to the boundedness of g(u), it follows

that η− ≥ −γ
b
and η+ ≤ −γ

b
. In Figure 4, η− = −51.3337 and η+ = 40.6173, and are

indicated by squares.

Figure 4. Graph of bu and −g(u) plotted simultaneously

All intersections of bu with −g(u) correspond to spatially homogeneous stationary

solutions of Equation (5). By evaluating the Jacobian at these fixed points, we can

determine which of these are centers in the phase portrait, and which are saddle
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points. This is also made evident by studying the graph of bu versus −g(u), as

those regions within which bu > −g(u) correspond to vx < 0, while those regions in

which bu < −g(u) correspond to vx > 0. Thus, it becomes clear which intersections

correspond to which type of fixed point in the phase portrait.

We now introduce two results characterizing the behavior and organization of

stationary solutions of (5) in the phase plane. In order to clarify the next lemma,

let us denote degenerate fixed points and lines of degenerate fixed points as follows.

We refer to a degenerate fixed point or line of fixed points as “simply degenerate”

if vx has the same sign to the left of the fixed point or line of fixed points as to the

right. We refer to a line of degenerate fixed points as a degenerate saddle if vx < 0 to

the left of the line of fixed points and vx > 0 to the right of the line of fixed points.

Finally, we refer to a line of degenerate fixed points as a degenerate center if vx > 0

to the left of the line of fixed points and vx < 0 to the right of the line of fixed points.

Proposition 3.2. The fixed points in the phase plane for

(15) 0 = uxx + bu+ g(u)

are either degenerate, saddles, or centers, with the outermost fixed points, at η− and

η+ always being either centers or degenerate. In addition, if any non-degenerate fixed

point or line of degenerate fixed points is a saddle, the next non-degenerate fixed point

or line of degenerate fixed points will be a center, and vice versa.

Proof. The Jacobian at any fixed point u∗ in the phase plane of Equation (15)

is given by J |u∗=

⎡⎣ 0 1

−b− g′(u∗) 0

⎤⎦. Thus, the eigenvalues of the Jacobian at u∗ are

λ = ±√−b− g′(u∗). For u∗ = η− and u∗ = η+, b ≥ −g′(u∗), implying the eigenvalues

of the Jacobian are either both imaginary or both zero, and thus η− and η+ are either

centers or degenerate. Since g(u) is bounded, C2, and Lipschitz with values in L2, we

know that −g′(u) can only equal b for a limited time, let us say for ε−i ≤ u ≤ ε+i for

a fixed number of values i. In the phase portrait, all trajectories in this region will

travel horizontally left or right (depending on whether they are above or below the

24



u-axis). Thus, in determining the ordering of fixed points in the phase portrait, we

may truncate any line of fixed points into one saddle or one center or ignore it entirely

if it is simply degenerate, depending on the evaluation of vx to the left and right of

the line of fixed points, for the purpose of determining its nondegenerate neighbors.

Thus do we, without loss of generality, assume that b �= −g′(u) for all η− ≤ u ≤ η+.

Let us assume that there exists a u∗ such that u∗ is a saddle fixed point. Since u∗

is a saddle, there exist values κ− and κ+ such that vx(u) < 0 and thus bu > −g(u)
for κ− ≤ u < u∗ and vx(u) > 0 and thus bu < −g(u) for u∗ < u ≤ κ+. Therefore, the

graph of bu on [u∗, κ+] is below the graph of −g(u). But we know that for u > η+

the graph of bu is above the graph of −g(u). It follows that there must exist at least

one point κ∗ such that η+ ≥ κ∗ > κ+ and bκ∗ = −g(κ∗). If η+ = κ∗, then either η+

is degenerate and there does not exist a next nondegenerate fixed point, or else η+ is

a center, and we are finished. If κ∗ < η+, then vx(κ
∗ − ε) > 0 and vx(κ

∗) = 0. Since

we have assumed that b �= −g′(u), this implies that vx(κ
∗ + ε) < 0 and therefore κ∗

is a center. We may conduct this same analysis to the left of u∗ with respect to η−

to obtain the same results.

Now, suppose we choose a fixed point u∗ which is a center. Since u∗ is a center,

there exist values κ− and κ+ such that vx(u) > 0 and thus bu < −g(u) for κ− ≤ u <

u∗, and vx(u) < 0 and thus bu > −g(u) for u∗ < u ≤ κ+. Therefore, the graph of

bu on [u∗, κ+] is above the graph of −g(u). Now, let us assume that there exists a

fixed point to the right of u∗. Then u∗ �= η+ by definition. It follows that there must

exist a point κ∗ such that η+ ≥ κ∗ > κ+ and bκ∗ = −g(κ∗). Then vx(κ
∗ − ε) < 0

and vx(κ
∗) = 0. And since we have assumed that b �= −g′(u), this implies that

vx(κ
∗ + ε) > 0 and therefore κ∗ is a saddle. We may conduct this same analysis to

the left of u∗ with respect to η− to obtain the same results. �
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Lemma 3.3. All non-spatially homogeneous stationary solutions to

(16)

ut = uxx + bu+ g(u)

x ∈ [0, π], γ ≤ g(u) ≤ γ, g ∈ C2

ux(t, 0) = ux(t, π) = 0

are either nested about each other, or separated along the u-axis by a fixed point in

the phase portrait, i.e. a spatially homogeneous equilibrium solution to (16). If they

are separated by a fixed point, each non-spatially homogeneous stationary solution is

bound within either a homoclinic or pairs of heteroclinics in the phase portrait.

Proof. The introduction of Neumann boundary conditions requires that a solu-

tion both begins and terminates on the u-axis in the phase portrait. The equation

uxx + f(u) = 0 defines a conservative system regardless of the choice of f , therefore

all trajectories in the phase plane which intersect the u-axis twice must trace half or

all of a closed curve in the phase plane. Let us consider two equilibrium solutions to

(16), denoted v and w, with |v(0)| > |w(0)|.
Since v(x) and w(x) are two distinct periodic solutions, they cannot intersect in

the phase plane. Let us assume that bv(0) + g(v(0)) > 0. We may do so without

loss of generality, as the proof proceeds identically for bv(0) + g(v(0)) < 0 with signs

and orders reversed. This implies that the phase plane trajectory for the solution v

at time 0 is pointed downwards, and therefore the trajectory travels to the left in the

phase plane for as long as it remains below the u-axis. Therefore, the next point of

intersection with the u-axis is to the left of v(0) at the point (v1, 0). At (v1, 0), the

phase plane trajectory must be pointed upwards, as we have excluded homoclinics

and heteroclinics by the boundary conditions and exclusion of fixed points. Therefore

bv1 + g(v1) < 0. Since −|v(0)| < w(0) < |v(0)|, there are three possibilities as to the

location of w(0) with respect to v1. If v(0) > 0 then either v1 < w(0) < v(0) or

w(0) < v1 < v(0). If v(0) < 0, then there is only one possibility: v1 < v(0) < w(0).

If v(0) > 0 and v1 < w(0) < v(0), then the w-curve begins inside the closed v-

curve, and because the trajectories may not cross, it must remain inside for all time.
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Thus, w(x) is nested inside v(x). If v(0) > 0 and w(0) < v1 < v(0), then the w-curve

begins outside the closed v-curve, and must remain outside for all time. Because of

this, the next intersection of the w-curve with the u-axis, at the point (w1, 0), cannot

be in the region [v1, v(0)].

If w(0) < w1 < v1, it follows that bw(0) + g(w(0)) < 0 and bw1 + g(w1) > 0. As

f(u) = bu+g(u) is a continuous function of u, there must be some point u∗ ∈ (w1, v1)

such that bu∗+ g(u∗) = 0. The point (u∗, 0) in the phase plane separates the w-curve

and the v-curve, and by definition corresponds to a spatially homogeneous equilibrium

solution to (16) of the form u(x) ≡ u∗.

If w1 < w(0) < v1, it follows that bw(0) + g(w(0)) > 0 and bw1 + g(w1) < 0. As

before, there must be some point u∗ ∈ (w(0), v1) such that bu∗ + g(u∗) = 0, and we

then have a spatially homogeneous equilibrium separating the two curves once more.

If w(0) < v1 < w1, then v(x) is nested inside w(x).

If v(0) < 0 and v1 < v(0) < w(0), again we have the w-curve originating out-

side the closed v-curve. We may repeat the procedure as in the previous case and

determine, depending on the location of w1 in relation to v1 and v(0), that either the

v-curve is nested inside the w-curve, or there is some fixed point separating the two

in the phase plane.

Let us presume we are in one of the cases wherein the two curves are separated

by a fixed point in the phase portrait. In each case, at (u, ux) = (u∗, 0) we have a

fixed point such that b(u∗ − ε) + g(u∗ − ε) > 0 and b(u∗ + ε) + g(u∗ + ε) < 0 for ε

small. This implies that the fixed point at (u∗, 0) is a saddle point. Earlier we showed

that bu + g(u) > 0 for u > η+ and bu + g(u) < 0 for u < η− and that the linear

portion will increasingly dominate outside of these regions since the nonlinearity is

bounded. Thus we know that the unstable manifolds of the saddle point in the phase

plane will eventually return to the u-axis, and, due to the reversible nature of system,

form either a homoclinic or a heteroclinic between two fixed points. Since trajectories

may not cross in the phase plane, the w-curve and v-curve must be contained in said

homoclinic or paired-heteroclinic boundaries. �
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3. The Bifurcation Diagram

Knowing the time map for a given value of η provides us with other information

as well, specifically the lap number. Given that Equation (15) defines a conserva-

tive system, a solution u(x) to Equation (15) starting at u(0) = η, ux(0) = 0 with

T (η, b, g) = π
n
changes from regions having ux > 0 to regions having ux < 0 and vice

versa n times. Thus, by definition, l(u) = n. By plotting the time map, we can easily

discern all values η for which T (η, b, g) = π
n
, and from this, all values for a given b

and g(u) for which there exist equilibria of our dynamical system (16), as well as

their lap number. The natural ordering of values η = u(0) for stationary solutions

leads to a logical ordering of solutions, and thus is the vertical axis in our bifurcation

diagram. By varying b, we can construct the global bifurcation diagram of stationary

solutions. Given boundary conditions and a fixed nonlinearity g(u), the pair (b, η)

uniquely determines any stationary solution to the boundary value problem (16).

We designate curves in the bifurcation diagram as n− branches when said curves

stretch from η = ∞ to η = −∞, and all solutions on said curve fulfill Tn(b, η, g) = π.

For Neumann boundary conditions, this is equivalent to having lap number equal to

n (this is not the case for Dirichlet boundary conditions). We note here that the

0-branch can have a discontinuity if g(0) �= 0. In such a case, the 0-branch will limit

to −sign(g(0)) · ∞ from above and sign(g(0)) · ∞ from below. It is only at the

horizontal axis that this discontinuity may occur; as we move away from the axis,

the 0-branch is well-behaved. Such a discontinuity is only possible for the 0-branch;

all other branches are well-behaved. By definition, the β-function of a stationary

solution on a nonzero n-branch is always the trivial solution η∗.

In addition to the n-branches, there is one other important curve: the curve

of trivial solutions, which is parametrized over b. Recalling Lemma 2.2, the trivial

solution for any b is the spatially homogeneous equilibrium solution η∗ with minimal

H2-norm. We note that if the 0-branch suffers a discontinuity at η = 0, so will the

curve of trivial solutions. The uniqueness of solutions to Equation (15) with defined

left intercept and boundary conditions ensures that n-branches in the (b, η)-plane
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are globally parametrized by η. Thus, they do not intersect each other. Due to the

parametrization in η, an n-branch cannot intersect another branch. This does not

preclude the bifurcation of a curve to temporarily higher lap number in special cases.
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Figure 5. Bifurcation diagram for g(u) = cos(u)

Figure 5 provides an example of the behavior of the bifurcation diagram arising

from the nonlinearity g(u) = cos(u). As the reader can see, there is a discontinuity in

both the curve of trivial solutions and the 0-branch. Furthermore, the 0-branch and

curve of trivial solutions do not intersect transversely. This is a common behavior

for nonlinearities where the curve of trivial solutions is not the b-axis. As the nonlin-

earity is not an odd function, the bifurcation diagram is not symmetric. The lack of

symmetry between stationary solutions above and below the curve of trivial solutions

is more pronounced for smaller b. As b increases, it outweighs the influence of the

nonlinearity. Thus, while the 0-branch is noticeably non-symmetric, the 2-branch
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appears to be symmetric at a casual glance. Furthermore, the three n-branches de-

picted in Figure 5 asymptotically approach the lines b = n2 as they grow further from

the curve of trivial solutions. This is a property of all bifurcation diagrams for all

equations of the form (16), as is proved in the following lemma.

Lemma 3.4. An n-branch will asymptotically approach the line b = n2 in the

bifurcation diagram.

Proof. As proven in Lemma 3.1, lim
η→±∞

T (η, b, g) = π√
b
for b fixed, g as in (16).

As we have defined an n-branch, all solutions on an n-branch are stationary solutions

of (16) with u(0) = η and time map T (η, b, g) = π
n
. For a fixed b �= n2, as η → ±∞,

lim
η→±∞

T (η, b, g) = π√
b
�= π

n
. As the time map is continuous for η sufficiently large, this

implies that there exists an ηb such that for |η| > |ηb|, T (η, b, g) �= π
n
and therefore,

the n-branch does not intersect a line at this fixed value of b. Equivalently, there

are no equilibria with left boundary value at larger u(0), and correspondingly larger

norm, for b �= n2. Only for b = n2 will this not hold. The n-branch is continuous,

defined by the intersections of the time map with the line π
n
for variable b. Thus, as

η → ∞, the n-branch must approach b = n2. The 0-branch is determined not by the

time map, but via the function b = −g(η)
η
. Since g(η) is bounded for all η, it follows

that lim
η→±∞

b(η) = 0. Thus the 0-branch asymptotically approaches the line b = 0. �

Although we have only discussed the lap number on n-branches so far, it is useful

to note that there is a related property of the zero number for n-branches.

Lemma 3.5. For any fixed b in Equation (16), let v be any stationary solution

on an n-branch, v not being the bifurcation point of the n-branch from the curve of

trivial solutions, i.e. v �= η∗. Then

z(v − η∗) = n = l(v).

Proof. Note that if v = η∗, then z(v− η∗) = l(v) = 0. A solution v fulfilling the

assumptions of this lemma solves

(17) vxx + bv + g(v) = 0.
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If v is on the 0-branch, it follows that v must be a spatially homogeneous stationary

solution. Therefore, v(x)− η∗ is also a spatially homogeneous function, although not

necessarily a solution of (16). Since the zero number of all spatially homogeneous

functions is defined to be 0, it follows that z(v − η∗) = 0.

If v is not on the 0-branch nor is it the trivial solution, it follows that l(v) = n > 0

and T (v(0), b, g) = π
n
. We may plot the phase portrait of Equation (16). Since v exists

on an n-branch, it follows that v is a periodic solution oscillating around the value

η∗. Since the lap number of v is n, it follows that tracing v(x) from 0 to π the

trajectory will cross the line u = η∗ n times, once for each time it hits the u-axis

again. Therefore, v(x) − η∗ is equal to zero n times, once for each half circle of the

trajectory. Therefore the function u(x) = v(x) − η∗ has n interior zeros (and no

exterior zeros since v(x) �= η∗) and z(v − η∗) = n. �

4. Bifurcations on the 0-Branch

Every branch undergoes saddle-node bifurcations (possibly infinitely many for

nonlinearities such as g(u) = sin(u) or g(u) = cos(u) which oscillate about u =

0) as we increase through b [3, 37]. The 0-branch is unique in that it has the

potential to produce pitchfork bifurcations as well, corresponding to Hopf bifurcations

in the phase plane. The portion of the pitchfork bifurcation which exists before and

after the bifurcation point is the 0-branch. The portions which come into existence

and annihilate are referred to as the pitchfork branches. In Figure 5, the pitchfork

branches are depicted in blue, and do not stray far from the 0-branch.

Lemma 3.6. The 0-branch of a bifurcation diagram for stationary solutions of

Equation (16) undergoes paired supercritical pitchfork bifurcations at the values of b

and u(0) where b+ g′(u(0)) = n2. The equilibria solutions u(x) on these new curves

in the bifurcation diagram have lap number l(u) = n and Morse index i(u) = n.

Additionally, all pitchfork bifurcations are nested, such that pitchfork branches with

higher lap number and Morse index are contained inside of pitchfork branches with

lower lap number and Morse index, the outermost having l(u) = i(u) = 1.
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Proof. First we shall address why it is impossible for such bifurcations to occur

on any branch except the 0-branch. In order to obtain a pitchfork bifurcation in the

phase plane, this requires two new equilibria to bifurcate from a previously existing

equilibrium. Let us assume that this preexisting equilibrium is a solution on a nonzero

n-branch. It then represents a unique periodic orbit in the phase plane which crosses

the u-axis n times, taking time π
n
for each crossing. In order for a new equilibrium

to bifurcate from the preexisting one, which we shall denote u∗(x), it requires that

changing b to b±δ will cause a new solution to spring into existence at initial conditions

u∗(0)± ε, with ε→ 0 as δ → 0. In order to fulfill the Neumann boundary conditions,

the new solutions which are located on the pitchforks must either be periodic orbits

or fixed points in the phase portrait.

A solution which bifurcates from a periodic orbit cannot be a fixed point, as all

possible fixed points are already included in either the 0-branch or the curve of trivial

solutions, being derived from solutions of bu + g(u) = 0. Therefore, a bifurcating

solution must be a periodic orbit with either the same lap number as the originating

solution, or a different lap number. But u∗(x) cannot have a different lap number

than the bifurcated solution, as the time map is continuous. Thus, we cannot have a

solution whose time map remains π
m

as it approaches a solution with time map π
n
, for

n �= m. It follows that the only possibility is that u∗(x) is a periodic solution with

the same lap number as solutions on the originating n-branch. But the time map is

not a multi-valued function, thus the only possible solutions infinitesimally close to a

given equilibrium solution on an n-branch with lap number n must be those solutions

on the n-branch itself.

Now that we have eliminated the possibility of nonzero n-branches undergoing

pitchfork bifurcations, we shall address the circumstances allowing for such bifurca-

tions on the 0-branch. Spatially homogeneous equilibria, or fixed points in the phase

plane, do not have a period. Instead, their time map is defined as the limit of the

time map of periodic solutions approaching these equilibria as discussed in [29]. As
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such, it is entirely possible that the time map of a spatially homogeneous equilibrium

may pass through values π
n
, n ∈ N.

It is easy to see that for spatially homogeneous equilibria u(x) ≡ u(0) correspond-

ing to centers in the phase plane, the quantity b+g′(u(0)) is positive, while equilibria

corresponding to saddles in the phase plane have the property that b+ g′(u(0)) < 0.

Additionally, a degenerate solution which bifurcates into a saddle and a center in

the phase plane fulfills b + g′(u(0)) = 0. Thus, in the bifurcation diagram the sad-

dle node bifurcations on the 0-branch correspond to solutions u(x) = u(0) wherein

b + g′(u(0)) = 0 [3, 37]. The time map at a center fixed point u(x) = β is equal to

π√
f ′(β)

= π√
b+g′(β)

. Notice that the limit of this formula as we approach a saddle-node

bifurcation point (and thus the portion of the 0-branch corresponding to saddle fixed

points) is infinity. This corresponds to our knowledge of the time map approaching

a saddle, even though the time map is not well-defined at a saddle fixed point.

We may easily plot the 0-branch for any nonlinearity g(u) fulfilling the conditions

of (16) by recalling that solutions on the 0-branch solve the equation bu + g(u) = 0.

Since solutions on the 0-branch are spatially homogeneous, for any such solution

u(x) = u(0) for all x ∈ [0, π]. Therefore, we may parametrize the curve in the plane

(b, u(0)) by b = −g(u(0))
u(0)

. For regions on the 0-branch where b+g′(u) > 0, all solutions

are centers with a well-defined time map, and it is in this region that we have the

potential for pitchfork bifurcations.

Since the 0-branch may be parametrized over the vertical axis, we can determine

the slope in the regions in which all solutions are centers and as such, determine

which regions of the bifurcation diagram these will be. Let us temporarily denote the

vertical axis by η rather than u(0) for ease of notation. We shall address the 0-branch

in two regions: where η(b) > η∗(b) and where η(b) < η∗(b) (with η = η∗(b) being

a bifurcation point and thus degenerate). Let us perform the change of variables

v = u−η∗ to simplify our calculations. Then, solutions on the 0-branch are equilibria
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solutions which solve

(18)

vxx + bv + bη∗ + g(v + η∗)︸ ︷︷ ︸
g̃(v)

= 0.

The curve of trivial solutions η∗(b) is now the horizontal axis, i.e. η∗(b) = 0 for

all b, and the 0-branch is comprised of solutions fulfilling

(19) bη + g̃(η) = 0.

Finally, b + g′(η) = b + g̃′(η) as well. Recall that b + g′(η) > 0 on centers, and that

for all solutions on the 0-branch, bη+ g(η) = 0. We first consider solutions above the

curve of trivial solutions, which in the change of variables is η > 0.

bη + g̃(η) = 0 ⇒ b+
g̃(η)

η
= 0, b+ g̃′(η) > 0 ⇒ b+ g̃′(η) > b+

g̃(η)

η

⇒ g̃′(η) >
g̃(η)

η
⇒ ηg̃′(η) > g̃(η) ⇒ ηg̃′(η)− g̃(η) > 0 ⇒ ηg̃′(η)− g̃(η)

η2
> 0

⇒ −ηg̃′(η) + g̃(η)

η2
< 0 ⇒ d

dη
(
−g̃(η)
η

) < 0 ⇒ d

dη
(b(η)) < 0.

Therefore, for the portion of the 0-branch above the curve of trivial solutions, the

branch moves to the left as it moves upwards, i.e. b decreases as η increases.

For η < 0 in the new variable, we recall that d
d(−η)

= − d
dη
. Then

b+ g̃′(η) > 0 ⇒ b+ g̃′(η) > b+
g̃(η)

η
⇒ g̃′(η) >

g̃(η)

η
=
g̃(η)

−|η|

⇒ ηg̃′(η) = −|η|g̃′(η) < g̃(η) ⇒ ηg̃′(η)− g̃(η) < 0 ⇒ ηg̃′(η)− g̃(η)

η2
< 0

⇒ d

dη
(
g̃(η)

η
) < 0 ⇒ d

d(−η)(−
g̃(η)

η
) < 0 ⇒ d

d(−η)(b(η)) < 0.

Therefore, for the portion of the 0-branch below the curve of trivial solutions, b

decreases as |η| increases, i.e. the branch moves to the left as it moves downwards.

These results both hold when we return to our normal frame of reference in the

bifurcation diagram. On these portions of the 0-branch the solutions will all be

centers and b+ g′(η) > 0.
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Combining Proposition 3.2 and Lemma 3.3 clearly implies that all non-trivial

center fixed points will be contained within homoclinics or mirrored heteroclinics in

the phase plane. This property also extends to the trivial solution, so long as it is

not the only fixed point in the phase plane.

As we decrease b below a threshold, saddle-node bifurcations appear which pro-

duce the saddle and center portions of the 0-branch. As the center regions require

that b + g′(η) > 0, and saddle-node bifurcations only occur for b + g′(η) = 0 [37], it

follows that the value of b+g′(η) must increase on the center portion immediately af-

ter the bifurcation. Thus, the time map decreases from infinity immediately along the

center portion of the bifurcation. Recalling that the time map is continuous through

centers, we decrease b and study the behavior along the center branch.

As we decrease b, the distance between the center and the saddle increases, and

the value of the time map at a center fixed point u(x) = η decreases from +∞ at the

bifurcation point. When the time map for a center spatially homogeneous equilibrium

is greater than π, this implies that all periodic orbits in a small bounded neighborhood

of the center will also have period greater than π. But if the time map at the center

decreases to less than π, the time map of periodic orbits in this small neighborhood

will also pass through the value π. For any point η + ε for which T (η + ε, b, g) = π,

there must be a corresponding α(η + ε) for which T (α(η + ε), b, g) = π. Thus, two

solutions now fulfill the Neumann boundary conditions with lap number 1.

When b + g′(η) > 1 for a spatially homogeneous solution u(x) = η, due to the

continuity of the time map between singularities, the time map must cross the line at

π in two spots between the saddle and its δ-point, allowing for periodic solutions in

this region to fulfill Neumann boundary conditions. It is in this instance that we have

a pitchfork bifurcation with two curves of solutions, both having lap number equal to

1, bifurcating into existence from the 0-branch. The pitchfork must be supercritical,

as it is at the point where b+g′(η) = 1 that the Morse index on the 0-branch changes

from i(u(x)) = 1 to i(u(x)) = 2.
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We recall that at saddle-node bifurcation points of the 0-branch, the quantity

b + g′(η) = 0, and thus the Morse index is 0. The continuity of b + g′(η) implies

that its value must eventually drop back below 1 on this portion of the 0-branch, and

thus the bifurcated curves with lap number 1 solutions must return to the 0-branch

via another supercritical pitchfork and annihilate. This corresponds to the value of b

at which the time map will have increased in the neighborhood of the center to the

point where T (η, b, g) > π again.

Similarly, if there exist any values of η such that b + g′(η) > n2, n > 1 on the 0-

branch, then as above the time map will drop below π
n
and two new periodic solutions

with lap number n will bifurcate out from this point. As b + g′(η) > n2 obviously

implies b + g′(η) > (n − 1)2, it is clear that pitchforks with higher lap number must

be nested within pitchforks of lower lap number. The continuity of the quantity

b+ g′(η) implies that each bifurcation point is unique. Finally, the Morse index on a

pitchfork branch of lap number n must be equal to n, as it arises from a supercritical

pitchfork of the 0-branch at a point where the Morse index on the 0-branch increases

to n + 1. �

Remark 3.7. As these extra bifurcations can only occur on the 0-branch, it follows

that they can only occur when one chooses Neumann boundary conditions. If one were

to study an equation of the form (16) with Dirichlet boundary conditions, the only

possible spatially homogeneous solution would be the trivial solution, i.e. the 0-branch

would cease to exist.

Remark 3.8. Note that the curve of trivial solutions also undergoes pitchfork

bifurcations, but does not fall under the edicts of Lemma 3.6 as it is not an n-branch.

Lemma 3.9. The n-branches bifurcate from the curve of trivial solutions at the

b value fulfilling b + g′(η∗) = n2. The bifurcation will be a supercritical pitchfork if

g′(η∗) > 0 and a subcritical pitchfork if g′(η∗) < 0.

Proof. Recall that the curve of trivial solutions is parametrized over b, so we

may write it as η∗(b). As η∗ is by definition a spatially homogeneous equilibrium, the
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eigenvalues and eigenvectors at η∗ may be explicitly determined by

(20)
λk = −k2 + b+ g′(η∗)

ϕk = cos(kx).

For b sufficiently small or negative, b+g′(η∗(b)) < 0 and thus 0 > λ0 > . . . > λk > . . . .

But as we increase b, the quantity b + g′(η∗(b)) will eventually increase to the point

where b+ g′(η∗) > 0, then greater than 1, 4, 9, and so forth. Let us denote bk as the

value at which bk + g′(η∗(bk)) = k2. For bk−1 < b < bk, solutions η
∗(b) on the curve

of trivial solutions will have Morse index i(η∗(b)) = k, while solutions at values of

b < b0 will be asymptotically stable.

Recall that the time map on this curve is defined by T (η∗(b), b, g) = π√
b+g′(η∗(b))

.

This implies that for b = bk the time map at η∗ will be equal to π
k
, and for b > bk, the

value of T (η∗(b), b, g) will fall below π
k
. Therefore, as b passes through each bk, two

new periodic solutions with lap number k bifurcate from the curve of trivial solutions.

These bk we will refer to as the origination points of the k-branch.

If g′(η∗(b)) > 0, then η∗ forms a local minimum of the time map. Thus, as b

increases towards bk, the time map descends towards the line T = π
k
, intersecting it

for b = bk and only dropping below it for b > bk. Thus, increasing b through bk causes

two new solutions on the k-branch to bifurcate into existence above and below η∗,

while decreasing b through bk causes their annihilation. Thus, for g′(η∗(b)) > 0, there

is a supercritical pitchfork bifurcation from the trivial solution curve at b = bk.

If g′(η∗(b)) < 0, then η∗ is a local maximum of the time map, and thus for b < bk,

a sufficiently small local neighborhood of η∗ is above the line T = π
k
, while the global

minimum of the time map may be well below this line. Increasing b through bk

causes periodic solutions with lap number k to enter this neighborhood of η∗, i.e. the

intersection of the time map and the line T = π
k
moves closer to η∗, and eventually

these solutions annihilate at η∗ for b = bk. Thus, for g
′(η∗(b)) < 0 there is a subcritical

pitchfork bifurcation of the k branch from the trivial curve at b = bk.

We refer to the intersection points of the k-branch with the curve of trivial solu-

tions as origination points, but the k-branch may exist for lower values of b even when
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g′(η∗) is positive, or higher values when g′(η∗) is negative. This is all dependent on

where g(u) achieves its maximum and the relative strength of bu at this point. The

larger b is, the more the linear term bu will dominate the nonlinearity, but for small

b the nonlinearity has the chance to win for some time. �

Now that we have discussed all forms of pitchfork bifurcations present in the

bifurcation diagram and where they occur, we may introduce a result which allows

us to relate the lap number on the pitchfork branches to the zero number of a related

function. Recall that the primary branch of the pitchfork is a portion of the 0-branch,

and therefore both the lap number and zero number are equal to zero there.

Lemma 3.10. For any fixed b in Equation (16), let v be any stationary solution

on any portion of a connected pair of pitchfork branches such that l(v) = n. Then

z(v − β(v)) = n.

Proof. We call any two pitchfork branches with lap number n a connected pair

if, for any fixed b and stationary solution v(x) represented on one branch by v(0), the

point v(π
n
) identifies the stationary solution on the other branch. We note that it is

impossible that v ≡ η∗. This follows from the fact that for the value of b such that the

curve of trivial solutions and the 0-branch intersect, the quantity b+ g′(η∗) = 0, and

the pitchfork bifurcations only occur when b+g′(η) ≥ 1. We remind the reader that for

some nonlinearities the zero branch may have a discontinuity, owing to the possibility

that b = −g(η)
η

= ±∞. If v is a solution on the 0-branch itself, i.e. on the primary

branch of a supercritical pitchfork, then v must be a spatially homogeneous solution.

In this case it follows that β(v) ≡ v. We know that for a spatially homogeneous

stationary solution the zero number is defined to be zero, and further, that the zero

number of the function u(x) ≡ 0 is zero as well. Thus, since v is on the 0-branch,

l(v) = 0 = z(v) = z(v − β(v)) = z(0).

Now we may assume that v lives on one of the pitchfork branches. If v lives on a

branch which bifurcates from the 0-branch at a point where b + g′(β(v)) = n2 ≥ 1,

then l(v) = n and T (v(0), b, g) = π
n
. We may consider the phase portrait of Equation
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(16). Since v exists on a pitchfork branch with lap number n, it follows that v is a

periodic solution oscillating around the point (β(v), 0). Since the lap number of v is n,

it follows that in tracing v(x) from 0 to π, the trajectory will cross the line u = β(v)

in the phase portrait n times, once for each time it hits the u-axis again. Therefore,

v(x) − β(v) is equal to zero n times, once for each half cycle of the trajectory. It

follows that the function u(x) = v(x) − β(v) has n interior zeros, and no exterior

zeros since l(v) �= 0, and thus v(x) �= β(v). Thus z(v − β(v)) = n. �

5. Index on the Bifurcation Diagram

The bifurcation diagram provides both pieces of necessary information for deter-

mining connections between equilibria, i.e. the zero or lap number and the Morse

index [6, 7]. This section addresses the relation between these nodal properties and

the Morse index, as well as providing a method for determining this information from

the appearance of the bifurcation diagram.

Lemma 3.11. The Morse index i(v) and lap number l(v) of a hyperbolic non-

spatially homogeneous stationary solution to Equation (16) are related by

(21) i(v) ∈ {l(v), l(v) + 1} .

Proof. We consider v, a hyperbolic stationary solution of (16) with Morse index

i(v) = i. The linearization of (16) at v

(22)
Lu := uxx + f ′(v(x))u = uxx + bu+ g′(v(x))u

ux(0) = ux(π) = 0

allows us to determine the corresponding eigenvalues and eigenfunctions of v, denoted

by λk and ϕk with k ≥ 0. As we have noted that i(v) = i, this implies that

(23)

λ0 > . . . > λi−1 > 0 > λi

l(ϕi−1) = z(ϕi−1) = i− 1, l(ϕi) = z(ϕi) = i

(ϕk)x(0) = (ϕk)x(π) = 0 for all k.
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Now recall that while the eigenfunctions ϕk solve the equation Lu = λu with λ = λk,

the function w = vx solves Lu = 0, i.e. w(x) solves the eigenvalue problem with

λ = 0. The Sturm-Liouville Comparison Theorem implies that between any two

zeros of ϕi−1 there is at least one zero of vx, and between any two zeros of vx there

is at least one zero of ϕi. As stated above, z(ϕi−1) = i − 1, and every ϕk satisfies

Neumann boundary conditions, thus there are only i−1 total zeros of ϕi−1. Therefore

z(vx) ≥ i − 2. We must recall though, that because v satisfies Neumann boundary

conditions, vx satisfies Dirichlet boundary conditions, so the total number of zeros in

vx = z(vx)+2. Therefore, z(ϕi) ≥ z(vx)+2−1 ≥ i−1. Recalling that l(v) = z(vx)+1,

we now have the inequality

i = z(ϕi) ≥ z(vx) + 1 ≥ i− 1 ⇒ i ≥ l(v) ≥ i− 1

i.e. l(v) ∈ {i− 1, i}, or in other words, i(v) ∈ {l(v), l(v) + 1}. �

Remark 3.12. Note that if we define i(v) for a non-hyperbolic stationary solution

to be the number of positive eigenvalues, then Lemma 3.11 holds even for nonhyper-

bolic stationary solutions.

Corollary 3.13. The Morse index i(v) and the zero number z(v) of a hyperbolic

non-spatially homogeneous stationary solution to Equation (16) are related by

i(v) ∈ {z(v − β(v)), z(v − β(v)) + 1} .

Proof. Lemma 3.5 proved that for stationary solutions v on a nonzero n-branch

we have z(v − η∗) = n = l(v). Further, since v is on an n-branch rather than a

pitchfork branch, v oscillates around the trivial solution in the phase portrait. In

fact, β(v) = η∗ by definition. Thus, l(v) = z(v − η∗) = z(v − β(v)) and l(v) + 1

= z(v − η∗) + 1 = z(v − β(v)) + 1 for solutions on an n-branch. Thus i(v) ∈
{l(v), l(v) + 1} = {z(v − β(v)), z(v − β(v)) + 1}.

Now let us assume that v is a solution on a pitchfork branch. Then by Lemma

3.10, it follows that l(v) = z(v − β(v)) and l(v) + 1 = z(v − β(v)) + 1. Thus

i(v) ∈ {l(v), l(v) + 1} = {z(v − β(v)), z(v − β(v)) + 1}. �
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Indeed, it has been shown that for a non-spatially homogeneous stationary solution

v on an n-branch in the (b, η)-plane, v is hyperbolic if and only if dT (η,b,g)
dη

�= 0 for

η = v(0) [34, 37]. Since a point wherein dT
dη

�= 0 in the time map plot corresponds

to a point wherein db
dη

�= 0 in the bifurcation diagram, it follows that v is hyperbolic

if and only if db
dη

�= 0 on said n-branch [34]. Equivalently, one may interpret points

where db
dη

= 0 and (b, η) is on an n-branch as being points on the graph of the time

map where v(0) = η, T (η, b, g) = π
n
, and dT

dη
= 0. We now present a result which

allows us to determine the Morse index at a point in the bifurcation diagram simply

by its location on an n-branch.

Lemma 3.14. For v a hyperbolic stationary solution to (16) on a nonzero n-branch

with v(0) = η0 �= η∗,

(24)

(η0 − η∗) · db
dη

(η0) > 0 ⇒ i(v) = l(v) = z(v − η∗)

(η0 − η∗) · db
dη

(η0) < 0 ⇒ i(v) = l(v) + 1 = z(v − η∗) + 1.

Proof. In [28, 34, 37] it was proven that T ′(η0, b, g) �= 0 for v hyperbolic and

v(0) = η0, and that

(η0 − η∗) · dT
dη

(η0) > 0 ⇒ i(v) = l(v)

(η0 − η∗) · dT
dη

(η0) < 0 ⇒ i(v) = l(v) + 1.

We recall that the n-branch is determined by the points where, for a given value of

b, the function T (η, b, g) intersects the line at π
n
. Further, for fixed η in the vicinity

of an n-branch point, dT
db
(η) < 0. Thus, let us consider a fixed η = η0 where

(η0−η∗)· dTdη (η0) > 0. Then as b is increased, T (η0) decreases. If η0 > η∗, then the value

of η for which the new time map will equal π
n
increases, since (η0 − η∗) · dT

dη
(η0) > 0.

If η0 < η∗, then the value of η for which the new time map equals π
n
decreases, since

(η0−η∗)· dTdη (η0) > 0. In the bifurcation diagram, this is equivalent to (η0−η∗)· dbdη (η0) >
0.

We now consider a fixed η = η0 wherein (η0 − η∗) · dT
dη
(η0) < 0. Then as b is

increased, T (η0) decreases. If η0 > η∗, then the value of η for which the new time
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map will equal π
n
decreases, since (η0 − η∗) · dT

dη
(η0) < 0. If η0 < η∗, then the value

of η for which the new time map equals π
n
increases, since (η0 − η∗) · dT

dη
(η0) < 0. In

the bifurcation diagram, this is equivalent to (η0 − η∗) · db
dη
(η0) < 0. Finally, we recall

from Lemma 3.5 that l(v) = z(v − η∗) on an n-branch.

Combining this with the results from [28, 34], it follows that

(η0 − η∗) · db
dη

(η0) > 0 ⇒ i(v) = l(v) = z(v − η∗)

(η0 − η∗) · db
dη

(η0) < 0 ⇒ i(v) = l(v) + 1 = z(v − η∗) + 1.

�

Thus, we may determine the degeneracy of a stationary solution, its lap number,

its shifted zero number, and its Morse index (assuming it is hyperbolic) just from its

location in the bifurcation diagram.
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CHAPTER 4

The Y -Map

In 1988, Fiedler and Brunovský devised a tool for establishing connections in

semilinear parabolic equations [6]. For a given partial differential equation, boundary

conditions, and initial condition, the y-map completely described the behavior of

the zero number in forward time for a solution beginning at the initial condition.

Unfortunately, the y-map was only constructed to deal with Dirichlet and mixed

boundary conditions, and not pure Neumann boundary conditions. More importantly,

the properties of the y-map were only proven for dissipative scalar parabolic PDEs.

In this chapter we shall update the y-map to deal with scalar parabolic PDEs with

linearly growing nonlinearities and Neumann boundary conditions, and expand some

of the implications proved in [6]. In so doing we will gain insight into the nodal

properties of our grow-up solutions, an element crucial to the determination of their

asymptotic behavior.

As the y-map was initially studied for an unspecified Banach space, we will

broaden our focus temporarily and study the semigroup of our equation on a general

Banach space X. Additionally, properties of the y-map may be proven for nonlin-

earities dependent on both u and x, so we shall prove this more general case. We

primarily use the methodology which was applied to the dissipative case, but as the

original construction was more restrictive as well as excluding Neumann boundary

conditions, all the necessary derivations will be included here.

Throughout this chapter we consider the equation

(25)

ut = uxx + bu+ g(x, u)︸ ︷︷ ︸
f(x,u)

, x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.
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We denote by G the set of nonlinearities g(x, u) satisfying

(26)
g(x, u) ∈ C2, g uniformly Lipschitz continuous with values in L2

g(x, u) bounded uniformly in x ∈ [0, π], bounded uniformly in u.

Additionally, we shall denote by F the set of nonlinearities f(x, u) of the form

f(x, u) = bu + g(x, u) with g ∈ G. We endow G and F with the weak Whitney

topology [20]. We construct the y-map as a continuous mapping

(27) y : {u0 ∈ X|z(u0) ≤ n, u0 �= 0} → Sn

where Sn denotes the standard n-sphere in Rn+1. Knowledge of y(u0) provides us with

knowledge of z(u(t, ·)) on the forward trajectory of u(t, ·) over [0,∞) for Equation

(25) with initial condition u0.

We could have chosen to define the y-map on initial conditions wherein l(u0) ≤ n

in order to obtain knowledge of l(u(t, ·)) for the forward trajectory. All lemmas in

the following sections can be proven with minor changes for the lap number, but this

leads to a difficulty later on, most notably in Corollary 4.7. As yet, it has not been

proven that the difference of two solutions to a scalar parabolic partial differential

equation has nonincreasing lap number over time. This is a crucial property necessary

to the application of the lap number to determining the asymptotics of heteroclinic

trajectories. By studying the behavior of the zero number, which has the property

of the nonincrease over time for the difference of two solutions, we may, with some

minor adjustments, obtain all the knowledge of asymptotic behaviors that we seek. In

addition, the y-map has continuous dependence on the linearly growing nonlinearity,

f ∈ F . The restriction of y to an n-dimensional sphere Σn contained in the unstable

manifold of the trivial solution provides an essential mapping of spheres. This essential

mapping allows us to establish the existence of connections between equilibria.
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1. Constructing the Mapping

We first introduce a restriction on the broader set of nonlinearities in F and G
which are dependent on x as well as u. We define F0 and G0 as follows:

(28)
F0 := {f ∈ F|f(x, 0) = 0 for all x}

G0 := {g ∈ G|g(x, 0) = 0 for all x} .

Proposition 4.1. Any equation of the form (25) where g(x, u) = g(u), i.e. where

g and f are independent of x, may be rewritten into an equivalent equation in ũ where

g̃ ∈ G0 and f̃ ∈ F0.

Proof. We introduce the change of variables ũ = u − η∗. Applying this change

of variables transforms Equation (25) into

(29)

ũt = ũxx + bũ+ g(ũ+ η∗)− g(η∗), x ∈ [0, π]

ũx(t, 0) = ũx(t, π) = 0

g̃(ũ) = g(ũ+ η∗)− g(η∗), f̃(ũ) = bũ+ g̃(ũ).

It is clear that g̃ ∈ G is a function of ũ alone, and additionally that g̃(x, 0) = g̃(0) = 0,

and therefore f̃(x, 0) = f̃(0) = 0. Thus f̃ ∈ F0 and g̃ ∈ G0, and therefore Equation

(29) is a scalar parabolic partial differential equation of the form (25). Furthermore,

it is possible to rewrite Equation (29) to see that it is linear in ũ. As nonlinearities

in G are twice continuously differentiable in u, we may rewrite g(ũ + η∗) − g(η∗) as

g̃(ũ) =
∫ 1

0
g′(η∗ + θũ)dθ · ũ.

Finally, let us note that we could have substituted any spatially homogeneous

stationary solution of Equation (25) in place of η∗ in this proof and the conclusion

would still hold. Thus, the change of variables where ũ = u− β(v) for any stationary

solution v of Equation (25) is equally valid. �

When f (and therefore g) are dependent on u alone, Proposition 4.1 shows that

f(0) = 0 need not hold. But for nonlinearities dependent on x we cannot dispense

with this requirement. In the case where f(0) = 0, it follows that u ≡ 0 is a stationary

solution of Equation (25), and thus η∗ = 0.
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Finally, we note that for Equations of the form (25) where the nonlinearity g ∈ G0,

the zero number of solutions u(t, ·) is nonincreasing in forward time [1, 23]. Further,

if we restrict the nonlinearity g to be independent of x, it follows that the zero number

of the difference of any two solutions is also nonincreasing in time [1].

We now construct the y-map below, following the methodology laid out in [6].

Henceforth, for ease of notation, we shall assume that we have already made whatever

changes of variables are necessary, and replace ũ with u in our notation. In other

words, we will reference Equation (25) with the understanding that we have already

made the change of variables indicated in Proposition 4.1 if necessary. Let u0 ∈ X,

u0 �= 0, z(u0) ≤ n with corresponding trajectory u(t, ·) forward in time.

We define the dropping times tk ∈ [0,∞] as the first time that the zero number

z(u(t, ·)) drops below the value k:

(30)
tk := inf {t ≥ 0| z(u(t, ·)) ≤ k}

τk := tanh(tk) ∈ [0, 1].

Because the zero number is nonincreasing for homogeneous Neumann boundary con-

ditions and nonlinearities g ∈ G0 [1], it follows that 0 = tn ≤ tn−1 ≤ · · · ≤ t0, and

0 = τn ≤ τn−1 ≤ · · · ≤ τ0. We define the sign of each element of the y-map by

(31) σk :=

⎧⎨⎩ sign u(t, 0) for some t ∈ (tk, tk−1), if tk < tk−1

0, otherwise.

The components of the y-map, y = (y0, y1, · · · , yn), are defined by

(32)
y0 := σ0(1− τ0)

1/2

yk := σk(τk−1 − τk)
1/2, 1 ≤ k ≤ n.

The σk are well-defined if u(t, 0) �= 0 for t ∈ (tk, tk−1). Thus, we provide a lemma

to ensure this.

Lemma 4.2. Given f ∈ F0 and z(u(0, ·)) < ∞, define the dropping times tk of

z(u(t, ·)) as in (30). The set of times t > 0 such that x → u(t, x) has only simple
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zeros is open and dense in R+. Further, if tk < tk−1, then

u(t, 0) �= 0 for all t ∈ (tk, tk−1).

Lemma 4.2 relies on properties proven previously in [1, 22] being applicable to

the equations we study. The interested reader is directed to these works to discover

why such properties hold for more general equations.

Proof. For the length of this proof we return to the notation wherein u(t, x)

solves Equation (25) while ũ(t, x) is a solution of the shifted Equation (29). For

f ∈ F0, it follows that either g = g(x, u) and g(x, 0) = 0, i.e. the trivial solution is

η∗ ≡ 0, or g = g(u) and we work in the shifted system when g(0) �= 0. Returning

to Equation (29), we recall that we may rewrite g̃(ũ) as
∫ 1

0
g′(η∗ + θũ)dθ · ũ, thus we

may rewrite Equation (29) in the form ut = uxx + c(x, t)u. Equation (25) may also

be rewritten in this form, where c(x, t) =
∫ 1

0
gu(x, u)dθ · u, recalling that here η∗ = 0.

As proven in [1, 22], if (t, x) = (t∗, x∗) provides a multiple zero of a solution u(t, ·)
for an equation of the form

ut = uxx + c(x, t)u

with c ∈ L∞, then t∗ is a dropping time. Let us first set x∗ = 0. In both possible cases,

our equations (25) and (29) fulfill the required conditions, thus “Matano’s Principle”

applies. Therefore, for all t ∈ (tk, tk−1) where tk �= tk−1, the left endpoint cannot be a

multiple zero, and thus to conform to Neumann boundary conditions, u(t, 0) �= 0 for

all t ∈ (tk, tk−1). If we let x
∗ be any point in [0, π], then if there exists a multiple zero

at time t∗, t∗ is a dropping time. Since the zero number of u(t, ·) is finite, it follows
that the number of dropping times is also finite. Therefore, the set of times t > 0

such that x→ u(t, x) has only simple zeros is open and dense in R+. �

2. Properties of the Y -Map

It is clear from construction, and easily verified via simple calculation, that y

maps into Sn. Now, let us suppose that for a given u0, we already know y(u0). We

are able to then reconstruct the dropping times tk and signs σk, as they are uniquely
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determined by y(u0). The case where y(u0) = σek, where ek denotes the kth unit

vector and σ ∈ {1,−1}, is of particular importance. When y(u0) = σek, this implies

that 0 = tn = . . . = tk and tk−1 = ∞, i.e. z(u0) = k, and z(u(t, ·)) = k for all finite

forward time. In addition, from [1] we know that the sign of u(t, 0) cannot change

for t ∈ (tk, tk−1), and thus σ · u(t, 0) > 0 for all non-dropping times t.

Lemma 4.3. The y-map (32) depends continuously on f ∈ F0 and u0 ∈ X − {0}
with z(u0) ≤ n.

Proof. We use the fact that a solution u(t, ·) of Equation (25) viewed as a

C1-function of x depends continuously on f , u0, and t. Specifically, let us rewrite

the solution u(t, x) as u(t, x; f, u0) to remind the reader of its dependence on the

nonlinearity f and the initial condition u0. Then the map

F0 ×X × [0,∞) → C1(R, [0, π])

(f, u0, t) �→ (x �→ u(t, x; f, u0))

is continuous owing to it being the composition of the analogous map

F0 ×X × [0,∞) → H2(R, [0, π]) ∩ {Neumann Boundary Conditions} ,

which is continuous [18], and the continuous Sobolev embedding

H2(R, [0, π]) ↪→ C1(R, [0, π]).

The reader is reminded that we use the weak Whitney topology on F0 [20] here.

This is sufficient as continuous dependence on initial conditions is a local property.

The first step in proving the continuous dependence of the y-map on f and u0 is

to show that τk depends continuously on (f, u0) ∈ F0×X . To that end, we first show

lower semicontinuity. Recall that the zero number

z : C0(R, [0, π]) → Z

u �→ z(u)

is lower semicontinuous by definition [6]. Combining this lower semicontinuity with

the continuity of u(t, ·; f, u0) and the definition (30) of τk implies that given any
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ε > 0 such that τk − ε > 0, and given t such that tanh(t) = τk − ε, there exists a

neighborhood N of (f, u0) in F0 ×X such that for any (f̂ , û0) ∈ N ,

z(u(t, ·; f̂ , û0)) ≥ z(u(t, ·; f, u0)) > k,

and thus

τk(f̂ , û0) ≥ tanh(t) = τk(f, u0)− ε.

Therefore, τk is lower semicontinuous.

Next, we assume that tk <∞, otherwise the upper semicontinuity of τk is obvious.

For g ∈ G0 and z(u(0, ·)) < ∞ the set of times t > 0 such that x → u(t, x) has only

simple zeros is dense in R+ [4, 6, 22]. This implies that for any positive ε there exists

some t such that τk < tanh(t) < τk + ε and all zeros of the map x→ u(t, x; f, u0) are

simple. Using the continuity of u(t, ·; f, u0) ∈ C1 and recalling the definition (30) of

τk, we obtain the existence of a neighborhood N of (f, u0) ∈ F0 × X such that for

any (f̂ , û0) ∈ N ,

z(u(t, ·; f̂ , û0)) = z(u(t, ·; f, u0)) ≤ k

τk(f̂ , û0) ≤ tanh(t) < τk(f, u0) + ε.

Thus, τk is upper semicontinuous, and therefore continuous.

The next step to proving the continuous dependence of the y-map on (f, u0) ∈
F0 × X is to prove that each component yk individually is continuously dependent

on (f, u0). As k was not specified above, we know that each of τ0, ..., τn−1 is contin-

uously dependent on (f, u0). By definition, τn is always equal to 0, and therefore its

dependence is arbitrarily guaranteed. For τk(f, u0) < τk−1(f, u0), Lemma 4.2 implies

that u(t, 0; f, u0) �= 0 for all t such that tanh(t) ∈ (τk, τk−1). Fixing one such t, there

exists a neighborhood N of (f, u0) in F0 × X such that u(t, 0; f̂ , û0) �= 0 for any

(f̂ , û0) ∈ N , due to the continuous dependence of u(t, 0; f, u0) ∈ C1 on (f, u0). Thus,

σk is constant on N, and therefore the continuity of yk follows from the continuity of

τk and τk−1.

If τk = τk−1, then yk(f, u0) = 0 by definition and the continuity of τ implies that

|yk| < ε for all (f̂ , û0) ∈ N , where N is some neighborhood of (f, u0) ∈ F0 × X,
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regardless of the value of σk in N. Therefore, in either case every component of y is

continuously dependent on f and u0, and so y itself is continuously dependent on f

and u0. �

Remark 4.4. We have been forced to ignore the point u0 ≡ 0 ∈ X (or u0 = η∗

before the change of variables if one was necessary) because at this point the con-

struction of the y-map falls apart. Rather than mapping to S0 ≡ {+1,−1}, the point

u0 ≡ 0 is always mapped to the value 0. The reader is now reminded of the proof of

Proposition 4.1. We are able to shift to a different but equivalent system, wherein the

point u0 ≡ 0 becomes a new point w0 �= 0. The y-map is now well-defined at such a

point, and will produce the same implications for w0 as would be provided by focused

analysis on u0 ≡ 0 for the original system. Thus, although the y-map is not defined

at this point, the implications of the y-map may still be obtained with a little extra

work.

Now that we have proven the continuous dependence of the y-map on f ∈ F0 and

u0 ∈ X − {0}, we seek to prove the surjectivity of the y-map for any such choice of

f . Of course, it is significantly simpler to study y for f linear. We must show that

using a homotopy to deform f from linear to nonlinear, i.e. to deform f from bu to

bu+ g(u), does not destroy surjectivity.

First, we consider the linear case f(x, u) = b(x)u and show that in this case,

y : Σn → Sn is an essential mapping, where Σn is an n-dimensional sphere in the

unstable manifold of the trivial solution. In other words, there is no homotopy from

y to the constant map. By definition, the property of being essential is invariant

under homotopies to nonlinear f . This implies that y remains surjective under the

homotopy; otherwise, the image of y would miss some point in Sn and could be

contracted to a single point, contradicting the fact that y is essential. For n = 0,

surjective implies essential. This does not generally hold for n > 0.
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Let f(x, u) = b(x)u, b ∈ C2. We denote the Sturm-Liouville eigenvalues and

eigenfunctions of

(33)
uxx + b(x)u = λu

ux(0) = ux(π) = 0

by λ0 > λ1 > . . . and ϕ0, ϕ1, . . ., and take ϕi(x) renormalized to unit length in the

X-norm, choosing the sign convention ϕi(0) > 0. Let us assume that λn > 0, i.e. the

Morse index i(u ≡ 0) ≥ n + 1. We denote

(34) Wn = span {ϕ0, . . . , ϕn} .

Sturm-Liouville theory states that z(w) ≤ n for w ∈ Wn [2].

Lemma 4.5. For λn > 0, the y-map restricted to Σn is essential and, in particular,

surjective.

Proof. The proof of Lemma 4.5 in the Dirichlet case can be found in [6]. We

need simply redefine σk to be the sign of ϕk(0) rather than ϕ
′
k(0) to update this proof

to the Neumann case. As such, the proof itself will not be copied here, but can be

found in [6]. We conclude by noting that the property of being an essential mapping

implies surjectivity [9]. �

We now address the nonlinear case, and prove that surjectivity carries over. It

is at this point where the distinctions between the original equation (25) in u and

the shifted equation (29) in ũ become pertinent, and so we will dispense with the

assumption of a pre-shifted system which was used to simplify notation in the previous

pages.

Lemma 4.6. Let v ≡ η be a spatially homogeneous hyperbolic stationary solution

of (25) with unstable manifold W u of dimension i(v) > 0. Let Σ ⊂ W u\{v} be

homotopic inW u\ {v} to a small sphere inW u centered at v of dimension n = i(v)−1.
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For any finite sequence

(35)
0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sk ∈ {1,−1} , 0 ≤ k ≤ n,

there exists a point u0 ∈ Σ corresponding to an initial condition u(0, ·) ∈ X such that

the graph t→ z(u(t, ·)−η) is determined by (δk). In other words, for any 0 ≤ t <∞,

(36)
t ≥ δk ⇔ z(u(t, ·)− η) ≤ k

δk < t < δk−1 ⇒ sign(u(t, 0)− η) = sk.

Proof. We apply the change of variables ũ = u − η to Equation (25), thus

transforming it into

(37)

ũt = ũxx + bũ+ bη + g(x, ũ+ η)︸ ︷︷ ︸
f(x,ũ+η)

, x ∈ [0, π]

ũx(t, 0) = ũx(t, π) = 0

g̃(x, ũ) := bη + g(x, ũ+ η) = g(x, ũ+ η)− g(x, η)

f̃(x, ũ) := f(x, ũ+ η) = bũ+ g̃(x, ũ),

and noting that if g(x, u) ∈ G0, then g̃(x, ũ) ∈ G0. In the dynamical system determined

by Equation (37), ṽ ≡ 0 is a stationary solution corresponding to v ≡ η in the original

system. Thus, any solution ũ(t, ·) in the unstable manifold of ṽ ≡ 0 corresponds to

a solution u(t, ·) in the unstable manifold of v ≡ η in the original system (25). It

further follows that while the lap numbers and Morse indices of ũ(t, ·) and u(t, ·) are
identical, the zero numbers need not be. The eigenfunctions and eigenvalues of ṽ ≡ 0

and v ≡ η are exactly the same, and therefore the Morse index is identical as well.

Since all spatially homogeneous stationary solutions have the same zero number and

lap number, we may therefore focus solely on the spatially homogeneous stationary

solution ṽ ≡ 0 in order to understand the implications of the y-map in the unstable

manifold of any spatially homogeneous stationary solution to (25).

We first assume that the restricted y-map, y : Σ → Sn, is essential. Therefore,

y is surjective. We now define the vector ς exactly as y was defined in (30 - 32),
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replacing tk with δk and σk with sk. By the surjectivity of y, there exists an initial

datum ũ0 ∈ Σ such that y(ũ0) = ς. But as we noted earlier, knowing y(ũ0) uniquely

determines the dropping times tk and signs σk of the solution ũ(t, ·) corresponding to

ũ0. Thus, it is determined that tk = δk and that σk = sk whenever δk < δk−1.

We must now prove that the restricted y-map is indeed essential. In order to

prove that y is essential, we must homotopically deform our nonlinearity f̃ from the

corresponding linear form. We define

(38) f̃ϑ(x, ũ) := ϑf̃(x, ũ) + (1− ϑ)f̃ũ(x, 0) · ũ

or, recalling the types of nonlinearities f over which we are interested,

(39)
f̃ϑ(x, ũ) = bũ+ g̃ϑ(x, ũ) := bũ + ϑg̃(x, ũ) + (1− ϑ)g̃ũ(x, 0) · ũ

⇒ g̃ϑ(x, ũ) := ϑg̃(x, ũ) + (1− ϑ)g̃ũ(x, 0) · ũ

with the homotopy parameter 0 ≤ ϑ ≤ 1. As we deform f̃ , the unstable manifold of

the stationary solution ṽ ≡ 0 of (37) with a specific nonlinearity f̃ϑ is simultaneously

deformed. The linearization at ṽ ≡ 0 in the homotopically deformed system

(40) 0 = ũxx + bũ+ ϑg̃ũ(x, 0)ũ+ (1− ϑ)g̃ũ(x, 0)ũ = ũxx + bũ+ g̃ũ(x, 0)ũ

is entirely unchanged. Additionally, f̃ϑ ∈ F0 depends continuously on ϑ as F0 sup-

ports the weak Whitney topology.

We denote the cut-off tangent space of W u(f̃ϑ) at ṽ ≡ 0 for ϑ = 0 by

(41) W u
loc(f̃0) := span {ϕ0, . . . , ϕn} ∩ {ũ0 ∈ X||ũ0| < 2ε} .

The local unstable manifolds with respect to an f̃ϑ are then parametrized by diffeo-

morphisms

(42) ρϑ :W u
loc(f̃0) → W u

loc(f̃ϑ)

where ρ−1
ϑ is induced by the orthogonal projection onto span {ϕ0, . . . , ϕn}. We observe

that ρϑ depends continuously on ϑ in the uniform C0 topology.
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Now we fix a sphere

(43) Σn :=
{
ũ ∈ W u

loc(f̃0)| |ũ| < ε
}

in the cut-off unstable manifold of ṽ ≡ 0 and let yϑ denote the restriction to ρϑ(Σ
n)

of the y-map associated to f̃ϑ. After a homotopy we may assume that Σ = ρ1(Σ
n).

Finally, we define

(44) yϑ := yϑ · ρϑ : Σn → Sn.

This mapping is well-defined, as z(ũ) ≤ n on W u(f̃ϑ). The mapping is continuous,

and depends continuously on ϑ thanks to Lemma 4.3. Lemma 4.5 implies that y0 =

y0 · ρ0 = y0 : Σn → Sn is essential. By the homotopy invariance of this property,

y1 = y1 · ρ1 = y · ρ1 is essential, and therefore y is essential.

Thus, choosing a sequence of δk and sk we have shown that for any 0 ≤ t <∞

t ≥ δk ⇔ z(ũ(t, ·)) = z(u(t, ·)− v(·)) = z(u(t, ·)− η) ≤ k

δk < t < δk−1 ⇒ sign(ũ(t, 0)) = sign(u(t, 0)− v(0)) = sign(u(t, 0)− η) = sk

recalling that v(0) = v(x) = η by assumption. �

Corollary 4.7. Let v be a non-spatially homogeneous hyperbolic stationary so-

lution of

(45)
ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0, g(u) ∈ G

with Morse index i(v) = n + 1 > 0. Let Σ ⊂W u\ {v} be homotopic in W u\ {v} to a

small sphere centered at v in W u of dimension n. For any finite sequence

(46)
0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sk ∈ {1,−1} , 0 ≤ k ≤ n,

there exists a point u0 ∈ Σ corresponding to an initial condition u(0, ·) ∈ X such

that the graph t → z(u(t, ·) − v(·)) is determined by (δk). In other words, for any
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0 ≤ t <∞,

(47)
t ≥ δk ⇔ z(u(t, ·)− v(·)) ≤ k

δk < t < δk−1 ⇒ sign(u(t, 0)− v(0)) = sk.

Proof. We now extend the results of Lemma 4.6 to any non-spatially homo-

geneous hyperbolic stationary solution v of (45). This implies that v is a bounded

stationary solution. Let u be a solution of (45) with g(u) ∈ G. Then ũ := u − v

satisfies

(48)
ũt = ũxx + bũ+ g̃(x, ũ)

g̃(x, ũ) := g(ũ+ v(x))− g(v(x)),

noting that g̃(x, 0) = 0. The eigenvalue problem of (48) at a hyperbolic stationary

solution w̃ = w − v is

(49) λu = uxx + bu + g̃u(x, w̃)u = uxx + bu+ gu(w)u.

If we assume that the stationary solution w in Equation (45) has Morse index j and

therefore λ0 > λ1 > . . . > λj−1 > 0 > λj > . . ., with corresponding eigenfunctions

ϕ0, . . . , ϕj−1, . . ., it is clear that w̃ must have the same eigenfunctions and eigenvalues,

and therefore the same Morse index as w. This is because the eigenvalue problem

for a stationary solution w of (45) is the same as the eigenvalue problem for the

corresponding stationary solution w̃ of (48).

The arguments within the proof of Lemma 4.6 hold in the shifted system, but

regarding initial datum ũ0 = u0 − v and corresponding solutions ũ = u − v. This is

owing to the fact that the zero number of the difference of two solutions is nonin-

creasing in time [22]. Thus, Lemma 4.6 asserts that there exists an initial datum ũ0

such that for 0 ≤ t <∞

t ≥ δk ⇔ z(ũ(t, ·)) ≤ k

δk < t < δk−1 ⇒ sign(ũ(t, 0)) = sk
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for any choice of sequences

0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sj ∈ {1,−1} , 0 ≤ j ≤ n.

Since ũ(t, 0) = u(t, 0)− v(0) and ũ(t, ·) = u(t, ·)− v(·), the corollary is proven. �

In order to make Corollary 4.7 more useful, we prove a property of the zero number

for stationary solutions. We adopt some useful notation introduced by Brunovský and

Fiedler in [7]. Let E be the set of stationary solutions for a given fixed b and g(u) ∈ G.
For a given interval J ∈ R, we use EJ to denote the set of those stationary solutions

w ∈ E for which w(0) ∈ J . For a stationary solution v with lap number l(v) = n > 0

we define the set Jv by Jv = (v(π
n
), v(0)) when v(π

n
) < v(0) or Jv = (v(0), v(π

n
)) for

v(0) < v(π
n
). For a spatially homogeneous stationary solution v, Jv = v(0).

Lemma 4.8. Consider an equation

(50)

ut = uxx + f(u)

x ∈ [0, π], t ≥ 0, f ∈ C2

ux(t, 0) = ux(t, π) = 0.

Let v1 and v2 be two distinct stationary solutions existing on n-branches in the bifur-

cation diagram and z(v2 − η∗) = m, in other words, v2 is found on the m-branch. If

v1(0) /∈ EJv2 and l(v1) = i ≤ m, then

(51) z(v1 − v2) = z(v1 − η∗) = l(v1).

Proof. As v1 and v2 are both stationary solutions of (50), it follows that

0 = v1xx + f(v1)

0 = v2xx + f(v2)

and therefore w = v1 − v2 solves

(52) 0 = wxx + f(w + v2(x))− f(v2(x))︸ ︷︷ ︸
f̃(x,w)

.

56



As in the preceding proof of Corollary 4.7, the eigenvalue problem for the stationary

solution w = v1− v2 of the shifted equation is identical to the eigenvalue problem for

the stationary solution v1 in the original equation (50). Therefore

(53) i(v1 − v2) = i(v1).

We note here that as a consequence of Corollary 3.13, it follows that if v1 is a non-

spatially homogeneous stationary solution to (50) then

(54)
i(v1 − v2) ∈ {z(v1 − v2), z(v1 − v2) + 1

}
i(v1) ∈ {z(v1 − η∗), z(v1 − η∗) + 1

}
.

This implies that one of the following equalities holds:

z(v1 − v2) = z(v1 − η∗)

z(v1 − v2) = z(v1 − η∗) + 1

z(v1 − v2) = z(v1 − η∗)− 1.

If m = 0, then z(v2 − η∗) = 0 = z(v2) and therefore z(v1 − η∗) = 0 = z(v1). For

both v1 and v2 spatially homogeneous stationary solutions, it follows that z(v1−v2) =
0 as well. Thus we may assume m > 0.

If v1 lives on the 0-branch and v1 /∈ EJv2 , it then follows that v1(x) − v2(x) =

v1(0)− v2(x) > 0 for all x ∈ [0, π], as solutions may not intersect at any point in the

phase portrait. Therefore z(v1 − v2) = 0 = z(v1) = z(v1 − η∗), since v1 is a spatially

homogeneous stationary solution if it lives on the 0-branch.

If v1 is not on the 0-branch and v1 /∈ EJv2 , it follows that v
2 is nested inside v1 in

the phase portrait, since trajectories cannot cross, both v1 and v2 are on n-branches,

and both stationary solutions have lap numbers (and therefore zero numbers shifted

by η∗) greater than 0. We recall that for equations of the form (50)

(55) z(v1 − v2) =

⎧⎨⎩ l(v1) ≥ 1 if range(v2) ⊂ range(v1)

0 if range(v2) ∩ range(v1) = ∅.
Thus, in the case where v1 and v2 are on two nonzero n-branches (possibly the

same branch), it follows that z(v1−v2) = l(v1) = z(v1−η∗), since l(v1) = z(v1−η∗) on
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n-branches by Lemma 3.5. Thus we have shown that in all possible cases introduced

in the lemma, z(v1 − v2) = z(v1 − η∗) = l(v1). We remind the reader that for v1 on a

nonzero n-branch, β(v1) = η∗, and for v1 on the 0-branch, z(v1−η∗) = z(v1−β(v1)) =
z(v1) = l(v1). �

Lemma 4.8 only addresses the relation between z(v1 − v2) and l(v1) for v1 and v2

on n-branches in the bifurcation diagram. We now introduce a corollary to address

the situation wherein v2 is on a pitchfork bifurcation from the 0-branch. If v2 is on

the portion of the 0-branch encased in pitchfork bifurcations, it follows that for any

stationary solution v1 on one of the pitchfork branches surrounding v2, that v2 = β(v1)

and thus z(v1−v2) = l(v1) by Lemma 3.10. Additionally, recall that the β-function of

any stationary solution on a single set of nested pitchforks will be the same regardless

of which pitchfork branch the solution exists on. All solutions on nested pitchforks

oscillate around the same spatially homogeneous stationary solution, which forms a

center in the phase portrait.

Corollary 4.9. Let v1 and v2 be two distinct stationary solutions to Equation

(50) existing on nested pitchfork branches of the 0-branch, i.e. oscillating around the

same center fixed point in the phase plane, and let z(v2 − β(v2)) = l(v2) = m. If

v1 /∈ EJv2 and l(v1) = i ≤ m then

(56) z(v1 − v2) = z(v1 − β(v1)) = l(v1).

Proof. We first recall that pitchforks of higher lap number are nested within

pitchforks of lower lap number. Thus it follows that in the phase plane v2 will be

nested within v1 or on the same orbit, or in other words, range(v2) ⊆ range(v1).

Thus z(v1 − v2) = l(v1). Recalling Lemma 3.5, this implies that z(v1 − v2) = l(v1) =

z(v1 − β(v1)). �

Applying Lemma 4.8 and Corollary 4.9 to Corollary 4.7, we see that if ũ(t, ·)
limits to a stationary solution v1(·) as t → ∞, where v1 is either on an n-branch or

within the same nested pitchfork bundle as v, then z(ũ(∞, ·)) = z(u(∞, ·)− v(·)) =
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z(v1(·)−v(·)) = z(v1(·)−β(v1)) = l(v1). This will become quite useful in the coming

chapters. While we have not addressed the relation between lap numbers where v1 is

on a pitchfork branch and v2 is not within the same nested pitchfork bundle or the

portion of the 0-branch encased; we shall see later that this relation is unnecessary.
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CHAPTER 5

Heteroclinic Connections and the Asymptotic Behavior of

Grow-Up Solutions

1. Existence of Heteroclinic Connections Originating from Bounded

Equilibria

In Chapter 4 we established elements of the behavior of the zero number of tra-

jectories in the unstable manifolds of bounded hyperbolic equilibria. We note that

the class of nonlinearities with only hyperbolic equilibria is generic in G [3, 19, 26].

Furthermore, the subset of nonlinearities dependent on u alone with only hyperbolic

equilibria are generic in the set of nonlinearities dependent on u alone. It is in this

chapter that we seek to determine not only the rough shape solutions have, but their

specific behavior as we let time tend towards infinity.

We wish to determine when connections between bounded equilibria do or do

not exist, i.e. when trajectories are “caught” by one specific bounded equilibrium as

opposed to another. Further, we seek to determine when trajectories eventually escape

all bounded regions and travel to infinity, i.e. are grow-up solutions. Toward this end,

we wish to know when certain heteroclinic connections are blocked, a priori. There

are a number of methods with which a heteroclinic connection may be blocked. These

variously depend on the nodal properties of the equilibria in question, the unstable

dimensions of the equilibria in question, and the existence of another equilibrium

to which a heteroclinic will link instead. Such blocking properties are crucial to

determining when a solution may grow to infinity. We say that an equilibrium v

has a heteroclinic connection to another equilibrium w if there exists some solution

u(t, ·) to Equation (45) such that lim
t→∞

u(t, ·) = w and lim
t→−∞

u(t, ·) = v. We may

also say that v connects to some function u(0, ·) which solves Equation (45) if there
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exists some solution u(t, ·) to (45) such that u(T, ·) = u(0, ·) for some time T ≥ 0

and lim
t→−∞

u(t, ·) = v. Thus, v may connect to u at some intermediary point along a

heteroclinic. We now introduce a lemma which will be crucial in determining when

heteroclinic connections are blocked.

Lemma 5.1. (Finite Blocking Lemma)

Let v and w be two distinct stationary solutions of Equation (45), v hyperbolic, and let

w(0, ·) be a function which solves Equation (45), such that w(0) lies strictly between

v(0) and w(0, 0). Then

z(v − w) ≤ z(w − w)

implies that v does not connect to w.

Proof. This proof is very similar to the proof of the Blocking Lemma for dissipa-

tive systems introduced in [6]. We proceed by contradiction. Assume that v connects

to w via a trajectory u(t, ·), t ∈ (−∞, T ]. Then ũ = u − w satisfies an equation of

the form

(57)
ũt = ũxx + bũ+ g̃(x, ũ)

g̃(x, ũ) := g(ũ+ w(x))− g(w(x)), g̃(x, 0) = 0.

Via the results of Lemma 4.6 and Corollary 4.7, we may assume that w = 0 without

loss of generality by working in the shifted system (57). Thus, either ṽ(0) < 0 <

w̃(0, 0) or w̃(0, 0) < 0 < ṽ(0). The nonincrease of the zero number z(u(t, ·)) on the

trajectory connecting v to w and the concomitant nonincrease of z(ũ(t, ·)) on the

trajectory connecting ṽ to w̃ imply that

z(v − w) = z(ṽ) ≥ z(w̃) = z(w − w).

Recalling Lemma 4.2, we know that z(ṽ) �= z(w̃) as ṽ(0) and w̃(0, 0) have opposite

sign. Therefore, z(v−w) > z(w−w) if v connects to w, and the lemma is proved by

contraposition. �
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Remark 5.2. If we let w(0, ·) be a stationary solution of Equation (45), then the

Finite Blocking Lemma 5.1 still holds with T = ∞. This makes the Finite Block-

ing Lemma crucial in determining when heteroclinic connections are a priori blocked

between bounded equilibria.

We have given Lemma 5.1 in this form rather than explicitly defining w as a

stationary solution because this generality provides a great deal of usefulness. It

can not only be applied to determine connection blocking among bounded equilibria,

but may also be used to block connections when solutions undergo grow-up or even

finite-time blow-up.

The Finite Blocking Lemma is additionally crucial to the a priori blocking of

heteroclinic connections to infinity. We say that an equilibrium v connects to infinity

if there exists a trajectory u(t, ·) in the unstable manifold of v such that u(t, ·) is a

grow-up solution, as defined in Chapter 2.

Lemma 5.3. (Infinite Blocking Lemma)

Let v and w be two distinct stationary solutions to (45), v hyperbolic. Let σ =

sign(w(0)−v(0)). Let u(t, ·) be any trajectory in the unstable manifold of v such that

sign(u(t, 0)− v(0)) = σ and z(u(t, ·)− v(·)) = j ≥ k for all t ∈ (tj,∞], with tj <∞.

If

z(v − w) ≤ k,

then u(t, ·) remains bounded. In other words, v does not contain any heteroclinic

connections to objects at infinity with zero number greater than or equal to k, i.e.

z(v − w) ≤ k implies that w blocks certain types of heteroclinics to infinity.

We may consider v to have a heteroclinic connection to a smooth object at infinity

denoted by Φ∞ if there exists a grow-up solution u(t, ·) in the unstable manifold of

v such that u(t,·)
‖u(t,·)‖L2

limits in C1
loc to a bounded function Φ(x) which has only simple

zeros and unit norm in L2. Then Φ∞ is the projection of Φ(x) onto the sphere at
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infinity, i.e. it is the limit of t · Φ(x) as time grows to infinity. In other words

lim
t→∞

‖ u(t, ·)
‖ u(t, ·) ‖L2

− Φ(x) ‖C1= 0,

so if the normalized shape profiles of u(t, ·) and a Φ(x) with simple zeros align as

u(t, ·) grows to infinite norm, u(t, ·) is considered to connect to the corresponding

Φ∞.

Proof. We proceed by contradiction. Assume that v connects to Φ∞ via a given

trajectory u(t, ·), t ∈ R. We require that the renormalized Φ∞ (i.e. Φ(x)) have only

simple zeros, which will be shown to hold for all relevant objects at infinity later in the

chapter. Thus, the zero number of Φ∞ is well-defined; let z(Φ∞) = z(Φ∞−v) = j and

sign(Φ∞(0)) = σ. This implies that u(t, ·) limits to infinity in the C1-norm (and thus

all lower norms) as t goes to infinity, i.e. u(t, ·) is a grow-up solution. Let w(0, ·) be
any function such that w(0) lies strictly between v(0) and w(0, 0) and z(w −w) = j.

By Lemma 5.1, v does not connect to w, since j ≥ k.

If v connects to any Φ∞ with z(Φ∞) = j via a trajectory u(t, ·), then in the shifted

equation v must connect to Φ∞ − w = Φ∞ via a trajectory ũ(t, ·). It then follows

that z(u(t, ·)− w(·)) ≥ j for all time t ∈ R. This implies that at some time T < ∞,

the value of w(0) must lie between u(T, 0) = w(0, 0) and v(0), since it lies between

Φ∞(0) and v(0). But this leads to a contradiction, as the Finite Blocking Lemma

prevents u(t, ·) from ever crossing w in its left intercept. Therefore, v cannot connect

to any object at infinity with zero number greater than or equal to k. Thus, any

trajectories in the unstable manifold of v where the shifted zero number never drops

below k must remain bounded. �

In other words, for any unstable hyperbolic equilibrium v of

(58)

ut = uxx + bu+ g(u)︸ ︷︷ ︸
f(u)

, x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

b > 0, g(u) ∈ G,
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we may block entire classes of heteroclinic connections to infinity given the existence

of appropriate bounded equilibria. Suppose there exists an equilibrium w of (58) such

that z(v − w) ≤ z(Φ∞) and w(0) lies between v(0) and Φ∞(0) for an infinitely large

function Φ∞(x). Then v will not connect to Φ∞. In short, w blocks v from connecting

to all objects at infinity above a specified zero number.

Lemma 5.3 thus leads us to the following conclusion: whatever is not blocked

connects to infinity in a specific way. We may consider this an Infinite Liberalism

Lemma, as it relates to the Liberalism Lemmas of dissipative dynamical systems

wherein bounded connections exist whenever they are not blocked.

Lemma 5.4. Let v be a hyperbolic stationary solution to (58) such that i(v) = n+1.

Fix k such that 0 ≤ k ≤ n and σ ∈ {1,−1}. If v is not blocked from connecting

to infinity in the sense of Lemma 5.3, or equivalently, if there does not exist any

stationary solution w to (58) such that l(w) = k, w /∈ EJv, and sign(w(0)−v(0)) = σ,

and when k = n = l(v), there additionally does not exist any w ∈ EJv such that

l(w) ≤ n, then there exists an initial condition u0 ∈ W u(v) and a corresponding

solution u(t, ·) to (58) such that the following hold:

(59)

z(u(t, ·)− v(·)) = k for all 0 ≤ t <∞

sign(u(t, 0)− v(0)) = σ

lim
t→−∞

u(t, ·) = v

lim
t→∞

‖ u(t, ·) ‖L2= ∞.

Proof. We may apply Lemma 4.6 for spatially homogeneous v, or Corollary 4.7

for non-spatially homogeneous v to the set of solutions of (58), choosing

δj :=

⎧⎨⎩ 0 for j ≥ k

∞ for j < k

sk := σ.

By Lemma 4.6 or Corollary 4.7 there exists an initial condition u0 ∈ W u(v) corre-

sponding to our choice of k and σ, and the lemma or corollary asserts that for the
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solution u(t, ·) corresponding to u(0, ·) = u0, the properties z(u(t, ·)− v(·)) = k and

sign(u(t, 0)− v(0)) = σ hold for all 0 ≤ t < ∞. Since u0 is in the unstable manifold

of v, this implies that lim
t→−∞

u(t, ·) = v.

Further, u(t, ·) cannot connect to some bounded equilibrium w /∈ EJv with lap

number less than k. If l(w) < k it follows that l(w) = z(w−β(w)) < k by Lemmas 3.5

and 3.10. For u(t, ·) to connect to w, lim
t→∞

z(u(t, ·)− v(·)) = z(w(·)− v(·)) < k. Thus,

the zero number in the shifted system z(ũ(t, ·)) = z(u(t, ·)− v) must drop at t = ∞.

To show why this is not possible, let us assume that lim
t→∞

u(t, ·) = w with l(w) < k.

Then lim
t→∞

ũ(t, ·) = w − v = w̃. Because w̃(t, ·) �= 0, it follows that w̃ must have only

simple zeros, as it solves the ordinary differential equation 0 = ũxx + bũ + g̃(x, ũ).

Any solution in a small neighborhood of w̃ must also have simple zeros. Thus, the

shifted zero number is constant over some small neighborhood of w̃, and therefore in

this neighborhood z(ũ) = z(w̃) = z(w − v) < k.

But if this is the case, then z(u(t, ·)−v(·)) would have to drop at some finite time

as u(t, ·) approaches w. Therefore, if u(t, ·) connects to a bounded equilibrium, this

equilibrium must fulfill z(w − v) = k, which occurs when l(w) = k for w /∈ EJv, or

when k = l(v) for w ∈ EJv. Since k = l(v) implies that k = n, and u(t, ·) will only
limit to stationary solutions w ∈ EJv if i(w) < i(v) and therefore l(w) ≤ n by Lemma

5.6, it follows that the only bounded stationary solutions to which u(t, ·) may connect

are those listed in the lemma. Additionally, Lemma 4.6 and Corollary 4.7 imply that

the sign of (u(t, 0)− v(0)) remains always positive or always negative. Therefore, if

u(t, ·) were to limit to any bounded equilibrium w, it would have to be one such that

w(0)− v(0) = σ.

Since there does not exist any bounded equilibrium w fulfilling these conditions,

we may conclude that u(t, ·) cannot limit to any bounded stationary solution. But as

Lemma 2.1 states, u(t, ·) can then not be bounded in any ball, no matter how large,

and therefore lim
t→∞

||u(t, ·)|| = ∞ in any appropriate norm in H2. Since the L2-norm

of u(t, ·) must be less than or equal to the H1, H2, and C1 norms, we choose it for

the formulation of our lemma, to guarantee the infiniteness of the other two norms.
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Finally, knowing that u(t, ·) grows to be infinitely large, we may conclude that there

exist infinitely many times tl > 0 at which z(u(tl, ·)− v(·)) = z(u(tl, ·)). �

Remark 5.5. We bring the reader’s attention to the effect the existence of a

blocking equilibrium (in the sense of Lemma 5.3) has on the possible connections to

infinity. To wit: if there exists a blocking equilibrium with a given lap number, there

will always exist additional blocking equilibria with higher lap numbers, up to the lap

number of the original equilibrium. Furthermore, the lack of a blocking equilibrium of

a given lap number will ensure the lack of blocking equilibria of lower lap numbers.

Continuing with our focus on an individual stationary solution v, let l(v) = n.

We presume that for a given k ≤ n we do not have any bounded stationary solution

w+
k defined such that w+

k lives on the k-branch, w+
k (0) > v(0) for Equation (58)

with fixed b = b∗. Then there are no blocking solutions above v with lap number

lower than k, i.e. there do not exist any bounded stationary solutions w+
i for i < k

wherein w+
i (0) > v(0). By replacing u, v, and w with −u, −v, and −w, we arrive at

the analogous statement for w−
k and the corresponding w−

i , with the minus denoting

w−
k (0) < v(0).

This follows from the fact that n-branches may not cross and the origination point

of an n-branch is always to the left of the origination point of an (n + 1)-branch. If

there does not exist any w+
k , then in the bifurcation diagram the k-branch does not

intersect the line at b = b∗ above the point v(0) on the vertical axis. Since i-branches

for i < k must be to the left of the k-branch, they may never intersect this line either,

which implies that there are no stationary solutions w+
i with lap number i < k for

Equation (58). The same holds for the w−
i in relation to the i-branches intersecting

b = b∗ below v(0). This property does not hold for pitchfork branches, as there may be

pitchforks of lower lap number without pitchforks of higher lap number ever coming

into existence. Note that this does not nullify the statement, since either l(v) < l(w),

or there must exist intermediary k-branches between the n-branch and the 0-branch.
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There are other circumstances which allow for the blocking of connections, which

we shall introduce at this point. For any stationary solution w ∈ E which is not

hyperbolic, i(w) denotes the number of strictly positive eigenvalues.

Lemma 5.6. If v, w ∈ E satisfy i(w) ≥ i(v), then v does not connect to w.

Proof. In [19], Henry proved that for v and w stationary solutions to (50), both

not necessarily hyperbolic, the stable and unstable manifolds of v and w intersect

transversely if they intersect at all. Since dim W u(v) = i(v) ≤ i(w) = codim W s(w),

it follows that dim W u(v)∩W s(w) ≤ 0. Since v �= w, it follows that v cannot connect

to w. �

Lemma 5.7. Let v ∈ E be a hyperbolic stationary solution of Equation (58) and

let w ∈ E be a second stationary solution, w �= v, such that z(v − w) ≥ i(v). Then v

does not connect to w.

Proof. Let us assume that v connects to w, i.e. that there exists an initial condi-

tion u0 ∈ W u(v) such that lim
t→−∞

u(t, ·) = v and lim
t→∞

u(t, ·) = w for the corresponding

solution u(t, ·). Then Lemma 5.6 implies that i(w) < i(v). Further, Fiedler and

Brunovský proved in [4] that z(u− v) ≥ i(v) for u ∈ W s(v)\{v} and z(u− v) < i(v)

for u ∈ W u(v)\{v}.
By Lemma 4.6 or Corollary 4.7, any stationary solution to which v connects must

satisfy z(w − v) = k and sign(w(0)− v(0)) = σ for some choice of 0 ≤ k < i(v) and

σ ∈ {1,−1}, due to the property that z(u0 − v) < i(v) for all initial datum u0 in

the unstable manifold of v. Thus k = z(v − w) < i(v), and the lemma is proved by

contraposition. �

Now that we have shown what circumstances allow a connection to be blocked,

we introduce a useful property of stationary solutions which provides information on

the stationary solutions that block other connections.
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Lemma 5.8. Given any non-trivial stationary solution v where i(v) = l(v)+1, let

w be the nearest stationary solution such that w /∈ EJv and l(w) ≤ l(v). If w exists,

then l(w) = i(w).

We define any stationary solution in a set to be the “nearest” stationary solution

to v if it minimizes |w(0)− v(0)| over all stationary solutions w in the given set.

Proof. If v is a stationary solution such that i(v) = l(v) + 1, then v cannot live

on a set of nested pitchforks. Thus, v must live on an n-branch. Due to the spacing

of n-branch origination points and the fact that they cannot intersect, it follows that

the n − 1-branch, if it exists, is between the n-branch and all lower branches, and

the n + 1-branch is between the n-branch and all higher branches. By Lemma 3.14,

we know that for v(0) = η, (η − η∗) · db
dη

< 0. It follows that the nearest branch,

both above and below EJv, must be either the n + 1-branch or the n-branch if any

stationary solutions exist either above or below EJv. Let us assume there exists a

stationary solution w /∈ EJv such that l(w) ≤ l(v), and let us fix l(w) = k.

For i(w) = k + 1, we would need (w(0) − η∗) · db
dη
(w(0)) < 0. But since lower

branches always exist to the left of higher branches, it follows that we must first

have a region where (η − η∗) · db
dη
> 0 on the n + 1-branch if it crosses the line at

b, then on the n-branch, and so forth for all intermediary branches, or else the k-

branch could not cross the line at b. But the stationary solutions in these regions

have i(wn+1) = l(wn+1), i(wn) = l(wn), . . .. Thus, there exists a stationary solution

wj between v and all solutions w such that l(w) = k < j ≤ n = l(v). Furthermore,

the continuity of the k-branch to its origination point implies that the k-branch itself

must first cross the line at b with (η − η∗) · db
dη
> 0. Therefore, excluding solutions in

EJv and those with l(w) > l(v), it follows that the nearest stationary solutions, both

above and below v, such that l(w) = k must fulfill l(w) = i(w) = k if they exist. If

they do not exist, then there are no stationary solutions with l(w) ≤ k, as all lower

lap number stationary solutions are to the left of the k-branch. �
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The combination of these blocking lemmas plays a crucial role in determining

which connections are excluded. Thus, for a given heteroclinic connection, the trajec-

tory either limits to a bounded equilibrium, of which we can ascertain a good deal of

information, or an object at infinity, which we have not yet completely defined. Let

us now study the asymptotic behavior on heteroclinics to infinity, which serve as our

guide to the behavior of general grow-up solutions.

2. Asymptotic Behavior of Grow-Up Solutions

In this section we shall study more closely the explicit behavior of grow-up so-

lutions in the unstable manifolds of bounded equilibria, i.e. those grow-up solutions

which form heteroclinics to infinity. Although we have determined a number of prop-

erties on these heteroclinic orbits through the combined implications of the y-map

and the blocking lemmas in the previous section, we have not yet detailed exactly

what objects we limit to. We proceed in this section to study the grow-up solutions

themselves.

Let us fix a hyperbolic stationary solution v to

(60)

ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

b > 0, g(u) ∈ G
with i(v) = n + 1. Recall that Equation (60) induces in any solution a Fourier

eigendecomposition based on the Neumann boundary value modes cos(kx). We here

introduce some notation which will be of great use in the coming chapters. Loosely

speaking, we let K+ denote the number of cos(kx) modes which have “escaped to

infinity” and have positive left intercept. The related term K− denotes the number

of modes with negative left intercept which “escape to infinity”.

They are more rigorously defined as follows: let K+ be the smallest integer k <

n + 1 such that there exists at least one bounded equilibrium w with l(w) = k,

sign(w(0)−v(0)) = 1, and w /∈ EJv. If there exist no bounded equilibria w such that

w(0)− v(0) > 0, then we define K+ = i(v). If there exist no such bounded equilibria
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w /∈ EJv, but l(v) = n and there exist any bounded equilibria w ∈ EJv such that

w(0) > v(0) and l(w) ≤ l(v), then K+ = i(v) − 1 = n. If K+ < i(v), we define

wK+ as the stationary solution w with l(w) = K+ and sign(w(0)− v(0)) = 1 which

minimizes w(0)−v(0). In the case of a dissipative system, K+ = 0. Correspondingly,

we let K− be the smallest integer k < n + 1 such that there exists at least one

bounded equilibrium w with l(w) = k, sign(w(0) − v(0)) = −1, and w /∈ EJv.

If there exist no bounded equilibria w such that w(0) − v(0) < 0, then we define

K− = i(v). If there exist no such bounded equilibria w /∈ EJv, but l(v) = n and

there exist any bounded equilibria w ∈ EJv such that w(0) < v(0) and l(w) ≤ l(v),

then K− = i(v) − 1 = n. If K− < i(v), we define wK− as the stationary solution w

with l(w) = K− and sign(w(0)− v(0)) = −1 which minimizes −w(0) + v(0). Again,

for a dissipative system K− = 0. Lemma 3.4 implies that if wK+ is a non-pitchfork

stationary solution and (K+)2 > b, then K+ is the next integer after
√
b, and if wK−

is a non-pitchfork stationary solution and (K−)2 > b, then K− is the next integer

after
√
b.

Remark 5.5 ensures that, outside of pitchfork branches, there do not exist any

bounded equilibria not in EJv with left boundary value greater than v(0) and lap

number less than K+. Similarly, it ensures that, again excepting pitchfork branches,

there do not exist any bounded equilibria not in EJv with left boundary value less

than v(0) and lap number less than K−. Then Lemma 5.4 on infinite liberalism

states that there exist heteroclinics in W u(v) which grow to infinity with K+ +K−

distinct behaviors denoted by sign and asymptotic zero number. In the vast majority

of cases, there will be infinitely many heteroclinics of each type, in a small minority of

situations (such as when the difference between the Conley index of v and its limiting

object differs by only 1), there will be only one heteroclinic of a given type.

Let us consider a specific grow-up solution in W u(v). Let u±k (t, ·) denote the

solution with z(u±k (t, ·) − v(·)) = k for 0 ≤ t < ∞ with u(t, 0) > v(0) for u+k and

u(t, 0) < v(0) for u−k . For u
+
k it is clear that k < K+. For u−k it is clear that k < K−.
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Since L2, H1, and H2 are all Hilbert spaces with the standard inner products,

each has a countable orthonormal basis. We fix a related orthonormal basis for each,

denoted {Φj}j∈N0
, as follows: we define Φj as the jth eigenfunction of the operator

A = −Δ− bI, i.e.

(61)

−ΔΦj − bΦj = μjΦj

d

dx
Φj(0) =

d

dx
Φj(π) = 0

μj = j2 − b

and normalize it in the appropriate norm:

(62)

L2 : Φ0(x) =
1√
π
, Φj(x) =

√
2

π
cos(jx), j > 0

H1 : Φ0(x) =
1√
π
, Φj(x) =

√
2

π(1 + j2)
cos(jx), j > 0

H2 : Φ0(x) =
1√
π
, Φj(x) =

√
2

π(1 + j2 + j4)
cos(jx), j > 0.

Thus, we can write any point on a trajectory u(t, ·) ∈ X = H2∩{Neumann Boundary
Conditions} in terms of the L2 basis: u(t, ·) =

∞∑
j=0

ûj(t)Φj(x), where ûj(t) = 〈u,Φj〉0.
This also implies that

(63)

||u(t, ·)||0 =
∞∑
j=0

û2j(t)

||u(t, ·)||1/2 =
∞∑
j=0

(1 + j2)û2j(t)

||u(t, ·)||1 =
∞∑
j=0

(1 + j2 + j4)û2j(t).

Lemma 5.4 proved that u+k (t, ·) grows to infinity in the ‖ · ‖0 norm, and thus in all

three above norms and any equivalent norms. To investigate what object at infinity

the solution limits to, we must study the growth of each individual mode. Taking the
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inner product of Equation (60) with the basis element Φj yields

(64)
d

dt
ûj = (b− j2)ûj + 〈g(u(t, ·)),Φj〉0 .

Recalling that g(u) is uniformly bounded, this implies that the inner product of g(u)

and any basis element must also be bounded. Let us denote 〈g(u(t, ·)),Φj〉0 by gj(t).
Equation (64) then becomes

(65)
d

dt
ûj(t) = (b− j2)ûj(t) + gj(t),

which is simply a first order inhomogeneous ordinary differential equation, and easily

solved:

(66) ûj(t) = e(b−j2)tûj(0) +

∫ t

0

e(b−j2)(t−s)gj(s)ds.

Let us return to the specific solution we wish to study. For ease of notation, let

us simply refer to u±k (t, ·) as u(t, ·). If j2 > b, then b − j2 < 0. Therefore, all modes

j with j2 > b lose strength as time goes to infinity, and in fact each of these modes

must be bounded for all time. This follows explicitly from the following calculations:

Let us choose initial time t = 0 in a small neighborhood of a bounded equilibrium v,

ensuring that ûl(0) is bounded for all l. Let j2 > b. Then,∫ t

0

e(b−j2)(t−s)(−Γ)ds ≤
∫ t

0

e(b−j2)(t−s)ĝj(s)ds ≤
∫ t

0

e(b−j2)(t−s)(Γ)ds∫ t

0

e(b−j2)(t−s)(Γ)ds =
Γ

j2 − b
(1− e(b−j2)t)

⇒ −Γ

j2 − b
(1− e(b−j2)t) ≤

∫ t

0

e(b−j2)(t−s)ĝj(s)ds ≤ Γ

j2 − b
(1− e(b−j2)t)

j2 > b⇒ Γ

j2 − b
(1− e(b−j2)t) ≤ Γ

j2 − b
and

−Γ

j2 − b
(1− e(b−j2)t) ≥ −Γ

j2 − b

⇒ − Γ

j2 − b
≤
∫ t

0

e(b−j2)(t−s)ĝj(s)ds ≤ Γ

j2 − b
.

Further, e(b−j2)tûj(0) ≤ ûj(0), thus it is clear that all modes where j >
√
b remain

bounded for all time.

Therefore, denoting Φ∞
+,k = lim

t→∞
u+k (t, ·) and Φ∞

−,k = lim
t→∞

u−k (t, ·) for any k < K+ or

k < K− respectively, it follows that Φ∞
±,k ∈ P
√b�X with PN the orthogonal projection
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onto the N + 1 lowest modes. We recall that Φ∞ is the projection of the normalized

limit, which we study explicitly in this and the succeeding chapters.

Let us study exactly how large a role any particular basis element plays in the

construction of u+k (t, ·) in the limit. Setting u(t, ·) = u±k (t, ·) and Φ±
j (x) = ±Φj(x),

|| u(t, ·)
||u(t, ·)||0 − Φ±

j (·)||20 = 1− 2

〈
u(t, ·)

||u(t, ·)||0 ,±Φj(·)
〉

0

+ 1

= 2− 2

〈
u(t, ·)

(
∑∞

l=0 û
2
l (t))

1/2
,±Φj(·)

〉
0

= 2∓ 2

∫ π

0

u(t, x)

(
∞∑
l=0

û2l (t))
1/2

Φj(x)dx

= 2∓ 2

(
∞∑
l=0

û2l (t))
1/2

∫ π

0

∞∑
m=0

ûm(t)Φm(x)Φj(x)dx = 2∓ 2
ûj(t)

(
∞∑
l=0

û2l (t))
1/2

⇒ lim
t→∞

|| u(t, ·)
||u(t, ·)||0 − Φ±

j (·)||20 = 2∓ 2 lim
t→∞

ûj(t)

(
∞∑
l=0

û2l (t))
1/2

.

Lemma 5.9. The rescaled trajectory u(t,·)
‖u(t,·)‖0 can only limit to one particular Φ±

j

in L2, and will limit to Φ±
j for a given j if and only if

lim
t→∞

û2j(t)∑∞
l=0 û

2
l (t)

= 1

and u(t, 0) has the same sign as Φ±
j (0) for all t ∈ [t∗,∞), t∗ finite.

Proof. If u(t, 0) and Φ(0) have opposite sign for all t ≥ t∗, then ∓2 lim
t→∞

ûj(t)

(
∞∑
l=0

û2
l (t))

1
2

≥ 0, and therefore lim
t→∞

‖ u(t,·)
‖u(t,·)‖0 − Φj(·) ‖20≥ 2, thus it is clear that u(t,·)

‖u(t,·)‖0 can only

limit to a Φ±
j strongly if they have the same sign at their left intercepts past some

finite time.

If the norm of u(t, ·) grows infinitely large, it follows that at least one mode ûj(t)

must grow infinitely large as well. This is due to the fact that for every j ≥ √
b,

| ûj |≤ C
j2
. Let us assume that more than one mode ûj grows infinitely large. If not,

then all ûm for m �= j must remain bounded. Thus lim
t→∞

∞∑
l=0

û2l = lim
t→∞

û2j and it clearly

follows that

lim
t→∞

û2j(t)
∞∑
l=0

û2l (t)
= 1
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and

lim
t→∞

ûm(t)

(
∞∑
l=0

û2l (t))
1/2

= 0

for all m �= j.

Let us denote the minimal j for which the jth mode grows infinitely large by the

subscript i, i.e. we denote the mode that escapes to infinity with lowest subscript

by ûi. Let ûj be any other infinitely growing mode. Then j ≥ i + 1. Since the

nonlinearity g is bounded by −Γ ≤ g(u) ≤ Γ, it follows that 0 ≤
∞∑
l=0

ĝ2l (t) ≤ Γ2 and

thus −Γ ≤ ĝl(t) ≤ Γ for any l. Let us first assume that b �= l2 for any integer l. Then

b �= i2 and b �= j2.

Taking the L2-inner product of Equation (60) with the ith and jth modes respec-

tively yields equations for ûj(t) and ûi(t) as before:

(67)
d

dt
ûi(t) = (b− i2)ûi(t) + ĝi(t)

(68)
d

dt
ûj(t) = (b− j2)ûj(t) + ĝj(t).

As both Equations (67) and (68) are first order linear inhomogeneous equations, we

may construct their general solutions via combining their homogeneous solutions with

particular solutions. Thus, we may write the corresponding solutions to Equations

(67) and (68) as follows:

(69) ûi(t) = e(b−i2)tûhi (0)︸ ︷︷ ︸
ûh
i (t)

+

∫ t

∞
e(b−i2)(t−s)gi(s)ds︸ ︷︷ ︸

ûp
i (t)

(70) ûj(t) = e(b−j2)tûhj (0)︸ ︷︷ ︸
ûh
j (t)

+

∫ t

∞
e(b−j2)(t−s)gj(s)ds︸ ︷︷ ︸

ûp
j (t)

where ûhi (0) = ûi(0)−
∫ 0

∞ e(i
2−b)sgi(s)ds and û

h
j (0) = ûj(0)−

∫ 0

∞ e(j
2−b)sgj(s)ds. Despite

our defining ûi(t) and ûj(t) as grow-up modes, both particular solutions are bounded.

More specifically, − Γ
b−i2

≤ ûpi (t) ≤ Γ
b−i2

and − Γ
b−j2

≤ ûpj(t) ≤ Γ
b−j2

. It is clear that the

growth to infinity is determined by the homogeneous term in each equation. Thus,
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the ith mode ûi(t) grows exponentially faster than jth mode ûj(t) (to the order of

e(j
2−i2)t), and therefore

lim
t→∞

ûj(t)

ûi(t)
= 0.

Due to this exponential staggering, u(t,·)
‖u(t,·)‖0 can only limit to one Φ±

j . But we let j

be any arbitrary infinitely growing mode with less than minimal index, therefore this

holds true for all modes growing to infinity with index greater than i. Thus, for any

m < b2,

lim
t→∞

ûm(t)

ûi(t)
= lim

t→∞
ûm(t)

(
∞∑
l=0

û2l (t))
1/2

= 0

and

lim
t→∞

û2i (t)

û2i (t)
= lim

t→∞
û2i (t)

∞∑
l=0

û2l (t)
= 1.

Finally, let us presume that l2 = b for one particular l. Then, returning to

Equation (65), it follows that the growth of ûl(t) is bounded linearly, i.e. −Γt ≤
ûl(t) ≤ Γt. If there exist any unbounded modes i ≤ l, then ûl(t)

ûi(t)
clearly limits to zero

as time goes to infinity, and thus we may repeat the above calculations for all other

growing modes. Therefore, u(t,·)
‖u(t,·)‖0 may only limit in the L2-norm to one particular

Φ±
j , which will be designated by the lowest index i for which ûi(t) grows to infinity,

and then lim
t→∞

û2
i (t)∑∞
l=0 û

2
l
= 1. �

Therefore, as t grows to infinity, the lowest mode which does not remain bounded

must win, and the shape profile of a grow-up solution u(t, ·) must approach that of one

of the basis functions Φj = cj cos(jx) as it grows to infinity. This is the motivation

behind our previous choice of notation Φ∞ for the limiting objects. Recall that we

have only explicitly stated that the modes j >
√
b must remain bounded. Now, let

us consider any k < j <
√
b. If lim

t→∞
‖ u(t,·)

‖u(t,·)‖0 − Φσ
j (·) ‖20= 0, then lim

t→∞
û2
j (t)∑∞
l=0 û

2
l
= 1 by

Lemma 5.9. But then j must be the lowest mode which does not remain bounded.

If this were true, then the kth mode would have to be bounded while the jth grew

to infinity. Thus, at some time t∗ the zero number of the shifted equation would
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be greater than k. But this contradicts a fundamental property of scalar parabolic

PDEs. Thus, if u(t,·)
‖u(t,·)‖0 =

uσ
k (t,·)

‖uσ
k(t,·)‖0

limits to Φσ
j (·), then j ≤ k.

Because each of the Φj are distinctly bounded away from the others, it follows that

if u(t,·)
‖u(t,·)‖0 limits to a given Φj in the C1-norm, it must limit to the same Φj in the H2-

norm. The question now becomes to which object we limit, or in other words, which

ûj wins and controls the outcome. For anything but the most ideal nonlinearities, it

becomes impossible to explicitly define the ûj(t). Thus, we can exclude modes from

winning at infinity (those for which j2 > b), but we cannot determine which mode

wins with only the calculations above. This is why we introduced the study of nodal

properties in previous chapters. It is these nodal properties which allow us to narrow

down and eventually determine which mode wins.

Unfortunately, we are unable to study the limit in the H1-norm or the H2-norm,

as this would require the use of either the H1 inner product 〈u, v〉1/2 =
∫ π

0
uv+uxvxdx

or the H2 inner product 〈u, v〉1 =
∫ π

0
uv+uxvx+uxxvxxdx. Taking the inner product

of Equation (60) with any basis element Φj will yield a d
dx
g(u(t, x)) d

dx
Φj(x) term in

either inner product. For example, in the H1-norm we arrive at the equation

(71)

d

dt
ûj(t) = (b− j2)ûj(t) +

g′j(t)j
2

1 + j2
+

gj(t)

1 + j2

gj(t) = 〈g(u(t, ·)),Φj(·)〉0 , g′j(t) =
〈
u(t, ·)dg

du
(u(t, ·)),Φj(·)

〉
0

,

where ûj for the H1-norm is equal to 1√
1+j2

ûj for the L2-norm. Even for a fixed

nonlinearity g(u) we are unable to determine g′j(t) as it is nonlinearly dependent on

the function u(t, ·), which frequently cannot be written explicitly. Admittedly, the

influence of the bounded and Lipschitz nonlinearity must wane as u(t, ·) grows large,
since for any fixed time T and large ||u(T, ·)|| = U , it follows that u(t,·)

U
solves

(72) wt = wxx + bw +
1

U
g(Uw)

at time T . Yet the higher norms of the g(u) term become untenable as they con-

tain multiple instances of u2x, a quantity which grows to infinity for non-spatially
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homogeneous grow-up solutions. As we can see in the explicit formulae

(73)

||g(u(t, ·))||21/2 =
∫ π

0

[g2(u(t, x)) + g2u(u(t, x))u
2
x(t, x)]dx

||g(u(t, ·))||21 =
∫ π

0

[g2(u(t, x)) + g2u(u(t, x))u
2
x(t, x)

+g2uu(u(t, x))u
4
x + g2u(u(t, x))u

2
xx + 2gu(u(t, x))guu(u(t, x))u

2
xuxx]dx,

direct calculation becomes useless. If we were unable to prove the limit in higher

norms, we could not determine whether a trajectory with shifted zero number k for

0 ≤ t < ∞ limits to an object at infinity with zero number k or an object with zero

number less than k, as the y-map alone does not prohibit a drop in zero number at

infinity.

We illustrate this conundrum as follows. Let us consider a grow-up solution u(t, ·)
with initial condition u0 in the unstable manifold of a stationary solution v such that

z(u(t, ·)−v(·)) = 3 for 0 ≤ t <∞ and u(0)−v(0) > 0. Based on such information, it

is possible that u(t,·)
||u(t,·)||0 limits to

Φ+
3

‖Φ+
3 ‖0 in the H2-norm and therefore all lower norms,

and that there is no drop in the shifted zero number at infinity. But based on the

same information, it is also possible that u(t,·)
‖u(t,·)‖0 limits to

Φ+
1

‖Φ+
1 ‖0 , for example if the

shape of u(t, ·) is that of cos(x) plus a small squiggle at x = π
2
, as in Figure 6. As

u(t, ·) grows to infinity, the size of the perturbation in u(t,·)
||u(t,·)||0decreases, but slowly

enough so that u(t, ·) only truly matches cos(x) and NOT cos(3x) at time infinity,

i.e. the zero number does not drop in finite time. In such a case, u(t,·)
||u(t,·)||0 will still

be L2-close to
Φ+

1

‖Φ+
1 ‖0 as time increases to infinity, but not H2-close or C1-close. It is

only in higher norms that we are able to distinguish our limiting objects. We must

therefore introduce a new tool in order to truly ascertain to what objects at infinity

these heteroclinic trajectories will connect.
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Figure 6. A solution with 3 zeros which might limit to Φ+
1
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CHAPTER 6

The Completed Inertial Manifold

Beginning in 1985 with the work of Foias, Sell, and Temam [10, 11], the inertial

manifold was introduced as a tool for the study of the long-time behavior of solu-

tions to dissipative nonlinear evolutionary equations. The classical inertial manifold

is a finite-dimensional Lipschitz manifold which is positively invariant and attracts

all trajectories exponentially [27]. The classical inertial manifold, whether studied

for scalar parabolic PDEs [11, 27, 39] or higher-dimensional equations [32], was

restricted to dissipative systems of the form

(74) ut + Au = R(u),

on a Hilbert space H . For the classical inertial manifold, A is restricted to be a

positive, linear, unbounded, self-adjoint operator in H , with domain D(A) ⊂ H and

compact inverse [39]. In addition, R(u) is a bounded operator which is restricted

to be “dominated” by A such that solutions of Equation (74) are attracted to some

finite absorbing set. In particular, there exists a compact global attractor for the

dynamical system corresponding to Equation (74) [11, 27, 39]. In fact, the classical

inertial manifold theory involves the construction of a “prepared” form of the equation

which uses a mollifier to eliminate noxious behavior at large ‖u‖ and smoothes the

nonlinearity sufficiently such that the “prepared nonlinearity” is globally Lipschitz

from one fractional power space D(Aα) into another, D(Aβ). The consequences of

this mollification are minimal because the attractor is bounded and one may always

extend the mollifier to be large enough that it leaves untouched any fixed bounded

region.

Herein we will introduce a method for constructing an inertial manifold for slowly

non-dissipative scalar reaction-diffusion equations of the form
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(75)

ut + Ãu− bu = g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

b > 0, g(u) ∈ C2, g(u) bounded,

g globally Lipschitz with values in H,

where Ã is a nonnegative, linear, unbounded, self-adjoint operator with compact

inverse acting on the Hilbert space H , and D(Ã) ⊂ H . In order that (75) define

a slowly non-dissipative dynamical system, we require that b > μ̃0, where μ̃0 is the

smallest eigenvalue of the nonnegative operator Ã. In the case of Ã = − d2

dx2 , this is

equivalent to b > 0. An operator Ã fulfilling these conditions is a sectorial operator,

and thus the operator A = Ã− bI is also a sectorial operator [18, 33].

The completed inertial manifold will retain the crucial reductive powers of the

classical inertial manifold. This inertial manifold will not require the use of a mollifier,

thus it will have no constraints preventing its existence arbitrarily far from the origin.

In this sense, the inertial manifold is completed, as it is a manifold defined on the

complete Hilbert space rather than on a bounded subset. The reductive powers which

inertial manifolds provide will allow us to uniquely determine the limiting object of

any grow-up heteroclinic orbit.

While the existence of a completed inertial manifold for Equation (75) with Ã =

− d2

dx2 is interesting in its own right, and reduces the equation to a finite-dimensional

ODE, this in itself is not enough to resolve the difficulty presented at the end of

Chapter 5. It is our ability to prove that such an inertial manifold not only exists,

but is Lipschitz with values in C1 that is responsible for our focus on the theory of

inertial manifolds and our extension of these objects to slowly non-dissipative systems.

Due to Lemma 4.2, we know that shifted grow-up solutions u(t, ·)− v(·) have simple

zeros for t in an open dense subset of R+. Furthermore, the times when a shifted

solution will not have simple zeros are the dropping times. Thus, for t ∈ [t∗,∞) where

t∗ is the largest finite dropping time, the solution u(t, ·)− v(·) has only simple zeros,
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as do all possible limiting objects Φ±
i . It follows that a grow-up solution with simple

zeros cannot be both C1-close to a Φ±
i with simple zeros and have a different zero

number from Φ±
i . Thus, we are able to prevent a drop in the zero number at infinity

for grow-up solutions. Combining this with our knowledge of the zero number for

all finite forward time, thanks to the y-map, we are able to uniquely determine the

limiting object on heteroclinic orbits which escape to infinity.

1. The Classical Inertial Manifold

The classical inertial manifold for scalar nonlinear evolutionary equations of the

type described above was first derived in [11]. For the class of equations described in

the previous section, Foias, Sell, and Temam proved the existence of a manifold M
with the following properties [11]:

• M is a finite-dimensional Lipschitz manifold with values in H .

• M is positively invariant, i.e. S(t)M ⊆ M for all t ≥ 0.

• M attracts exponentially all solutions of (74).

The manifold M is constructed as the graph of a Lipschitz function which maps

PH into QH , where P is an orthogonal projection with finite-dimensional range in

the Hilbert Space H and Q = I − P . In the classical notation, Ψ was called Φ, but

we use Ψ here to distinguish the function used in inertial manifold construction from

basis vectors and limits of solutions at infinity. One of the major requirements on the

evolutionary equation was that the operator A fulfill a “Spectral Gap Condition”.

The spectral gap condition has a variety of forms, the most general of which we

introduce here:

Given that the prepared nonlinearity Rθ is Lipschitz from one fractional power space

D(Aα) into another, D(Aβ), with β ≤ α, so that κ = α − β < 1, and given that λn

is the nth eigenvalue of the operator A, there exists some integer n ≥ 1 and constant

C such that

(76)
λ1−κ
n+1 > C

λn+1 − λn ≥ C(λκn+1 + λκn).
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If Rθ is Lipschitz from D(Aβ) into D(Aβ), the spectral gap condition reduces to

(77) λn+1 − λn ≥ C.

It is the spectral gap condition which determines what finite-dimensional subset the

operator P projects onto, and therefore determines the dimension of the inertial

manifold M. One might be inclined to guess that the dimension of the inertial

manifold ought to be the highest Morse index among the equilibria of the evolutionary

equation, but this only provides a lower bound. In order to satisfy the spectral gap

condition, one may increase the number of modes onto which the operator P projects,

and in so doing ensure the attractive properties M must have in order to fulfill the

definition of an inertial manifold.

The function Ψ is derived as the fixed point of a mapping J , which is a Lyapunov-

Perron transformation. The semigroup S(t) of Equation (74) has both the Squeezing

Property and the Cone Property, also known as the Strong Squeezing Property [8,

12, 27]. Thanks to these squeezing properties, the finite-dimensional manifold M
attracts exponentially all trajectories, and thus contains the universal attractor of

(74).

2. Constructing a Completed Inertial Manifold

We must first define a number of elements at the core of the construction of the

inertial manifold, as the original definitions do not apply for systems which exhibit

grow-up. Let b > 0 be fixed. Rather than requiring our operator A to be positive, we

instead define

(78) A := Ã− bI,

with the operator Ã defined as above. We refer to A as the “shifted Ã operator”.

This substitution transforms Equation (75) into ut + Au = g(u). Note that for

Ã = −Δ, A is the operator introduced in Section 5.2. By the Spectral Theorem,

H is equipped with an orthonormal basis comprised of the eigenfunctions {Φi}N0

of the operator A with Neumann boundary conditions. We remind the reader that
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while the eigenfunctions of A form an orthogonal basis for all fractional power spaces

D(Aα), they must be normalized differently depending on the power space. This was

illustrated in (63) for the choice of A = −Δ− bI. Henceforth we use 〈·〉0 and || · ||0 to
denote the inner product and norm corresponding to H = D(A0). For A = −Δ− bI,

these correspond to the inner products and norms defined in Chapter 2. Thus, we

are provided with a Fourier decomposition of u:

(79) u(t, ·) =
∞∑
j=0

ûj(t)Φj(x), ûj(t) = 〈u(t, ·),Φj(·)〉0 .

Owing to the fact that the basis we have fixed for H is the set of eigenfunctions of A,

with the set of eigenvalues of A denoted by μj as before, we may define a fractional

power of A via a Fourier decomposition as well. For 0 ≤ α ≤ 1

(80) Aαu(t, ·) =
∑
μj≥0

μα
j ûj(t)Φj(x) +

∑
μj<0

(−1)α(−μj)
αûj(t)Φj(x).

It is clear that D(Aα) = D((Ã)α). We recall that if A is a sectorial operator on a

Banach space X, for each α ≥ 0 we may define the corresponding fractional power

space via

Xα = D(Aα
1 ) with the graph norm

‖ x ‖α=‖ Aα
1x ‖0, x ∈ Xα

for A1 = A + aI, with a chosen such that the real part of the spectrum of A1 is

positive [18]. Thus 〈u, v〉α = 〈Aα
1u,A

α
1v〉0. We define a = b+1 in order to circumvent

any difficulties originating if μj = 0. For μ0 > 0 the definition of Aαu(t, ·) holds for
−1 ≤ α ≤ 1.

2.1. The Strong Squeezing Property. The idea behind the various squeezing

properties is that for the Hilbert space over which a nonlinear evolutionary equation

acts, there is a natural splitting into a finite-dimensional subspace and its infinite-

dimensional orthogonal complement through which the finite-dimensional component

of the solution dominates. There are a number of useful texts which detail the con-

struction of this splitting and use varying but related methods for proving the squeez-

ing property. For consistency we adhere with the methods found in [27].
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Without specifying a particular value for N , we define the projections PN and

QN as follows, noting the similarity to the basis elements referenced in Chapter 5.

Let PN be the orthogonal projection onto the first N + 1 Fourier eigenfunctions Φj

of the operator A = Ã− bI with Neumann boundary conditions (which are also the

eigenfunctions of the operators Ã and A1). We denote the jth eigenvalues corre-

sponding to the operators A, Ã, and A1 by μj , μ̃j, and μj,1 respectively. We order

the eigenfunctions so that μj+1 ≥ μj for the eigenvalues μj of A, and thus μ̃j+1 ≥ μ̃j

and μj+1,1 ≥ μj,1. For the specific case of Ã = −Δ,

(81) Φj(x) = cj cos(jx), μj = j2 − b, μ̃j = j2, μj,1 = j2 + 1,

where the cj are the constants given in (62). We define QN = I−PN as the projection

onto the orthogonal complement of PN . Thus, we may divide any solution u ∈ D(A) ⊂
H into two components p and q such that u = p+ q = PNu+QNu, where

(82)

p = PNu =

N∑
j=0

〈u,Φj〉0Φj

q = QNu =

∞∑
j=N+1

〈u,Φj〉0Φj .

By applying PN and QN to Equation (75) we obtain the system

(83)
pt = −Ãp+ bp+ PNg(p+ q)

qt = −Ãq + bq +QNg(p+ q).

The portion of a solution u(t, ·) in PNH is referred to as the “low modes” of u

and the portion in QNH as the “high modes” [27]. Our goal is to express the Fourier

coefficients of the high modes in terms of the Fourier coefficients of the low modes.

We may always construct such a definition when allowing for error, i.e.

(84) ûj(t) = ψj(û0, . . . , ûN) + error for all j > N.

This is generally referred to as a “slaving rule”, as the higher modes are enslaved to

the lower [14]. We require that any ψj be Lipschitz continuous from PNH into QNH

for all j, noting that PNH = PD(A). We are looking for a specific ψ such that the
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error becomes zero. Although it is simple to find an initial condition for which (84)

does not hold with zero error, i.e. where the initial condition is not on the manifold

defined by the graph of ψ, the goal is to show that the error will then decay to zero

exponentially with time. Additionally, we must prove that if (84) holds with zero

error at some initial time, it must then hold without error for all forward time. By

applying the definitions of p and q to (84) we may rewrite (84) as

(85) q = ψ(p) + error,

where ψ : PNH → QNH . The graph of ψ

(86) G[ψ] ≡ {u : u = p+ ψ(p), p ∈ PNH}

defines an (N +1)-dimensional manifold M in the Hilbert space H . Our requirement

that (85) remains an equality in forward time is equivalent to requiring M to be

positively invariant. The requirement that the error decay exponentially to zero is

equivalent to M being exponentially attracting, or

(87) ||q(t)− ψ(p(t))|| ≤ C(||u0||)e−kt

for some k > 0. As discussed in Section 6.1, the spectral gap condition is based on the

extent to which the nonlinearity is Lipschitz continuous, i.e. the level of regularity the

evaluation operator g provides. We shall only require that g is globally Lipschitz with

values in H . This may seem insufficient to our ultimate goals, in view of the C1 target

set required by nodal properties and the fact that H = L2 for Ã = −Δ . But once

the Lipschitz property in H is established, we will prove that this is indeed sufficient

to prove convergence in C1. We prove the strong squeezing property outright as our

choices of operator A and nonlinearities g(u) ∈ G are sufficiently well-behaved to

allow us to forgo the need for a weaker version to prove the stronger.

There are multiple equivalent formulations of the squeezing property in the liter-

ature; as stated before we follow the one provided by [27]:

The strong squeezing property holds if, for any two solutions u(t) and u(t), we have
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the cone invariance property:

(88) ||q(0)− q(0)||0 ≤ ||p(0)− p(0)||0

implies that for all t > 0

(89) ||q(t)− q(t)||0 ≤ ||p(t)− p(t)||0,

and the decay property: if, for some t > 0

(90) ||q(t)− q(t)||0 ≥ ||p(t)− p(t)||0,

then

(91) ||q(t)− q(t)||0 ≤ ||q(0)− q(0)||0e−kt

for some k > 0.

It is at this point that we introduce the form of the spectral gap condition which

we shall use for the construction of our unconstrained inertial manifold. There are

many formulations of the spectral gap condition in various works on the subject of

inertial manifolds. This is owing to the fact that there is a minimum necessary gap

dependent on the particulars of the evolutionary equation in question, but the author

need not define their spectral gap condition to state the minimum gap if the existence

of a wider gap is both provable and advantageous. For equations of the form (75),

the “Spectral Gap Condition” is given by the following lemma.

Lemma 6.1. If there exists an N such that the eigenvalues μN and μN+1 of A

satisfy

(92)
μN > 0

μN+1 − μN > 4C1,

where C1 is the Lipschitz coefficient in H of g(u), then the strong squeezing property

holds with the k in (91) bounded below by

(93) k > μN + 2C1.
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Proof. Let us define the difference of two solutions u and u by w(t) = u(t)−u(t).
We study what happens on the boundary of the “cone”

(94) {(u, u) | ||QN(u− u)||0 ≤ ||PN(u− u)||0} .

To show that trajectories are unable to leave this cone we show that

(95)
d

dt
(||Qw||0 − ||Pw||0) < 0 for ||Qw||0 = ||Pw||0,

which illustrates why the cone invariance property is named as such. The equation

of the difference of two solutions w(t, ·) is

(96)
dw

dt
+ Aw = g(u)− g(u),

and we write

p = PNw, q = QNw, w = p+ q.

Since the operator A commutes with PN , we may take the inner product of Equation

(96) with p to obtain

(97)
1

2

d

dt
||p||20 + 〈Ap, p〉0 = 〈g(u)− g(u), p〉0 .

It is obvious that 〈Ap, p〉0 ≤ μN ||p||20 for all u ∈ H . Additionally, we may derive

bounds on 〈g(u)− g(u), p〉0 as follows:

||g(u)− g(u)||0 ≤ C1||u− u||0 = C1||w||0

⇒ 〈g(u)− g(u), p〉0 ≤ ||g(u)− g(u)||0 · ||p||0 ≤ C1||u− u||0 · ||p||0

= C1||w||0 · ||p||0.

Plugging these inequalities into Equation (97) yields

(98)
1

2

d

dt
||p||20 ≥ −μN ||p||20 − C1||w||0 · ||p||0,

or when ||q(0)||0 = ||p(0)||0, denoting the right-hand time derivative as d
dt+

(
d

dt+
||p||0)t=0 ≥ −μN ||p||0 − C1||w||0 = −μN ||p||0 − C1||p+ q||0

≥ −μN ||p||0 − C1(||p||0 + ||q||0) = −μN ||q||0 − 2C1||q||0,
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since we are studying the boundary of the cone where ||q||0 = ||p||0. We may repeat

these calculations with the inner product of Equation (96) with q and, noting that

〈Aq, q〉0 ≥ μN+1||q||20, we obtain the inequality

(99)
1

2

d

dt
||q||20 ≤ −μN+1||q||20 + C1||w||0 · ||q||0.

When ||p(0)||0 = ||q(0)||0 this inequality is equivalent to

(100) (
1

2

d

dt
||q||20)t=0 ≤ −μN+1||q||20 + 2C1||q||20,

and therefore we obtain the inequality

(101) (
d

dt+
||q||0)t=0 ≤ −μN+1||q||0 + 2C1||q||0 = −(μN+1 − 2C1)||q||0.

Therefore, at t = 0

(102)
d

dt+
(||q||0 − ||p||0)t=0 ≤ −(μN+1 − μN − 4C1)||q(0)||0

which is negative provided that our spectral gap condition (92) holds, and thus we

obtain the cone invariance property.

To obtain the decay property we proceed as follows. For exponential squeezing

outside the cone we plug ||q||0 ≥ ||p||0 into inequality (99), which yields

(103)
1

2

d

dt
||q||20 ≤ −μN+1||q||20 + 2C1||q||20.

We recall that C1 is positive and our spectral gap condition implies that −μN+1 +

2C1 < 0. Recalling that our use of q herein was actually the Q-component of w(t) =

u(t) − u(t), the exponential decay in (90 - 91) then follows with k = μN+1 − 2C1

via Gronwall’s Inequality. The lower bound (93) follows then from the spectral gap

condition. �

2.2. The Formal Operator. Due to our choice of operator A and nonlinearity

g(u) ∈ G, the initial value problem defined by Equation (75) with initial condition

u(0) = u0 is guaranteed the existence of a unique mild solution u(t, ·) = u(t) which

satisfies

(104) u(t) = S(t− 0)u0 +

∫ t

0

S(t− s)g(u(s))ds,
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as stated in Pazy [24]. As −A is the infinitesimal generator of the C0 semigroup S(t)
on the Hilbert Space D(A), we may rewrite (104) as

(105) u(t) = e−Atu0 +

∫ t

0

e−A(t−s)g(u(s))ds,

the variation of constants formula. It further follows that for any u(t) solving (75)

which exists and is bounded on (−∞, 0], there exists a u0 ∈ PND(A) such that

(106) u(t) = e−Atu0 +

∫ t

0

e−A(t−s)PNg(u(s))ds+

∫ t

−∞
e−A(t−s)QNg(u(s))ds

as proved in [15]. We recall that the nature of the operator A and projections PN

and QN imply that

(107)

‖ e−APN t ‖L (H)≤ e−μN t, t ≤ 0

‖ e−AQN t ‖L (H)≤ e−μN+1t, t > 0

‖ (AQN )
αe−AQN t ‖L (H)≤ t−αe−μN+1t, t > 0

where ‖ · ‖L (H) is the operator norm on the bounded linear operators e−APN t and

e−AQN t for t negative or positive respectively [18, 39].

Recalling that u0 ∈ PND(A) and A commutes with PN , it follows that the first

two terms in (106) map to PND(A) and the final term maps to QND(A). Returning

to the notation defined in (82) this means that for u(t) = p(t) + q(t) we may further

define

(108)

p(t) = PNu(t) = e−Atu(0) +

∫ t

0

e−A(t−s)PNg(u(s))ds

q(t) = QNu(t) =

∫ t

−∞
e−A(t−s)QNg(u(s))ds.

We now recall our definition of the function ψ : PNH → QNH as an arbitrary

Lipschitz function from the finite-dimensional subspace PNH = PND(A) to its com-

plement. We define the set Rc, l as the class of functions ψ from PNH into QNH

such that

(109)
‖ ψ(p) ‖0≤ c, for all p ∈ PNH

‖ ψ(p1)− ψ(p2) ‖0≤ l ‖ p1 − p2 ‖0 for all p1, p2 ∈ PNH.
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For the sake of convenience we set l = 1, but it is possible to restrict l to any

fixed positive value less than 1. The effect of choosing l < 1 is that the coefficient

4 in the spectral gap condition must be increased. The exact relation will be shown

later. It is clear that u(t) = p(t) + ψ(p(t)) is a solution of (75) if and only if p(t) and

q(t) = ψ(p(t)) satisfy (83) with u = p + ψ(p). Let us fix an arbitrary such choice of

ψ. It is clear that p = p(t) = p(t;ψ, p(0)) since p(t) is dependent on our choice of

ψ in order to fulfill u(t) = p(t) + ψ(p(t)) with u(t) solving (75). We now define the

Lyapunov-Perron transformation ψ̂ = Jψ by

(110) ψ̂(p(0)) = Jψ(p(0)) =
∫ 0

−∞
eAQN sQNg(p(s) + ψ(p(s)))ds

for p(0) ∈ PND(A) = PNH . We see that the Lyapunov-Perron transformation at

a point p(0) is dependent on ψ ∈ Rc, l and p0 ∈ PND(A). We have thus defined

a formal mapping ψ → Jψ on the set of functions mapping PNH to QNH which

are Lipschitz with values in H , where ψ is the function p0 → ψ(p0) and Jψ is the

function which maps p0 to
∫ 0

−∞ eAQnsQNg(p(s) + ψ(p(s)))ds.

We shall now prove a number of properties of the operator J . The set Rc, l is a

metric space when endowed with the metric

(111) ‖ ψ1 − ψ2 ‖:= sup
p∈PNH

‖ ψ1(p)− ψ2(p) ‖ .

The mapping J associates a function on PNH defined by Jψ(p0) =∫ 0

−∞ eAQN sQNg(u(s))ds to each function ψ ∈ Rc, l.

Lemma 6.2. For every p0 ∈ PNH, Jψ(p0) belongs to QNH and

(112) ‖ Jψ(p0) ‖0≤ Γ
√
πμ−1

N+1.

Proof. Since eAQNs = QNe
AQN s, it follows that QNJψ(p0) = Jψ(p0) and there-

fore Jψ(p0) ∈ QNH for p0 ∈ PNH . Furthermore,

‖ Jψ(p0) ‖0=‖
∫ 0

−∞
eAQNsQNg(p(s) + ψ(p(s)))ds ‖0

≤
∫ 0

−∞
‖ eAQNsQNg(p(s) + ψ(p(s))) ‖0 ds
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≤
∫ 0

−∞
‖ eAQNs ‖L (H)‖ QNg(p(s) + ψ(p(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ QNg(p(s) + ψ(p(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ g(p(s) + ψ(p(s))) ‖0 ds ≤

∫ 0

−∞
eμN+1sΓ

√
πds

= Γ
√
πμ−1

N+1,

where we recall that Γ = max{| γ |, | γ |}. �

Thus, we may set the c in Rc, l to be c = Γ
√
πμ−1

N+1. We proceed to show that

under the restrictions imposed by the spectral gap condition (92), J is a Lipschitz

mapping of Rc, l into Rc, l with a strict contraction.

First let us fix ψ ∈ Rc, l. Let us choose p1(0), p2(0) ∈ PND(A) and let p1 =

p1(t), p2 = p2(t) be the corresponding solutions of the first part of Equation (83).

For ease of notation, we set p̃ = p1 − p2. It follows that p̃ solves the evolutionary

equation

(113)
dp̃

dt
+ Ap̃ = PNg(u1)− PNg(u2)

where u1 = p1 + ψ(p1) and u2 = p2 + ψ(p2), with ui solving (75). Taking the scalar

product of Equation (113) with p̃ yields

1

2

d

dt
‖ p̃ ‖20 + 〈Ap̃, p̃〉0 = 〈PN(g(u1)− g(u2)), p̃ 〉0 .

Recalling from Section 6.2.1 that 〈Ap̃, p̃〉0 ≤ μN ‖ p̃ ‖20 and 〈g(u1)− g(u2), p̃〉0 ≥
− ‖ g(u1)− g(u2) ‖0 · ‖ p̃ ‖0 it follows that

1

2

d

dt
‖ p̃ ‖20≥ −μN ‖ p̃ ‖20 − ‖ g(u1)− g(u2) ‖0 · ‖ p̃ ‖0 .

We recall that by our choice of g(u) ∈ G

‖ g(u1)− g(u2) ‖0≤ C1 ‖ u1 − u2 ‖0 .

Using the fact that u1 − u2 = p1 − p2 + (ψ(p1) − ψ(p2)) and the definition (109) of

Rc, l, we obtain the inequality

(114) ‖ u1 − u2 ‖0≤‖ p̃ ‖0 +l ‖ p̃ ‖0= (1 + l) ‖ p̃ ‖0
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and thus

(115) ‖ g(u1)− g(u2) ‖0≤ C1(1 + l) ‖ p̃ ‖0 .

Plugging this into our calculations, we obtain

1

2

d

dt
‖ p̃ ‖20≥ −μN ‖ p̃ ‖20 −C1(1 + l) ‖ p̃ ‖20

⇒ d

dt
‖ p̃ ‖0≥ −(μN + C1(1 + l)) ‖ p̃ ‖0,

which implies

(116) ‖ p̃(t) ‖0≤‖ p̃(0) ‖0 e−(μN+C1(1+l))t for all t ≤ 0.

This leads us to our next property of the Lyapunov-Perron operator J :

Lemma 6.3. Given that the spectral gap condition (92) holds, for any choice of

ψ ∈ Rc, l and p1(0), p2(0) ∈ PND(A) we have

(117) ‖ Jψ(p1(0))− Jψ(p2(0)) ‖0≤ L ‖ p1(0)− p2(0) ‖0,

where L = C1(1+l)
μN+1−μN−C1(1+l)

.

Proof. Recall that the spectral gap condition requires that μN+1 − μN > 4C1.

This implies that μN+1−μN −C1(1+ l) ≥ μN+1−μN −2C1 > 2C1 > 0. Incorporating

properties (107), (109), (115), and (116) yields

‖ Jψ(p1(0))−Jψ(p2(0)) ‖0≤
∫ 0

−∞
‖ eAQNsQN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
‖ eAQN s ‖L (H)‖ QN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ QN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ g(u1(s))− g(u2(s)) ‖0 ds

≤
∫ 0

−∞
eμN+1sC1(1 + l) ‖ p1(s)− p2(s) ‖0 ds

≤ C1(1 + l)

∫ 0

−∞
eμN+1s ‖ p1(0)− p2(0) ‖0 e−(μN+C1(1+l))sds
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= C1(1 + l) ‖ p1(0)− p2(0) ‖0
∫ 0

−∞
e(μN+1−μN−C1(1+l))sds

= C1(1 + l) ‖ p1(0)− p2(0) ‖0 1

μN+1 − μN − C1(1 + l)
= L ‖ p1(0)− p2(0) ‖0 .

�

Thus, we have shown that J maps Rc, l into Rc, L. We shall now show that J is a

Lipschitz mapping on these spaces. Let us consider two functions ψ1, ψ2 ∈ Rc, l and a

single initial condition p(0) ∈ PND(A). Let p1 = p(t;ψ1, p(0)) and p2 = p(t;ψ2, p(0)),

and u1 = u1(t) = p1(t)+ψ1(p1(t)), u2 = u2(t) = p2(t)+ψ2(p2(t)). Using calculations

similar to those we have just completed, we demonstrate that J is a Lipschitz operator

with values in Rc, l.

‖ Jψ1(p(0))−Jψ2(p(0)) ‖0

=‖
∫ 0

−∞
eAQNsQN (g(u1(s))− g(u2(s)))ds ‖0

≤
∫ 0

−∞
‖ eAQN sQN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
‖ eAQN s ‖L (H)‖ QN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ QN (g(u1(s))− g(u2(s))) ‖0 ds

≤
∫ 0

−∞
eμN+1s ‖ g(u1(s))− g(u2(s)) ‖0 ds

≤
∫ 0

−∞
eμN+1sC1 ‖ u1(s)− u2(s) ‖0 ds.

We here note that u1 − u2 = p1 − p2 + ψ1(p1)− ψ2(p2) = p1 − p2 + ψ1(p1)− ψ1(p2) +

ψ1(p2)− ψ2(p2). Plugging this into our calculations produces

‖ Jψ1(p(0))−Jψ2(p(0)) ‖0

≤ C1

∫ 0

−∞
eμN+1s(‖ p1(s)− p2(s) ‖0 + ‖ ψ1(p1(s))− ψ1(p2(s)) ‖0

+ ‖ ψ1(p2(s))− ψ2(p2(s)) ‖0)ds

≤ C1

∫ 0

−∞
eμN+1s((1 + l) ‖ p1(s)− p2(s) ‖0 + ‖ ψ1 − ψ2 ‖)ds.
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Recalling our notation of p1(s)−p2(s) = p̃(s), we take the scalar product of Equation

(113) with p̃ again and recall that 〈Ap̃, p̃〉0 ≤ μN ‖ p̃ ‖20 and 〈g(u1)− g(u2), p̃〉0 ≥
− ‖ g(u1)− g(u2) ‖0 · ‖ p̃ ‖0. This yields

1

2

d

dt
‖ p̃ ‖20 + 〈Ap̃, p̃〉0 = 〈PN(g(u1)− g(u2)), p̃〉0

⇒ 1

2

d

dt
‖ p̃ ‖20≥ −μN ‖ p̃ ‖20 − ‖ g(u1)− g(u2) ‖0 · ‖ p̃ ‖0

≥ −μN ‖ p̃ ‖20 −C1 ‖ u1 − u2 ‖0 · ‖ p̃ ‖0

⇒ 1

2

d

dt
‖ p̃ ‖20≥ −μN ‖ p̃ ‖20 −C1((1 + l) ‖ p̃ ‖0 + ‖ ψ1 − ψ2 ‖) ‖ p̃ ‖0

≥ −(μN + C1(1 + l)) ‖ p̃ ‖20 −C1 ‖ ψ1 − ψ2 ‖ · ‖ p̃ ‖0

⇒ d

dt
‖ p̃ ‖0≥ −(μN + C1(1 + l)) ‖ p̃ ‖0 −C1 ‖ ψ1 − ψ2 ‖

⇒‖ p̃(t) ‖0≤ −C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

+ (‖ p̃(0) ‖0 +C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

)e−(μN+C1(1+l))t

for all t ≤ 0. Recalling that p̃(0) = p1(0) − p2(0) = p(0) − p(0) = 0, it follows that

for all t ≤ 0

‖ p̃(t) ‖0≤= −C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

+
C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

e−(μN+C1(1+l))t

=
C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

(e−(μN+C1(1+l))t − 1) ≤ C1 ‖ ψ1 − ψ2 ‖
μN + C1(1 + l)

e−(μN+C1(1+l))t.

Plugging this into our calculations on the Lipschitz coefficient of J yields

‖ Jψ1(p(0))−Jψ2(p(0)) ‖0

≤ C1

∫ 0

−∞
eμN+1s((1 + l) ‖ p1(s)− p2(s) ‖0 + ‖ ψ1 − ψ2 ‖)ds

≤ C1

∫ 0

−∞
eμN+1s((1 + l)

C1 ‖ ψ2 − ψ2 ‖
μN + C1(1 + l)

e−(μN+C1(1+l))s+ ‖ ψ1 − ψ2 ‖)ds

= C1 ‖ ψ1 − ψ2 ‖
∫ 0

−∞

C1(1 + l)

μN + C1(1 + l)
e(μN+1−μN−C1(1+l))s + eμN+1sds

= C1 ‖ ψ1 − ψ2 ‖ (

∫ 0

−∞

C1(1 + l)

μN + C1(1 + l)
e(μN+1−μN−C1(1+l))sds+

1

μN+1
)

= C1 ‖ ψ1 − ψ2 ‖ (
C1(1 + l)

μN + C1(1 + l)

1

μN+1 − μN − C1(1 + l)
+

1

μN+1
)

⇒‖ Jψ1(p(0))− Jψ2(p(0)) ‖0≤ L′ ‖ ψ1 − ψ2 ‖
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for all p(0) ∈ PND(A), where

L′ =
C2

1(1 + l)

(μN + C1(1 + l))(μN+1 − μN − C1(1 + l))
+

C1

μN+1

.

Now that we have completed the necessary calculations, we may proceed to prove

that J maps Rc, l into itself and is a strict contraction on Rc, l. This is equivalent

to ensuring conditions on μN+1 and μN such that

L < l and L′ ≤ r < 1

for some r, let us say r = 3
4
. Recalling the spectral gap condition (92), it follows that

μN+1−μN > 4C1 > 2(1+ l)C1. Since we have set l = 1, we obtain 4 = (1+ l)(1+ 1
l
),

with the quantity (1 + l)(1 + 1
l
) arising from the calculations below. It is here that

we see how the choice of l affects the spectral gap condition. Choosing l smaller, we

would have to replace the 4C1 in the second part of the spectral gap condition with

(1 + l)(1 + 1
l
), which gets larger as l decreases towards 0. For Ã = −Δ, our spectral

gap condition may always be satisfied for any nonzero l for sufficiently large N since

μN+1 − μN = 2N + 1 for any b and g(u) ∈ G. Applying the spectral gap condition

and recalling that l = 1 > 0 and C1 > 0, we have

μN+1 − μN > 4C1 = (1 + l)(1 +
1

l
)C1 = (1 + l)C1 +

1 + l

l
C1

⇒ μN+1 − μN − C1(1 + l) >
1 + l

l
C1 ⇒ l >

C1(1 + l)

μN+1 − μN − C1(1 + l)
= L.

Furthermore, by applying both portions of the spectral gap condition we obtain

L′ =
C2

1 (1 + l)

(μN + C1(1 + l))(μN+1 − μN − C1(1 + l))
+

C1

μN+1

=
2C2

1

(μN + 2C1)(μN+1 − μN − 2C1)
+

C1

μN+1
<

2C2
1

(μN + 2C1)(μN+1 − μN − 2C1)

+
C1

μN + 4C1

<
2C2

1

(μN + 2C1)(2C1)
+

C1

μN + 4C1

=
C1

μN + 2C1

+
C1

μN + 4C1

<
C1

2C1
+

C1

4C1
=

1

2
+

1

4
=

3

4
< 1.
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Thus we have shown that J is a contraction mapping from Rc, l into itself and is

strictly contracting. Therefore, by the Banach Fixed Point Theorem it follows that

J must have a fixed point. Let us denote this fixed point by Ψ. It follows that

(118) Ψ(p0) =

∫ 0

−∞
eAQNsQNg(p(s) +Ψ(p(s)))ds

where p(s) = p(s; p0), and we may define

(119) Ψ(p(t)) =

∫ t

−∞
e−AQN (t−s)QNg(p(s) +Ψ(p(s)))ds.

By definition, Ψ(p(t)) ∈ QNH for any p(t) ∈ PNH . Then

(120)

e−At(p0) +

∫ t

0

e−A(t−s)PNg(p(s) +Ψ(p(s)))ds+ JΨ(p(t))

= e−At(p0) +

∫ t

0

e−A(t−s)PNg(p(s) +Ψ(p(s)))ds

+

∫ t

−∞
e−AQN (t−s)QNg(p(s) +Ψ(p(s)))ds = p(t) +Ψ(p(t))

where p(t) ∈ PNH, Ψ(p(t)) ∈ QNH,
∫ t

0
e−A(t−s)PNg(p(s) + Ψ(p(s)))ds ∈ PNH ,∫ t

−∞ e−AQN (t−s)QNg(p(s) +Ψ(p(s)))ds ∈ QNH . But any solution u(t) ∈ D(A) which

exists and is bounded on (−∞, 0] may be defined as in (120) with u(t) = p(t)+Ψ(p(t)).

Furthermore, by differentiating

Ψ(p(t)) =

∫ t

−∞
e−AQN (t−s)QNg(p(s, p0) +Ψ(p(s, p0)))ds

with respect to t, it is clear that q(t) = QNu(t) = Ψ(p(t)) and q(t) = Ψ(p(t)) solves

(121) qt = qxx + bq +QNg(p+ q), q(0) = Ψ(p0) for p0 ∈ PND(A)

whenever p(t) solves

(122) pt = pxx + bp+ PNg(p+Ψ(p)), p(0) = p0.

We may now define a manifold M = Graph[Ψ] with values in H and norm ‖ · ‖0,
where the domain of the graph is PNH = PND(A).
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Lemma 6.4. M is an inertial manifold for Equation (75), i.e. it is a positively

invariant Lipschitz manifold with the following properties:

• M is a finite-dimensional Lipschitz manifold with values in H.

• M is positively invariant, i.e. S(t)M ⊆ M for all t ≥ 0.

• M attracts exponentially all solutions of (75).

Proof. Owing to the previously stated fact that (p(t),Ψ(p(t))) is a solution of

(83) whenever u(t) = p(t) +Ψ(p(t)) is a solution of (75), it follows that S(t)M ⊆ M
for all t ≥ 0, i.e. M is positively invariant. Since M is the graph over an (N + 1)-

dimensional subspace of the Hilbert space H and equivalently a graph over an (N+1)-

dimensional subspace of the Hilbert Space D(A), it follows that M is an (N + 1)-

dimensional manifold.

In order to prove thatM is a Lipschitz manifold with values inH , we proceed with

calculations similar to those enacted in the proof of Lemma 6.3. Let us choose two

arbitrary functions p1(t) and p2(t) in PNH . We recall that the Lipschitz coefficient of

g is denoted by C1 and that since Ψ ∈ Rc, l, the Lipschitz coefficient of Ψ in H is l.

‖ Ψ(p1(t))−Ψ(p2(t)) ‖0=‖ J (Ψ(p1(t))−Ψ(p2(t))) ‖0

=‖
∫ t

−∞
e−AQN (t−s)QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))]ds ‖0

≤
∫ t

−∞
‖ e−AQN (t−s)QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))] ‖0 ds

≤
∫ t

−∞
‖ e−AQN (t−s) ‖L (H)‖ QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))] ‖0 ds

≤
∫ t

−∞
e−μN+1(t−s) ‖ QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))] ‖0 ds

≤
∫ t

−∞
e−μN+1(t−s) ‖ g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s))) ‖0 ds

≤
∫ t

−∞
e−μN+1(t−s)C1 ‖ p1(s) +Ψ(p1(s))− p2(s)−Ψ(p2(s)) ‖0 ds

≤
∫ t

−∞
e−μN+1(t−s)C1(1 + l) ‖ p1(s)− p2(s) ‖0 ds.
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Recalling our earlier calculations towards bounding ‖ p1(t) − p2(t) ‖0, we use the

property that

‖ p1(s)− p2(s) ‖0≤‖ p1(t)− p2(t) ‖0 e(μN+C1(1+l))(t−s)

for all s ≤ t. Thus

‖ Ψ(p1(t))−Ψ(p2(t)) ‖0

≤ C1(1 + l)

∫ t

−∞
e−μN+1(t−s) ‖ p1(t)− p2(t) ‖0 e(μN+C1(1+l))(t−s)ds

= C1(1 + l) ‖ p1(t)− p2(t) ‖0
∫ t

−∞
e−(μN+1−μN−C1(1+l))(t−s)ds.

By the spectral gap condition, μN+1 − μN − C1(1 + l) > 2C1 > 0, therefore

‖ Ψ(p1(t))−Ψ(p2(t)) ‖0≤ C1(1 + l)

μN+1 − μN − C1(1 + l)
‖ p1(t)− p2(t) ‖0 .

Thus we have shown that Ψ is Lipschitz continuous with values in H , with Lips-

chitz coefficient C2 = C1(1+l)
μN+1−μN−C1(1+l)

. Furthermore, Ψ is bounded in QNH as well.

Lemma 6.2 applies to the Lipschitz map Ψ, thus

‖ Ψ(p) ‖0≤ Γ
√
πμ−1

N+1

for any p ∈ PNH . Thus M is bounded in the infinite-dimensional subspace of H , but

is unbounded in the finite-dimensional subspace.

To show that M is exponentially attracting, choose an initial condition u0 ∈ H

and its image after time t given by S(t)u0 = u(t) = p(t) + q(t). Now consider the

point u ∈ M given by u = p+Ψ(p). It follows that

(123) ||QNu−QNu||0 ≥ 0 = ||PNu− PNu||0.

Applying the decay property (91) implies that

(124) ||u(t)− u(t)||0 = ||q(t)− q(t)||0 ≤ ||QNu0 −Ψ(PNu0)||0e−kt

and

(125) dist(S(t)u0,M) ≤ ||u(t)− u(t)||0 ≤ ||QNu0 −Ψ(PNu0)||0e−kt.
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Therefore any solution u(t) to (75) is tracked exponentially by a solution on M. �

As the properties put forth in Lemma 6.4 comprise the definition of an inertial

manifold, it therefore follows that, choosing N for projections PN and QN = I − PN

such that the spectral gap (92) holds, and therefore the strong squeezing property

holds, we are guaranteed the existence of an inertial manifold for our slowly non-

dissipative evolutionary equation (75). In particular, we are guaranteed an inertial

manifold for Equation (75) with Ã = −Δ.

Furthermore, because M is positively invariant and attracts all solutions expo-

nentially, this implies that any bounded set B ∈ H limits in forward time to a subset

of M and any invariant set must be contained in M. Therefore, the minimal set

which attracts every bounded set in D(A) must be contained in M. But grow-up

solutions in the unstable manifold of a bounded equilibrium are on invariant sets,

and therefore must be contained in M. Therefore it follows that not only can we not

prove a bound on M as is done for dissipative evolutionary equations, but for slowly

non-dissipative equations of the form (75), M must be unbounded.

We may now prove a higher degree of smoothness for the inertial manifold M for

our original equation

(126)

ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

b > 0, g(u) ∈ C2, g(u) uniformly bounded,

g(u) globally Lipschitz with values in L2.

Lemma 6.5. The inertial manifold M = Graph[Ψ] for Equation (126) is a finite-

dimensional Lipschitz manifold with values in D(Aα), with α-norm, for 3
4
< α < 1.

Moreover, it is a Lipschitz manifold with values in C1, with the C1-norm.

Proof. Setting Ã = − d2

dx2 , Lemma 6.4 ensures the existence of a finite-dimensional

Lipschitz manifold for Equation (126), where M is Lipschitz with values in H = L2.

In order to prove that M is a Lipschitz manifold in C1, we must prove that it is
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the graph of a function Ψ that is Lipschitz with values in C1. This can be done

by proving that Ψ is in fact not only Lipschitz with values in H , but with values

in D(Aα) for 3
4
< α < 1. Sobolev embedding and the finite-dimensionality of PNH

then prove that the manifold Ψ ∈ C1
Lip. Let us choose two arbitrary functions p1(t)

and p2(t) in PND(A). We recall that the Lipschitz coefficient of g in H is denoted by

C1 and that sinceΨ ∈ Rc, l, l is an upper bound for the Lipschitz coefficient ofΨ inH .

We note that the eigenvalues of the operator A1 as defined at the beginning of

this chapter are μj,1 = μj + b+ 1 = μ̃j + 1, and thus μj,1 ≥ 1 for all j. Furthermore,

μN+1 − μN = μN+1,1 − μN,1 and D(A1) = D(A). Then

‖ Ψ(p1(t))−Ψ(p2(t)) ‖α=‖ Aα
1 (Ψ(p1(t))−Ψ(p2(t))) ‖0

=‖ (A1QN )
α(Ψ(p1(t))−Ψ(p2(t))) ‖0

=‖
∫ t

−∞
(A1QN)

αe−AQN (t−s)QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))]ds ‖0

=‖
∫ t

−∞
(A1QN)

αe−A1QN (t−s)e(b+1)QN (t−s)QN [g(p1(s) +Ψ(p1(s)))

−g(p2(s) +Ψ(p2(s)))]ds ‖0

≤
∫ t

−∞
‖ (A1QN )

αe−A1QN (t−s)e(b+1)QN (t−s)QN [g(p1(s) +Ψ(p1(s)))

−g(p2(s) +Ψ(p2(s)))] ‖0 ds

=

∫ t

−∞
‖ (A1QN )

αe−A1QN (t−s)e(b+1)(t−s)QN [g(p1(s) +Ψ(p1(s)))

−g(p2(s) +Ψ(p2(s)))] ‖0 ds

≤
∫ t

−∞
‖ (A1QN)

αe−A1QN (t−s)e(b+1)(t−s) ‖L (H)‖ QN [g(p1(s) +Ψ(p1(s)))

−g(p2(s) +Ψ(p2(s)))] ‖0 ds

=

∫ t

−∞
e(b+1)(t−s) ‖ (A1QN )

αe−A1QN (t−s) ‖L (H)‖ [g(p1(s) +Ψ(p1(s)))

−g(p2(s) +Ψ(p2(s)))] ‖0 ds
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≤
∫ t

−∞
(t− s)−αe−(μN+1,1−b−1)(t−s) ‖ QN [g(p1(s) +Ψ(p1(g(p2(s) +Ψ(p2(s)))] ‖0 ds

=

∫ t

−∞
(t− s)−αe−(μN+1)(t−s) ‖ QN [g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s)))] ‖0 ds

≤
∫ t

−∞
(t− s)−αe−μN+1(t−s) ‖ g(p1(s) +Ψ(p1(s)))− g(p2(s) +Ψ(p2(s))) ‖0 ds

≤ C1

∫ t

−∞
(t− s)−αe−μN+1(t−s)( ‖ p1(s)− p2(s) ‖0 + ‖ Ψ(p1(s))−Ψ(p2(s)) ‖0)ds

≤ C1

∫ t

−∞
(t− s)−αe−μN+1(t−s)(1 + l) ‖ p1(s)− p2(s) ‖0 ds.

Recalling that

‖ p1(s)− p2(s) ‖0≤‖ p1(t)− p2(t) ‖0 e(μN+C1(1+l))(t−s)

for all s ≤ t, it follows that

‖ Ψ(p1(t))−Ψ(p2(t)) ‖D(Aα)=‖ Ψ(p1(t))−Ψ(p2(t)) ‖α

≤ C1(1 + l)

∫ t

−∞
(t− s)−αe−μN+1(t−s) ‖ p1(t)− p2(t) ‖0 e(μN+C1(1+l))(t−s)ds

= C1(1 + l) ‖ p1(t)− p2(t) ‖0
∫ t

−∞
(t− s)−αe−(μN+1−μN−C1(1+l))(t−s)ds.

By the spectral gap condition, μN+1 − μN − C1(1 + l) > 2C1 > 0, therefore

‖ Ψ(p1(t))−Ψ(p2(t)) ‖α

≤ C1(1 + l) · (1− α)−1e−α 1

(μN+1 − μN − C1(1 + l))α
‖ p1(t)− p2(t) ‖0 .

Finally, we recall that on RN+1 all norms are equivalent. Thus,

‖ p1(t)− p2(t) ‖α=‖ Aα
1 p1(t)− Aα

1 p2(t) ‖0

≥ μ0,1 ‖ p1(t)− p2(t) ‖0≥‖ p1(t)− p2(t) ‖0 .
Therefore

‖ Ψ(p1(t))−Ψ(p2(t)) ‖α≤

C1(1 + l) · (1− α)−1e−α 1

(μN+1 − μN − C1(1 + l))α
‖ p1(t)− p2(t) ‖α,

and we have shown that Ψ is Lipschitz continuous from D(Aα) to D(Aα) with Lips-

chitz coefficient C2 = C1(1+ l) · (1−α)−1e−α 1
(μN+1−μN−C1(1+l))α

. Thus, it follows that
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M = Graph[Ψ] is a finite-dimensional Lipschitz manifold with values inD(Aα). Since

D(Aα) compactly embeds into C1 via Sobolev embedding, and PNH = PND(A) is a

finite-dimensional subspace isomorphic to RN+1, it follows that Ψ ∈ C1
Lip(PND(A)).

Therefore, M = Graph[Ψ] is a finite-dimensional Lipschitz manifold with values in

C1. Further, Ψ(p) is bounded for all p ∈ PND(A) in the α-norm and C1-norm as

well. Recalling that D(Aα) embeds into C1, it follows that

(127) ‖ Ψ(p(t)) ‖C1≤‖ Ψ(p(t)) ‖α=‖ Aα
1Ψ(p(t)) ‖0 .

Thus,

‖ Ψ(p(t)) ‖C1≤‖ Aα
1Ψ(p(t)) ‖0=‖ (A1QN)

αΨ(p(t)) ‖0

=‖
∫ t

−∞
(A1QN )

αe−AQN (t−s)QNg(p(s) +Ψ(p(s)))ds ‖0

=‖
∫ t

−∞
(A1QN )

αe−A1QN (t−s)e(b+1)QN (t−s)QNg(p(s) +Ψ(p(s)))ds ‖0

≤
∫ t

−∞
‖ (A1QN)

αe−A1QN (t−s)e(b+1)QN (t−s)QNg(p(s) +Ψ(p(s))) ‖0 ds

=

∫ t

−∞
‖ (A1QN )

αe−A1QN (t−s)e(b+1)(t−s)QNg(p(s) +Ψ(p(s))) ‖0 ds

≤
∫ t

−∞
‖ (A1QN )

αe−A1QN (t−s)e(b+1)(t−s) ‖L (H)‖ QNg(p(s) +Ψ(p(s))) ‖0 ds

=

∫ t

−∞
e(b+1)(t−s) ‖ (A1QN )

αe−A1QN (t−s) ‖L (H)‖ QNg(p(s) +Ψ(p(s))) ‖0 ds

≤
∫ t

−∞
(t− s)−αe−(μN+1,1−b−1)(t−s) ‖ QNg(p(s) +Ψ(p(s))) ‖0 ds

=

∫ t

−∞
(t− s)−αe−(μN+1)(t−s) ‖ QNg(p(s) +Ψ(p(s))) ‖0 ds

≤
∫ t

−∞
(t− s)−αe−μN+1(t−s) ‖ g(p(s) +Ψ(p(s))) ‖0 ds

≤
∫ t

−∞
(t− s)−αe−μN+1(t−s)

√
πΓds

≤ √
πΓ

∫ t

−∞
(t− s)−αe−μN+1(t−s)ds

≤ √
πΓ(1− α)−1e−α 1

μα
N+1

= C3.
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Thus, ‖ Ψ(p(t)) ‖C1≤‖ Ψ(p(t)) ‖α≤ C3 and therefore Ψ(p) is bounded in D(Aα) and

C1 for all p ∈ PND(A). Furthermore, q(t) = Ψ(p(t)) is uniformly bounded in C1,

regardless of the choice of p(t). �

Lemma 6.6. If the nonlinearity g(u) ∈ G in Equation (126) is Lipschitz con-

tinuous from D(Aβ) into D(Aε) with 0 < ε < β ≤ 1 and β − ε < 1
2
, and

bounded in D(Aβ), then the inertial manifold M is Lipschitz in D(A) = H2 ∩
{Neumann Boundary Conditions}.

We note that such conditions are easily achieved if we restrict the scalar non-

linearity g(u) : R → R to have a bounded first derivative. Then, as a result

of the Krasnoselskii theorem [38], the evaluation operator g is globally Lipschitz

from D(A) into D(A). Let 0 < ε ≤ 1/2. It follows that, for all u, v ∈ D(A) =

H2∩{Neumann Boundary Conditions}, we have ‖ g(u)−g(v) ‖1≥‖ g(u)−g(v) ‖1/2+ε

and

‖ g(u)− g(v) ‖1≤ C̃ ‖ u− v ‖1

combined imply that

‖ g(u)− g(v) ‖1/2+ε≤ C̃ ‖ u− v ‖1 .

In other words, the evaluation operator g is Lipschitz continuous from D(A) into

D(A1/2−ε).

Proof. There are two alternate methods to prove this lemma. The first method

is to use bootstrapping [24]. Due to the Lipschitz behavior of the nonlinearity g as

put forth in this lemma, and the fact that A is a sectorial operator, it follows that a

certain degree of smoothing occurs. Thus, for any initial condition u0 ∈ M ⊂ Xα,

for example any initial condition on a heteroclinic orbit, the corresponding solution

u(t, ·) ⊂ M ⊂ D(A) for t > t0 [18]. Thus, if M is Lipschitz with values in C1 at time

t0, it is Lipschitz with values in D(A) at time t > t0. Since M is positively invariant,

we may simply study S(1)M to ensure higher regularity.
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The second method is to return to the calculations presented throughout this

chapter. Let us set α = 1− ε. The evaluation operator g being Lipschitz from D(Aβ)

to D(Aε) is equivalent to

‖ g(u(t, ·))− g(v(t, ·)) ‖ε≤ L̃ ‖ u(t, ·)− v(t, ·) ‖β

for some constant L̃ dependent on g. Then we are able to repeat the calculations

presented earlier in the chapter, performing those in Sections 6.1 and 6.2 in the β-

norm and β-inner product. This transforms the spectral gap condition (92) into

(128)
μ1−β+ε
N+1 > 2L̃, μN > b

μn+1 − μn ≥ 2L̃(μβ−ε
n+1 + μβ−ε

n ),

which can be fulfilled for Ã = − d2

dx2 so long as β − ε < 1
2
. Finally, in the proof of

Lemma 6.4 we may evaluate ‖ Ψ(p1(t))−Ψ(p2(t)) ‖1 by separating the A1 operator

provided by the norm into an Aα
1 term in front, as before, and an Aε

1 term multiplying

the nonlinearity. This allows us to repeat the calculations and achieve

‖ Ψ(p1(t))−Ψ(p2(t)) ‖1≤ C̃2 ‖ p1(t)− p2(t) ‖1 .

Furthermore, allowing the β-norm of g(u) to be bounded ensures that ‖ Ψ(p(t)) ‖1≤
C̃3. �
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CHAPTER 7

Asymptotics of Grow-Up Solutions

We now consider the behavior of grow-up solutions in the inertial manifold M.

For M = Graph[Ψ], with Ψ the fixed point of the Lyapunov-Perron Operator J , the

dynamics on M are completely determined by the differential equation

(129)

dp

dt
+ Ap = PNg(p+Ψ(p)), p =

N∑
i=0

p̂i(t)Φi(x) =
N∑
i=0

〈p(t, ·),Φi(·)〉0Φi(x)

=
N∑
i=0

〈u(t, ·),Φi(·)〉0Φi(x),

which is an (N +1)-dimensional ordinary differential equation. For such an ordinary

differential equation, we may provide the solution as follows for a clearer view on

the asymptotic behaviors. Let us denote the unstable portion of p via pu(t) and the

stable portion via ps(t). We decompose the projection operator into two parts, i.e.

PN = P u
N + P s

N , where P u
N projects onto the modes 0, . . . , �√b� and P s

N projects

onto the modes �√b� + 1, . . . , N if �√b� < N , otherwise PN = P u
N . In other words,

pu(t) =

√b�∑
i=0

p̂i(t)Φi(x) and p
s(t) =

N∑
i=
√b�+1

p̂i(t)Φi(x). We remind the reader that in

order to fulfill the spectral gap condition, N may be chosen such that some stable

modes are included in p. Then

(130)

pu(t, ·) = pu(t) = e−APu
N tph,u0 +

∫ t

∞
e−APu

N (t−s)P u
Ng(u(s))ds

ps(t, ·) = ps(t) = e−AP s
N tps0 +

∫ t

0

e−AP s
N (t−s)P s

Ng(u(s))ds.

We note that ps(t) remains bounded while only the second term in pu(t) remains

bounded. It is the e−Autph,u0 term in pu(t) which determines the asymptotic behavior

of p(t, ·) and u(t, ·) when u(t, ·) is a grow-up solution.

Henceforth, we will return to our chosen operator A = − d2

dx2 − bI. Because these

grow-up solutions are contained in M, it follows that their behavior is determined
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by (129). It was our perceived inability to evaluate the limiting behavior of grow-up

solutions in higher norms that left open the possibility of the zero number dropping

at t = ∞. Studying the behavior on an inertial manifold in C1 provides a great deal

of clarification in this respect.

Since M is a Lipschitz manifold in C1, it follows that any solution u(t, ·) contained
in M which limits to some object at infinity must limit to that object in the C1-norm.

It is possible for a function u(t,·)
||u(t,·)||L2

to be L2-close to any Φi(·) with the appropriate

sign while having zero number greater than i, because the L2-norm only measures

the difference between the two solutions, and not the difference between their first

or second derivatives. Recall that both Φi(x) and u(t,x)
‖u(t,x)‖L2

have only simple zeros

for all but finitely many times tk ∈ R+. In order for the zero number to be greater

than i while the two functions are L2-close, it follows that at some point where Φi(x)

crosses the x-axis with either strictly positive or strictly negative slope, the function

u(t,x)
||u(t,x)||L2

must cross the x-axis multiple times, with slope that is positive, negative,

and zero. Thus, if any given Φi(·) does not have the same zero number as u(t,·)
||u(t,·)||L2

,

then lim
t→∞

|| u(t,·)
||u(t,·)||L2

− Φi(·)
‖Φi(·)‖L2

||C1 �= 0.

Lemma 7.1. Let v be a hyperbolic stationary solution to

(131)

ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

b > 0, g(u) ∈ G

such that i(v) = n + 1 and l(v) ∈ {n + 1, n}. Fix k ≤ n, σ ∈ {1,−1} such that

there does not exist any stationary solution w /∈ EJv with sign(w(0) − v(0)) = σ

and l(w) = k, and if k = l(v) = n, there additionally does not exist any stationary

solution w ∈ EJv such that sign(w(0) − v(0)) = σ and l(w) ≤ l(v). Let uσk(t, ·) be

the solution to (131) guaranteed by Lemma 5.4, i.e. z(uσk(t, ·) − v(·)) = k for all

0 ≤ t < ∞, sign(uσk(t, 0)− v(0)) = σ, lim
t→∞

‖ uσk(t, ·) ‖L2= ∞, and lim
t→−∞

uσk(t, ·) = v.
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Then

(132) lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
k(·)

‖ Φσ
k(·) ‖L2

‖C1= 0,

or in other words, the zero numbers of uσk(t, ·) and uσk(t, ·)−v(·) do not drop at infinity.

Proof. Since g(u) ∈ G, it follows that there exists a completed inertial man-

ifold for the dynamical system defined by Equation (131). As described in Chap-

ter 6, all solutions to Equation (131) including uσk can be decomposed into a fi-

nite portion living in PNL
2 and an infinite portion which may be described by the

mapping Ψ : PNL
2 → QNL

2 over the finite portion which is Lipschitz with values

in C1. As PNL
2 is a finite-dimensional orthogonal subspace of L2, it follows that

PNL
2 = PND(A) = PNH

2 ∩ {Neumann Boundary Conditions}. Furthermore, due

to Ψ being derived from the fixed point of a Lyapunov-Perron operator, it follows

that if u(t, ·) ∈ H2 is a solution to Equation (131), then Ψ(u(t, ·)) ∈ QND(A) =

QNH
2 ∩ {Neumann Boundary Conditions}. Thus, we may decompose uσk(t, ·) as

follows:

(133)

uσk(t, ·) = p(t, ·) + q(t, ·)

p(t, ·) =
N∑
i=0

〈uσk(t, ·),Φi(·)〉0Φi(·) ∈ PNH
2 ∩ {Neumann Boundary Conditions}

q(t, ·) = Ψ(p(t, ·)) ∈ QNH
2 ∩ {Neumann Boundary Conditions}.

Thus

(134)
uσk(t, ·)

‖ uσk(t, ·) ‖L2

=
p(t, ·) + q(t, ·)

‖ p(t, ·) + q(t, ·) ‖L2

and

(135)
uσk(t, ·)

‖ uσk(t, ·) ‖C1

=
p(t, ·) + q(t, ·)

‖ p(t, ·) + q(t, ·) ‖C1

Recall that all invariant sets, including grow-up solutions in the unstable manifold

of a bounded stationary solution, live on the finite-dimensional inertial manifold M.

Additionally, recall that q(t, ·) is uniformly bounded in the C1-norm and thus all

weaker norms as well.
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Since q(t, ·) is bounded while p(t, ·) grows to infinity along with uσk(t, ·) in any

applicable norm, we have that

lim
t→∞

p(t, ·)
‖ p(t, ·) ‖L2

= lim
t→∞

p(t, ·)
‖ uσk(t, ·) ‖L2

= lim
t→∞

uσk(t, ·)
‖ uσk(t, ·) ‖L2

and furthermore

lim
t→∞

p(t, ·)
‖ p(t, ·) ‖L2

= lim
t→∞

p(t, ·)
‖ uσk(t, ·)− v(·) ‖L2

= lim
t→∞

uσk(t, ·)− v(·)
‖ uσk(t, ·)− v(·) ‖L2

.

. We recall from Chapter 5 that for some i ≤ k,

(136) lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖L2= 0

and thus

(137) lim
t→∞

‖ uσk(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖L2= 0.

Since uσk(t, ·) lives on the inertial manifold M ⊂ C1
Lip, which is finite dimensional, it

follows that if uσk(t, ·) limits in M to some object in the L2-norm, it must limit to

the same object in the C1-norm, due to norm equivalence in finite dimensions. It

is the finite-dimensionality of our C1 inertial manifold which is key to our proving

C1-convergence.

Thus

lim
t→∞

‖ uσk(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1= lim
t→∞

‖ p(t, ·) + q(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1

≤ lim
t→∞

‖ p(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1 + lim
t→∞

‖ q(t, ·)
‖ p(t, ·) ‖L2

‖C1

= lim
t→∞

‖ p(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1 + lim
t→∞

‖ Ψ(p(t, ·)) ‖C1

‖ p(t, ·) ‖L2

Since Ψ(p(t, ·)) is uniformly bounded in C1 while p(t, ·) grows to infinity in the L2-

norm, it follows that

lim
t→∞

‖ uσk(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1≤ lim
t→∞

‖ p(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1 .
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Since p(t, ·) and Φσ
i (·) are both in the finite-dimensional subspace PND(A) it follows

that

lim
t→∞

‖ p(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1≤ lim
t→∞

C̃ ‖ p(t, ·)
‖ p(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖L2= 0

and therefore

lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖L2= 0 ⇒ lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
i (·)

‖ Φσ
i (·) ‖L2

‖C1= 0.

But
uσ
k(t,·)

‖uσ
k (t,·)‖L2

can only limit to a particular Φσ
i in the C1-norm if it has the same

zero number as that object for all t ≥ t∗, t∗ some finite time past which the zero

numbers of the grow-up solution and the shifted grow-up solution coincide. Therefore,

the object to which the grow-up solution uσk(t, ·) limits in C1 must be the eigenfunction

projected to infinity with lap number and zero number k. In other words, i = k and

thus

(138) lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
k(·)

‖ Φσ
k(·) ‖L2

‖C1= 0

for all uσk(t, ·) as previously defined. Therefore, the zero number and shifted zero

number of uσk(t, ·) does not drop at t = ∞. We note here that this also holds for a

function u(t, ·) on any heteroclinic which grows to infinity. The results from Chapter

5 which are used herein as well as the calculations in this proof may be performed

for any grow-up solution in the unstable manifold of a stationary solution. We must

simply determine the largest finite dropping time tk such that z(u(t, ·)− v(·)) = k for

all t ∈ [tk,∞). It then follows that for such solutions the zero number does not drop

at t = ∞, and thus the C1 limit proven above holds in these cases as well. �

Remark 7.2. We choose the splitting of u(t, ·) into p and q terms rather than uu

and us terms to aid in the later generalization of the argument to non-hyperbolic equi-

libria v. The choice of N , which determines the location of the splitting between p and

q, may be made such that any center eigenspace is included in the finite-dimensional

subspace PND(A).
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Remark 7.3. If we have higher regularity of our nonlinearity g(u) sufficient to

induce smoothing, then M is a Lipschitz manifold with values in H2, and thus the

analysis obtained in Lemma 7.1 may be obtained for the H2-norm. We note that

convergence in norms stronger than C1 is not actually needed to prevent the dropping

of the zero number at t = ∞.

1. Implications for Convergence of Transfinite Heteroclinics

We now have all the tools we need to determine the asymptotic behavior of grow-

up solutions in the unstable manifolds of bounded equilibria, and thus enumerate the

possible asymptotic behaviors of any arbitrary grow-up solution.

Theorem 7.4. Let g(u) ∈ G, b > 0, and let v be a hyperbolic stationary solution

of

(139)
ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

such that i(v) = n + 1 and l(v) ∈ {n + 1, n}. For every σ ∈ {1,−1} and 0 ≤ k ≤ n

such that v is not blocked from connecting to infinity by Lemma 5.3, v connects

via heteroclinic orbit to an equilibrium at infinity Φσ
k with l(Φσ

k) = z(Φσ
k) = k and

sign(Φσ
k(0)) = σ. In other words, there exists a trajectory uσk(t, ·) ∈ W u(v) such that

lim
t→−∞

uσk(t, ·) = v

sign(uσk(t, 0)− v(0)) = σ

lim
t→∞

z(uσk(t, ·)− v(·)) = k

lim
t→∞

‖ uσk(t, ·) ‖L2= ∞

lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
k(·)

‖ Φσ
k(·) ‖L2

‖C1= 0

where Φσ
k(x) = σ cos(kx) and

Φσ
k (·)

‖Φσ
k(·)‖L2

= Φσ
k(·).

Proof. Let us fix a k and σ such that the assumptions of the theorem hold. As

discussed in Chapter 5, we may not limit to any Φσ
l where l2 > b as the corresponding
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modes of the grow-up solutions are bounded, while lower modes grow to infinity. Note

that if (l(v))2 > b, there will always exist blocking solutions w±
j for every j such that

�√b� < j ≤ l(v), since each n-branch in the bifurcation diagram limits to the line

b = n2.

Lemma 5.4 implies that for any such k and σ there exists an initial condition

u0 = u0(k, σ) ∈ W u(v) and a corresponding solution u(t, ·) to (139) such that

z(u(t, ·)− v(·)) = k for all 0 ≤ t <∞

sign(u(t, 0)− v(0)) = σ

lim
t→−∞

u(t, ·) = v

lim
t→∞

||u(t, ·)||L2 = ∞.

We denote such a solution for a fixed k and σ by u(t, ·) = uσk(t, ·). Then it follows

that

lim
t→−∞

uσk(t, ·) = v

and

sign(uσk(t, 0)− v(0)) = σ.

Since the L2-norm of any object is less than or equal to its H2-norm or C1-norm,

Lemma 5.4 further implies that not only does lim
t→∞

‖ uσk(t, ·) ‖L2= ∞, but

lim
t→∞

‖ uσk(t, ·) ‖H2= ∞

and

lim
t→∞

‖ uσk(t, ·) ‖C1= ∞.

We choose N and corresponding projections PN and QN as previously defined, such

that N ≥ n and N fulfills the spectral gap condition (92). Because we have chosen

g(u) ∈ G and therefore C2 and uniformly Lipschitz with values in L2, this is quite

simple. By Lemmas 6.4 and 6.5 there then exists a completed inertial manifold for

(139) which contains all invariant sets. Since W u(v) is an invariant set by definition,
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it follows thatW u(v) ⊂ M and thus uσk(t, ·) ⊂ M. Therefore, the dynamics of uσk(t, ·)
are determined by the (N + 1)-dimensional ODE

(140)

dp

dt
= −Ap + PNg(p+Ψ(p))

p = [p0, . . . , pN ], pi(t, ·) = p̂i(t)Φi(·) = 〈uσk(t, ·),Φi(·)〉0Φi(·)
d

dx
pi(t, 0) =

d

dx
pi(t, π) = 0,

where Φi is the ith eigenfunction of the operator A = − d2

dx2 − bI with Neumann

boundary conditions. Since lim
t→∞

‖ uσk(t, ·) ‖L2= ∞ and ||uσk(t, ·)|| ≤ ||ũσk(t, ·)|| + ||v||
with v a stationary solution, it follows that lim

t→∞
‖ ũσk(t, ·) ‖L2= ∞.

Lemma 5.4 implies that z(uσk(t, ·) − v(·)) = k for 0 ≤ t < ∞. Recalling Lemma

4.2, the set of times when uσk(t, ·) − v(·) has simple zeros is open and dense in R+.

Further, the times when uσk(t, ·) − v(·) does not have simple zeros coincide with the

dropping times. Since uσk(t, ·) is defined such that uσk(t, ·)− v(·) has no finite positive

dropping times, it follows that uσk(t, ·)− v(·) has only simple zeros for all t ∈ (0,∞).

Further, the Φσ
i are defined to have only simple zeros as well.

We know that lim
t→∞

‖ uσ
k (t,·)

‖uσ
k(t,·)‖L2

− Φσ
i (·)

‖Φσ
i (·)‖L2

‖L2= 0 for some Φσ
i at infinity as time

goes to infinity (see Section 5.2 for the detailed calculations). We know that for

uσ
k(t,·)

||uσ
k(t,·)||L2

to limit to
Φσ

i (·)
‖Φσ

i (·)‖L2
in C1, the functions uσk(t, ·) and Φσ

i (·) must have the

same zero number. Since both
uσ
k(t,·)

||uσ
k(t,·)||L2

and
Φσ

i (·)
‖Φσ

i (·)‖L2
have only simple zeros for

t ∈ (0,∞), they cannot be C1-close and have differing zero numbers. By Lemma

5.4, the zero number of ũσk(t, ·) cannot drop at any positive finite time. Since the

norm of ũσk(t, ·) grows to infinity along with uσk(t, ·), it follows that whenever ũσk(t, ·)
is sufficiently large, z(ũσk(t, ·)) = z(uσk(t, ·)). Thus z(uσk(t, ·)) must be constant in some

neighborhood of t = ∞. It follows that neither the shifted nor unshifted zero number

may drop at t = ∞ and lim
t→∞

z(ũσk(t, ·)) = lim
t→∞

z(uσk(t, ·)) = k, in other words i = k.

Thus, v connects to Φσ
k along some trajectory uσk(t, ·). �

We recall that an n-branch is always to the left of an n+1-branch and a pitchfork

branch with higher lap number will always be nested within a pitchfork branch with

lower lap number. It then follows that the bounded stationary solution on either side
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of v in the bifurcation diagram which maximizes |w(0)− v(0)|, blocks a given v from

connecting to infinity, and is not itself blocked will have the smallest lap number of any

solution on that side of v to which v may connect. Recalling that l(w) = z(w−β(w)) =
z(w − v) in such cases, it further follows that this furthest solution w will have the

smallest shifted zero number of any stationary solution to which v may connect.

Therefore, there exist two minimal values of K− and K+ wherein, for k < K+, there

do not exist any stationary solutions w with sign(w(0) − v(0)) > 0 and l(w) = k

to which v connects, and for k < K−, there do not exist any stationary solutions

w with sign(w(0) − v(0)) < 0 and l(w) = k to which v connects. Then v connects

to K+ + K− “equilibria” at infinity Φσ
j , or more specifically, v has heteroclinics

connecting to Φ+
0 , . . . , Φ

+
K+, Φ

−
0 , . . . , Φ

−
K−. We illustrate this via Figure 7, which

depicts the bifurcation diagram of stationary solutions to

(141)
ut = uxx + bu+ 25 sin(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

10 10.5 11 11.5 12 12.5 13 13.5 14
−10

−8

−6

−4

−2

0

2

4

6

8

10

b

u(
0)

 

 
Curve of Trivial Solutions
3−Branch
4−Branch
5−Branch
6−Branch

Figure 7. Bifurcation diagram for g(u) = 25 sin(u)

with stationary solutions depicted for b = 11.5 and b = 13
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For b = 11.5, there exist eleven stationary solutions to Equation (141), all of

which are hyperbolic. For this choice of b, it is clear that K+ = K− = 3 for all

but the outermost stationary solutions. For the topmost stationary solution, that

depicted by the point at (11.5, 5.96657), K+ = 4 while K− = 3. By Theorem 7.4,

this stationary solution has a heteroclinic connection to Φ+
3 , but does not connect to

Φ−
3 . The opposite is true for the stationary solution at (11.5,−5.96657). In this case,

K+ = 3, while K− = 4, and thus the stationary solution connects to Φ−
3 but not

Φ+
3 . Since K+ ≥ 3 and K− ≥ 3 for all stationary solutions of Equation (141) with

b = 11.5, it follows that every bounded stationary solution connects to every element

of {Φ+
k , Φ

−
k | 0 ≤ k < 3}. For b = 13, the situation is simplified. For every stationary

solution, K+ = K− = 4. Thus, every stationary solution connects to every element

of {Φ+
k , Φ

−
k | 0 ≤ k < 4}.

Any grow-up solution will, by definition, not limit to a bounded equilibrium. We

recall that the y-map maps a region Σ ∈ W u\{v} to Sn when i(v) = n + 1. Lemma

4.6 and Corollary 4.7 imply that there exists an initial condition u0 corresponding to

every choice of dropping times and sign. For simplicity, we first consider only positive

sign, i.e. the situation wherein u(0, 0)− v(0) > 0, i.e. σ = 1. Given K+ as defined

above, it follows that every initial condition corresponding to dropping times wherein

tK+−1 = ∞ must correspond to a grow-up solution. Such a grow-up solution will

limit to Φ+
i , where i corresponds to the smallest i for which the dropping time ti <∞

for i < K+. Thus, there is a K+-dimensional subset of W u which limits to Φ+
0 , a

(K+−1)-dimensional subset limiting to Φ+
1 , up to a possibly solitary one-dimensional

heteroclinic in W u(v) limiting to Φ+
K+−1. For the case wherein u(0, 0)− v(0) < 0, i.e.

σ = −1, the same holds for K− and Φ−
i .

2. Heteroclinic Connections Among Bounded Equilibria

Now that we have determined the behavior of the grow-up heteroclinic trajectories,

we may return to the study of connections between bounded equilibria.
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Lemma 7.5. A given hyperbolic stationary solution v ∈ E connects to all w ∈ E

not excluded by Lemmas 5.1, 5.6, and 5.7. These are the stationary solutions w with

i(w) < i(v) for which there is no stationary solution w such that w(0) lies between

v(0) and w(0) and satisfies z(v − w) ≤ z(w − w).

In order to prove Lemma 7.5, we instead prove a lemma which lays out explicitly

which bounded stationary solutions a given v connects to and show that this lemma

implies Lemma 7.5. For this lemma we require definitions for terms we shall use

frequently. We define a number of frequently referred to sets as follows:

Ln := {v ∈ E | l(v) = n or v ≡ η∗},

ΩE(v) := {w ∈ E | v connects to w �= v},

Wk(v) := {w ∈ Lk | w(0) ∈ EJv\EJv, i(w) < i(v)},

and for 0 ≤ k < i(v) we define

vk is the bounded stationary solution v̂ with l(v̂) = k such that

v̂ /∈ EJv, v̂(0) > v(0) is minimal,

vk is the bounded stationary solution v̂ with l(v̂) = k such that

v̂ /∈ EJv, v̂(0) < v(0) is maximal,

v is the stationary solution w ∈ EJv ∩ Ll(v) with maximal w(0),

v is the stationary solution w ∈ EJv ∩ Ll(v) with minimal w(0).

We introduce here a number of ancillary lemmas which help to determine all con-

nections between bounded equilibria. Lemma 7.6 was proven in [19] and is of great

use in both the dissipative and slowly non-dissipative case. Lemma 7.7 was proved

in [7] and carries over with modifications to Neumann boundary conditions, as the

proof does not rely on (139) being dissipative.
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Lemma 7.6. Let v1, v2, and v3 be stationary solutions of (139), with v2 hyperbolic.

(1) If vj ∈ E connects to vk then i(vj) > i(vk) and W u(vj) ∩ W s(vk) is a C2

imbedded submanifold of the Hilbert space of dimension i(vj)− i(vk) ≥ 1.

(2) If v1 connects to v2, and v2 connects to v3, then v1 connects to v3. This is

known as the Cascading Principle.

(3) Let vj ∈ E connect to vk ∈ E. Then cl(W u(vj) ∩W s(vk) consists of vj , vk

and all w ∈ E such that vj connects to w which connects to vk, as well as

their connections.

Lemma 7.7. Let v connect to w ∈ E, and let i(v) = l(v) + 1, i(w) < l(v), and

w ∈ EJv. Then there exists a w such that w ∈ EJv and v connects to w which

connects to w.

Lemma 7.8. Let v be a hyperbolic stationary solution of (139). Then v connects

to the following stationary solutions:

(1) If v = η∗, or if v �= η∗ and i(v) = l(v), then

ΩE(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}.

(2) If v(0) > η∗ and i(v) = l(v) + 1, then

ΩE(v) = Ω1 ∪ Ω2 ∪ Ω3,

where

(a) Ω1 = {vk | K+ ≤ k < i(v)},
(b) Ω2 = {vk | K− ≤ k < i(v)− 1}, and if K− < i(v), either

(c) Ω3 = {vk | k = i(v)− 1} if EJv = ∅, or else Ω3 = v ∪ ⋃
k<l(v)

Wk.

(3) If v(0) < η∗ and i(v) = l(v) + 1, then

ΩE(v) = Ω1 ∪ Ω2 ∪ Ω3,

where

(a) Ω1 = {vk | K− ≤ k < i(v)},
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(b) Ω2 = {vk | K+ ≤ k < i(v)− 1}, and if K+ < i(v), either

(c) Ω3 = {vk | k = i(v)− 1} if EJv = ∅, or else Ω3 = v ∪ ⋃
k<l(v)

Wk.

(4) If v is a spatially homogeneous stationary solution v(x) ≡ η �= η∗ such that

i(v) = l(v) + j where j > 1, then

ΩE(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}.

Proof. Lemma 4.6 and Corollary 4.7 imply that for any 0 ≤ k < i(v) and

σ ∈ {1,−1}, there exists an initial condition u0 ∈ H2 such that z(u(t, ·)− v(·)) = k

for 0 ≤ t <∞ and sign(u(t, 0)−v(0)) = σ. Let us fix values for k and σ, and assume

that there exists a stationary solution w /∈ EJv with Morse index i(w) = k < i(v),

and therefore l(w) ∈ {k, k − 1}, such that sign(w(0)− v(0)) = σ. This is equivalent

to K+ ≤ k. If there exists a stationary solution w with l(w) = k − 1 = i(w) − 1,

then there must be a stationary solution ŵ such that l(ŵ) = k = i(ŵ) and ŵ(0) lies

between w(0) and v(0), since both n-branches and pitchfork branches do not cross,

and n-branches are nested with increasing lap number left to right, while pitchfork

branches are nested with increasing lap number inwards, as proven in Chapter 3 and

Lemma 5.8.

For ease of notation, let us refer to the stationary solution ŵ simply as w. Then

i(w) = k = l(w), where k < i(v), and sign(w(0) − v(0)) = σ. If there exists at

least one such stationary solution then there exists a minimal (respectively maximal)

solution for σ = 1 (respectively σ = −1). By definition, this stationary solution is vk

(respectively vk). Due to the nesting of branches, if v is on a nonzero n-branch, then

vk (respectively vk) is on the k-branch, while if v is on a set of pitchfork branches vk

(respectively vk) is in the same set of pitchfork branches for k > 0.

If a given vk or vk exists, then by Lemma 4.8 and Corollary 4.9 it follows that

z(v − vk) = z(vk − v) = l(vk) = k and z(v − vk) = z(vk − v) = l(vk) = k. Then by

the Infinite Blocking Lemma, v does not connect to any objects at infinity with zero

number greater than or equal to k and appropriate sign at their left intercept. Most
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especially, it does not connect to {Φσ
k , Φσ

k+1, . . .}. Furthermore, by Lemma 7.1 the

shifted zero number does not drop at infinity, thus v cannot connect via uσk(t, ·) to

any {Φσ
0 , . . . , Φ

σ
k−1}. Thus, it follows that the solution uσk(t, ·) corresponding to the

choice of k and σ must remain bounded, and therefore must limit to some bounded

equilibrium.

We shall now study each case in turn:

Case 1: If v = η∗ we may apply Lemma 4.6, and if v �= η∗ we may apply Corollary

4.7, since it follows that for any spatially homogeneous stationary solution which is

not the trivial solution, if i(v) = l(v) then the stationary solution is asymptotically

stable. Let us assume that a given vk exists, i.e. that there exists at least one

stationary solution w such that w(0) > v(0), w /∈ EJv, and l(w) = k < i(v). Then

z(v−vk) = z(vk−v) = l(vk) = k < i(v) and i(vk) < i(v). By Lemma 4.6 or Corollary

4.7, there exists a solution u(t, ·) such that lim
t→−∞

u(t, ·) = v(·), z(u(t, ·) − v(·)) = k

for all t ∈ [0,∞), and (u(t, 0) − v(0)) > 0 for all time. Since z(vk − v) = k, the

Infinite Blocking Lemma comes into play, and u(t, ·) is blocked from connecting to

infinity, i.e. it must remain bounded and limit to some bounded equilibrium w with

z(w − v) = k. Since vk is the minimal solution above EJv, there do not exist any

stationary solutions w /∈ EJv between v and vk to invoke the Finite Blocking Lemma.

Furthermore, v does not connect to any stationary solution wj ∈ EJv such that

i(w) = j. To see why, recall that

(142) z(v1 − v2) =

⎧⎨⎩ l(v1) ≥ 1 if range(v2) ⊂ range(v1)

0 if range(v2) ∩ range(v1) = ∅

for any two solutions of (139). It follows that z(v−wj) = l(v) = i(v), since wj ∈ EJv

implies that range(wj) ⊂ range(v). But Lemma 5.7 implies that v cannot connect

to any such wj. Further, if j > i(v) the connection is blocked by Lemma 5.6 as well.

Therefore, for every v in Case 1, it follows that v does not connect to any stationary

solutions in EJv.

Thus, for a given k such that vk exists, v is blocked from connecting to infinity

or any finite stationary solution with lap number k except vk by Lemmas 5.1-5.7.
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But by the LaSalle Invariance Principle, the solution corresponding to the associated

u0 ∈ W u(v) must limit to some bounded equilibrium. Therefore lim
t→∞

u+k (t, ·) = vk.

The same arguments hold for vk by the replacement of w(0) > v(0) with w(0) <

v(0), σ = +1 with σ = −1, u(t, 0) − v(0) < 0 for all time, minimal replaced by

maximal, and lim
t→∞

u−k (t, ·) = vk.

Finally, for any stationary solution wj /∈ EJv such that i(wj) ≥ i(v), v is blocked

from connecting to wj by Lemma 5.6. Therefore, for v = η∗ or if v �= η∗ and

i(v) = l(v), it follows that

ΩE(v) = {vk|K− ≤ k < i(v)} ∪ {vk|K+ ≤ k < i(v)}.

Case 2: We assume that v(0) > η∗ and i(v) = l(v)+1. Therefore v must be on an

n-branch, but not encased in any pitchforks, as the spatially homogeneous stationary

solution inside any set of pitchfork branches has i(v) ≥ 2 = l(v) + 2, and the Morse

index on each pitchfork branch is equal to the lap number. Since v(0) > η∗, it follows

that either EJv = v for v a spatially homogeneous stationary solution, and therefore

all other stationary solutions are not in EJv, or else v(0) > v(π
n
) for l(v) = n = i(v)−1.

If σ = +1, then for k ≥ K+ there exists at least one stationary solution wk such

that wk(0) > v(0), wk is on the k-branch, and l(w) = i(w) = k. Since v(0) > η∗,

it follows that for any stationary solution w such that w(0) > v(0), w /∈ EJv. We

may now apply Lemma 4.6 (for spatially homogeneous v) or Corollary 4.7 (for all

other v in this case), which imply that for all 0 ≤ k < i(v), and thus especially for

K+ ≤ k < i(v), there exists an initial condition u0 such that z(u(t, ·) − v(·)) = k

and sign(u(t, 0)− v(0)) = +1 for all t ∈ [0,∞). Range(v) ⊂ Range(w) since w(0) >

v(0) > η∗, and therefore z(v − w) = z(w − v) = l(w) = i(w) = k ≤ l(v). Thus,

the Infinite Blocking Lemma takes effect, and u(t, ·) is blocked from connecting to

infinity and must remain bounded and limit to a bounded equilibrium with shifted

zero number k.

By the Finite Blocking Lemma, all stationary solutions w �= vk such that l(w) = k

and w(0) > v(0) have connections blocked by vk if they are on the k-branch, and are
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excluded if they are on a pitchfork branch. But, by the LaSalle Invariance Principle,

u(t, ·) must limit to some bounded equilibrium with z(w − v) = k = l(vk), and

therefore lim
t→∞

u+k (t, ·) = vk for all K+ ≤ k < i(v).

Now let us take σ = −1. Lemma 4.6 (for spatially homogeneous v) or Corollary 4.7

(for all other v) imply that for all 0 ≤ k < i(v), and thus especially forK− ≤ k < i(v),

there exists an initial condition u0 ∈ W u(v) such that z(u(t, ·) − v(·)) = k and

sign(u(t, 0)− v(0)) = −1 for all t ∈ [0,∞).

Let us first consider the case where EJv = ∅. Then for any non-pitchfork w such

that w(0) < v(0), Range(v) ⊂ Range(w), therefore z(v − w) = l(w). For any w on

a pitchfork branch, z(v − w) = 0, and thus u(t, ·) does not limit to this equilibrium.

For K− ≤ k, it follows that z(v − vk) = l(vk) = k ≤ l(v). Thus, the Infinite

Blocking Lemma comes into effect, and u(t, ·) is blocked from connecting to infinity

and must limit to a bounded equilibrium. By definition of vk, no blocking stationary

solution exists between v and vk, and vk blocks connections to all “lower” stationary

solutions with lap number equal to k. Therefore, by the LaSalle Invariance Principle

lim
t→∞

u−k (t, ·) = vk for all K− ≤ k ≤ i(v)− 1.

Now we consider the case where EJv �= ∅. We take each individual choice of

k < i(v) separately. We must break Jv into three regions, recalling that l(v) = n:

(v(π
n
), v(π

n
)), [v(π

n
), v(0)], and (v(0), v(0)).

We first consider k = i(v) − 1, or k = n to use the notation we have assigned.

Lemma 4.6 and Corollary 4.7 imply that there exists one initial condition in W u(v)

such that z(u(t, ·) − v(·)) = n and sign(u(t, 0) − v(0)) = −1 for all t ∈ [0,∞). If

there exist multiple non-pitchfork stationary solutions w /∈ EJv such that l(w) = n

and w(0)− v(0) < 0, then z(v− vn) = n and z(w− vn) = n, thus the Finite Blocking

Lemma implies that vn blocks all of these connections. If there exist any stationary

solutions w ∈ EJv with l(w) = n, recall that v is the maximal of these. Due to the

nesting of all stationary solutions in EJv within v in the phase portrait, it follows

that z(v− v) = l(v) = n. Further, v being the stationary solution with lap number n
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and maximal left intercept implies that all other stationary solutions w ∈ EJv with

l(w) = n are nested within v in the phase portrait, and therefore z(w−v) = l(v) = n.

Thus, by the Finite Blocking Lemma v blocks connections from v to any other

stationary solution with lap number n in EJv. Additionally, for any non-pitchfork

stationary solution w /∈ EJv with l(w) = n and w(0)− v(0) < 0, including vn, z(w −
v) = l(w) = n and therefore v blocks all of these connections as well. Furthermore,

by the Infinite Blocking Lemma, if v exists, v does not connect to any objects below

it at infinity with lap number greater than or equal to n. Thus, if there exists a v,

then v does not connect to vn and only connects to v among all objects with lap

number n. If there does not exist any v we understand {v} = ∅.
Now let us consider k < n. Corollary 4.7 implies the existence of infinitely many

initial conditions in W u(v) such that z(u(t, ·)− v(·)) = k and sign(u(t, 0)− v(0)) =

−1 for all t ∈ [tk,∞), tk ≥ 0. Let us consider one particular tk, that of tk = 0.

The corollary implies the existence of an initial condition u∗0 ∈ W u(v) such that

z(u∗(t, ·)−v(·)) = k and sign(u∗(t, 0)−v(0)) = −1 for t ∈ [0,∞). Let us consider two

sets of bounded stationary solutions below v in the bifurcation diagram, w− ∈ EJv

where l(w−) = k �= n and w+ /∈ EJv where l(w+) = k < n. Range(w−) ⊂ range(v)

while range(w+) ⊇ range(v), therefore z(w− − v) = l(v) = n while z(w+ − v) =

l(w+) = k < n. Therefore no solution w− ∈ EJv is a candidate for the limit of u∗(t, ·).
Also, as before, for any w+ �= vk it follows by definition of vk that z(v−vk) = l(vk) = k

and z(w+−vk) = l(w+) = k, thus the Finite Blocking Lemma implies that v does not

connect to any w+ �= vk, and the existence of vk results in the Infinite Blocking Lemma

blocking connections to objects at infinity with lap number greater than or equal to

k. The existence of vk implies that u∗(t, ·) must limit to some bounded equilibrium,

and vk is the only equilibrium which fulfills the conditions put forth by Corollary 4.7

which is not blocked. Therefore v connects to all vk such that K− ≤ k < n, i.e. all

vk which exist except vn.

Now let us see if v connects to any stationary solutions in EJv with lap number

k. Any solutions w ∈ EJv with lap number greater than n are blocked by Lemma
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5.6. For all stationary solutions w ∈ E[v(π
n
), v(0)], excluding v, range(w) ⊆ range(v)

and therefore z(v − v) = l(v) = n = l(v) = z(w − v). Thus v is blocked by v from

connecting to any w ∈ E[v(π
n
), v(0)) by the Finite Blocking Lemma. This leaves us

only to consider those stationary solutions w ∈ (v(π
n
), v(π

n
)) ∪ (v(0), v(0)) for which

connections exist and which are blocked. We follow the method by which Brunovský

and Fiedler proved such connections in [7].

The method is laid out as follows. In reference to the notation used in [7], we

denote L := v ∪ ⋃
k<l(v)

Wk(v) and K := L ∩ (Ln−1 ∪ Ln). We have already shown that

v does not connect to any w /∈ EJv such that w(0) < v(0) and l(w) = z(v − w) = n,

neither does it connect to any w ∈ [v(π
n
), v(0)), therefore Ω3 ⊂ L. We proceed by

induction. In Step 1 we use the induction hypothesis to prove that v connects to all

elements of L, provided v connects to all elements of K. In Step 2 we prove that v

connects to some elements of K. We conclude this portion of the proof by referencing

a result of Brunovský and Fiedler showing that if v connects to some solution in K,

it connects to its neighbors in K, and by extension all w ∈ K.

Let us consider the case l(v) = n = 0, and assume as usual that there exists at

least one spatially homogeneous stationary solution w ∈ E(−∞, v(0)). We construct

the proof in a more general form than necessary so that it will be applicable to a

higher choice of n or the transference to Dirichlet boundary conditions. By the Finite

Blocking Lemma, v must connect to the maximal such w. If EJv = ∅, then w = v0 by

definition. Any solution in EJv blocks connections to E(−∞, v(π
n
)], thus if EJv �= ∅

then v connects to the maximal w ∈ EJv, which is by definition v. Thus we have

proven that v connects to L in the case where n = 0. We assume this continues to

hold for n− 1 ≥ 0 and prove it holds for n.

Step 1. If v connects to all elements of K, then v connect to all elements of L.

Let w ∈ L\K. Then l(w) < n − 1. Since n-branches may not intersect and

originate in increasing order as b increases, it follows that there must be elements of

Ln−1 in L. If w(0) > v(0), we denote the minimal such solution between w and v by

w1, if w(0) < v(π
n
), we denote the maximal such solution below w by w1. Therefore
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v connects to w1 by assumption, as w1 ∈ K. By Lemma 3.14 and the choice of w1

being minimal or maximal, it follows that i(w1) = l(w1) + 1 = n. By our choice of

w1, it follows that there does not exist any other stationary solution in Ln−1 between

w and w1, thus w ∈ L(w1). Thus, by the induction hypothesis w1 connects to w and

therefore v connects to w by Lemma 7.6. Since w was chosen arbitrarily, we have

now completed Step 1.

Step 2. The stationary solution v connects to some element of K.

By Corollary 4.7, v must connect to some solution w which is below v in the

bifurcation diagram, wherein z(w − v) = n. Since EJv is nonempty by assumption,

it follows that w(0) > v(π
n
), since any such w would block connections to contenders

below EJv (recall that for any w ∈ EJv, z(w−v) = z(v−w) = l(v) = n). If i(w) = n,

then w ∈ Ln−1 ∪ Ln by Lemma 3.11. We have already shown that v is blocked from

connecting to w ∈ EJv if w /∈ L. Therefore, w ∈ K and v connects to w.

Now let us suppose i(w) < n. Then by Lemma 7.7, v connects to some stationary

solution w such that i(w) = n with w ∈ EJv. As before, w ∈ Ln−1 ∪ Ln. Again it

follows that w ∈ K and thus v connects to w. Thus, Step 2 is completed.

Step 3. If v connects to some w ∈ K, then it connects to its neighbors in K,

provided they exist [7].

We do not here reproduce the method used to prove this result, as the changes are

either notational or related to the change of boundary conditions and require simple

substitutions for updating. Steps 1 and 2 are largely unchanged from those in [7] and

the interested reader will find all necessary changes in the translations of these steps

to this context.

Thus, the result proved in [7] carries over and v connects to all elements of L.

Therefore, for Case 2
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ΩE = {vk | K+ ≤ k < i(v)} ∪ {vk | K− ≤ k < i(v)− 1} ∪ Ω3.

If K− �= i(v), either

Ω3 = {vk | k = i(v)− 1} if EJv = ∅,

or else Ω3 = v ∪
⋃

k<l(v)

Wk.

Case 3: The case v(0) < η∗, i(v) = l(v) + 1 is symmetric to Case 2. As before, v

must be on an n-branch, but not encased in pitchforks. Since v(0) < η∗ it follows that

either EJv = v for v a spatially homogeneous stationary solution, and therefore all

other stationary solutions are outside EJv, or else v(0) < v(π
n
) for l(v) = n = i(v)−1.

If σ = −1, then for k ≥ K− there exists at least one stationary solution wk such

that wk(0) < v(0), wk is on the k-branch, and l(w) = i(w) = k. Since v(0) < η∗, it

follows that for any stationary solution w such that w(0) < v(0), w /∈ EJv. We may

now apply Lemma 4.6 or Corollary 4.7, which imply that for K− ≤ k < i(v) there

exists an initial condition u0 such that z(u(t, ·)− v(·)) = k and sign(u(t, 0)− v(0)) =

−1 for all t ∈ [0,∞). Range(v) ⊂ Range(w) since w(0) < v(0) < η∗, and therefore

z(v − w) = z(w − v) = l(w) = i(w) = k ≤ l(v). Thus, the Infinite Blocking Lemma

takes effect and u(t, ·) is blocked from connecting to infinity, and must remain bounded

and limit to a bounded equilibrium with shifted zero number k.

By the Finite Blocking Lemma, all stationary solutions w �= vk such that l(w) = k

and w(0) < v(0) have connections blocked by vk if they are on the k-branch, and are

excluded if they are on a pitchfork branch. But, by the LaSalle Invariance Principle,

u(t, ·) must limit to some bounded equilibrium with z(w − v) = k = l(vk), and

therefore lim
t→∞

u−k (t, ·) = vk for all K− ≤ k < i(v).

Now let us take σ = +1. Lemma 4.6 or Corollary 4.7 imply that for K+ ≤
k < i(v) there exists an initial condition u0 ∈ W u(v) such that z(u(t, ·) − v(·)) = k

and sign(u(t, 0) − v(0)) = +1 for all t ∈ [0,∞). Let us first consider the case

where EJv = ∅. Then for any non-pitchfork w such that w(0) < v(0), Range(v) ⊂
Range(w), therefore z(v−w) = l(w). For any w on a pitchfork branch, z(v−w) = 0,
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and thus u(t, ·) does not limit to this equilibrium. For K+ ≤ k, it follows that

z(v−vk) = l(vk) = k ≤ l(v). Thus the Infinite Blocking Lemma comes into effect, and

u(t, ·) is blocked from connecting to infinity and must limit to a bounded equilibrium.

By definition of vk, no blocking stationary solution exists between v and vk, and vk

blocks connections to all “higher” stationary solutions with lap number equal to k.

Therefore, by the LaSalle Invariance Principle, lim
t→∞

u+k (t, ·) = vk for all K+ ≤ k ≤
i(v)− 1.

Now we consider the case where EJv �= ∅. Again we take each individual choice

of k < i(v) separately. We now break Jv into three regions, recalling that l(v) = n:

(v(0), v(0)), [v(0), v(π
n
)], and (v(π

n
), v(π

n
)).

We first consider k = n = i(v)−1. Lemma 4.6 and Corollary 4.7 imply that there

exists one initial condition in W u(v) such that z(u(t, ·)− v(·)) = n and sign(u(t, 0)−
v(0)) = +1 for all t ∈ [0,∞). If there exist multiple non-pitchfork stationary solutions

w /∈ EJv such that l(w) = n and w(0)−v(0) > 0, then z(v−vn) = n and z(w−vn) = n,

thus the Finite Blocking Lemma implies that vn blocks all of these connections. If

there exist any stationary solutions w ∈ EJv with l(w) = n, recall that v is the

minimal of these. Due to the nesting of all stationary solutions in EJv within v in the

phase portrait, it follows that z(v − v) = l(v) = n. Further, v being the stationary

solution with lap number n and minimal left intercept in EJv implies that all other

stationary solutions w ∈ EJv with l(w) = n are nested within v in the phase portrait,

and therefore z(w − v) = l(v) = n.

Thus, by the Finite Blocking Lemma v blocks connections from v to any other

stationary solution with lap number n in EJv. Additionally, for any non-pitchfork

stationary solution w /∈ EJv with l(w) = n and w(0)− v(0) > 0, including vn, z(w −
v) = l(w) = n and therefore v blocks all of these connections as well. Furthermore,

by the Infinite Blocking Lemma, if v exists, v does not connect to any objects above

it at infinity with lap number greater than or equal to n. Thus, if there exists a v,

then v does not connect to vn and only connects to v among all objects with lap

number n. If there does not exist any v we understand {v} = ∅.
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Now let us consider k < n. Corollary 4.7 implies the existence of infinitely many

initial conditions in W u(v) such that z(u(t, ·)− v(·)) = k and sign(u(t, 0)− v(0)) =

+1 for all t ∈ [tk,∞), tk ≥ 0. Let us consider one particular tk, that of tk = 0.

The corollary implies the existence of an initial condition u∗0 ∈ W u(v) such that

z(u∗(t, ·)−v(·)) = k and sign(u∗(t, 0)−v(0)) = +1 for t ∈ [0,∞). Let us consider two

sets of bounded stationary solutions above v in the bifurcation diagram, w− ∈ EJv

where l(w−) = k �= n and w+ /∈ EJv where l(w+) = k < n. Range(w−) ⊂ range(v),

while range(w+) ⊇ range(v), therefore z(w− − v) = l(v) = n while z(w+ − v) =

l(w+) = k < n. Therefore no solution w− ∈ EJv is a candidate for the limit of u∗(t, ·).
Also, as before, for any w+ �= vk it follows by definition of vk that z(v−vk) = l(vk) = k

and z(w+−vk) = l(w+) = k, thus the Finite Blocking Lemma implies that v does not

connect to any w+ �= vk, and the existence of vk results in the Infinite Blocking Lemma

blocking connections to objects at infinity with lap number greater than or equal to

k. The existence of vk implies that u∗(t, ·) must limit to some bounded equilibrium,

and vk is the only equilibrium which fulfills the conditions put forth by Corollary 4.7

which is not blocked. Therefore v connects to all vk such that K+ ≤ k < n, i.e. all

vk which exist except vn.

Now we show that v connects to L. For all stationary solutions w ∈ E[v(0), v(π
n
)],

excluding v, range(w) ⊆ range(v) and therefore z(v − v) = l(v) = n = l(v) =

z(w − v). Thus v is blocked by v from connecting to any w ∈ E(v(0), v(π
n
)] by the

Finite Blocking Lemma. This leaves us only to consider those stationary solutions

w ∈ (v(0), v(0)) ∪ (v(π
n
), v(π

n
)) to determine which connections exist and which are

blocked. Here we denote L := v ∪ ⋃
k<l(v)

Wk, K is defined as before. We have already

shown that Ω3 ⊂ L.

We consider the case l(v) = n = 0 and assume, as usual, that there exists at

least one spatially homogeneous stationary solution w ∈ E(v(0),∞). By the Finite

Blocking Lemma, v must connect to the minimal such w. We construct the proof in

a more general form than necessary so that it will be applicable to a higher choice of

n or the transference to Dirichlet boundary conditions. If EJv = ∅, then w = v0 by
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definition. Any solution in EJv blocks connections to E(v(π
n
),∞], thus if EJv �= ∅

then v connects to the minimal w ∈ EJv, which is by definition v. Thus we have

proven v connects to L in the case n = 0. We assume this continues to hold for

n− 1 ≥ 0 and show it holds for n.

Step 1. If v connects to all elements of K, then v connect to all elements of L.

Let w ∈ L\K. Then l(w) < n − 1. Since n-branches may not intersect and

originate in increasing order as b increases, it follows that there must be elements of

Ln−1 in L. If w(0) < v(0), we denote the maximal such solution between w and v by

w1, if w(0) > v(π
n
), we denote the minimal such solution above w by w1. Therefore

v connects to w1 by assumption, as w1 ∈ K. By Lemma 3.14 and the choice of w1

being minimal or maximal, it follows that i(w1) = l(w1) + 1 = n. By our choice of

w1, it follows that there does not exist any other stationary solution in Ln−1 between

w and w1, thus w ∈ L(w1). Thus, by the induction hypothesis, w1 connects to w and

therefore v connects to w by Lemma 7.6. Since w was chosen arbitrarily, we have

now completed Step 1.

Step 2. The stationary solution v connects to some element of K.

By Corollary 4.7, v must connect to some solution w which is above v in the

bifurcation diagram, wherein z(w − v) = n. Since EJv is nonempty by assumption,

it follows that w(0) < v(π
n
), since any such w would block connections to contenders

above EJv (recall that for any w ∈ EJv, z(w−v) = z(v−w) = l(v) = n). If i(w) = n,

then w ∈ Ln−1 ∪ Ln by Lemma 3.11. We have already shown that v is blocked from

connecting to w ∈ EJv if w /∈ L. Therefore, w ∈ K and v connects to w.

Now let us suppose i(w) < n. Then by Lemma 7.7, v connects to some stationary

solution w such that i(w) = n with w ∈ EJv. As before, w ∈ Ln−1 ∪ Ln. Again it

follows that w ∈ K and thus v connects to w. Thus, Step 2 is completed.

Step 3. If v connects to some w ∈ K, then it connects to its neighbors in K

provided they exist [7].

Again, the proof of Step 3 carries over completely from [7]. Thus, the result

proved in [7] carries over and v connects to all elements of L. Therefore, for Case 3
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ΩE = {vk|K− ≤ k < i(v)} ∪ {vk|K+ ≤ k < i(v)− 1} ∪ Ω3.

If K+ �= i(v), either

Ω3 = {vk|k = i(v)− 1} if EJv = ∅,

or else Ω3 = v ∪
⋃

k<l(v)

Wk.

Case 4: The final case addresses the situation of spatially homogeneous stationary

solutions inside pitchfork branches, as these are the only solutions not addressed by

Cases 1, 2, and 3. Let us recall from Chapter 3 that for every set of pitchforks, the

outermost pitchfork branches have lap number and Morse index equal to 1. Therefore

K+ ≤ 1 and K− ≤ 1. We may apply Lemma 4.6, which implies that for all K+ ≤ k <

i(v) there exist solutions u+k (t, ·) in the unstable manifold of v for which z(u+k (t, ·)−
v(·)) = k and sign(u(t, 0) − v(0)) = +1 for all t ∈ [0,∞). Additionally, for all

K− ≤ k < i(v) there exist solutions u−k (t, ·) in the unstable manifold of v for which

z(u−k (t, ·)− v(·)) = k and sign(u(t, 0)− v(0)) = −1 for all t ∈ [0,∞). Let us fix k.

As v is a spatially homogeneous stationary solution, EJv = ∅. Therefore z(v −
vk) = l(vk) = k, and for any stationary solution w with l(w) = k and w(0) > vk(0),

z(w−vk) = l(w) = k or z(w−vk) = 0 for w on a different set of pitchforks. Thus either

w is excluded outright, or vk blocks connections to all such stationary solutions above

v by the Finite Blocking Lemma, as well as objects at infinity with lap number greater

than or equal to k by the Infinite Blocking Lemma. Since u+k (t, ·) must therefore limit

to some bounded equilibrium, lim
t→∞

u+k (t, ·) = vk. Additionally, z(v − vk) = l(vk) = k,

and for any stationary solution w with l(w) = k and w(0) < vk(0), z(w−vk) = l(w) =

k or z(w − vk) = 0 if w is on a different set of pitchforks. Thus either w is excluded

outright, or vk blocks connections to all such stationary solutions below v by the

Finite Blocking Lemma, as well as the objects at infinity with negative left intercept

and lap number greater than or equal to k by the Infinite Blocking Lemma. Since

u−k (t, ·) must also limit to some bounded equilibrium, lim
t→∞

u−k (t, ·) = vk. Therefore,

for any spatially homogeneous stationary solution v such that i(v) = l(v) + j with
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j > 1,

ΩE(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}.

This completes the proof. �

Remark 7.9. We have only excluded connections by invoking the Finite Blocking

Lemma, the Infinite Blocking Lemma, and Lemmas 5.6 and 5.7, which have been re-

ferred to as Morse Blocking and Zero Number Blocking in other works. All stationary

solutions in E, the set of bounded equilibria, which were not blocked by any of these

lemmas were proven to have connections from v. Thus, the proof of Lemma 7.5 is

contained within the proof of Lemma 7.8.
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CHAPTER 8

Equilibria at Infinity

We have previously described the limiting behavior on the unbounded portions of

unstable manifolds of bounded equilibria. In this chapter we shall take these assertions

to the next level by discerning exactly what we mean by “equilibria at infinity” and

introducing recently developed techniques for the depiction of behavior at infinity.

1. The Non-compact Global Attractor

In Chapter 2 we determined that any solution to

(143)

ut = uxx + bu+ g(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

g(u) ∈ G

which does not limit to a bounded equilibrium cannot remain bounded, and that for

b > 0, the corresponding compact semigroup S is non-dissipative. Thus, for b > 0,

the global attractor A must be a non-compact set. Therefore, we cannot use the

classical definition of global attractor, as all definitions relying on compactness of the

attractor no longer apply.

We define our attractor A as follows: a non-compact global attractor is the mini-

mal set A ⊂ H2 ∩ {Neumann Boundary Conditions} = X such that A is positively

invariant and attracts all bounded sets in X, i.e. its basis of attraction is X . Thus,

A is a functional invariant set for the semigroup S such that for all t ≥ 0, S(t)A=A.

Normally, the term global attractor is used to refer to the maximal compact invariant

set, a set which additionally fulfills the above definition for a dissipative dynamical

system, but in our case, non-compactness forms the starting point for our investiga-

tion, and thus cannot be excluded.
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As proven by Temam in [39], for a continuous semigroup of operators on a Banach

space X possessing a Lyapunov functional V which is defined and continuous in

X, and a compact global attractor A, the global attractor A is the set of unstable

manifolds of E, the set of bounded equilibria, i.e.

(144) A =
⋃
v∈E

W u(v).

Additionally, if E is discrete, A is the union of E and the heteroclinics connecting

one equilibrium of E to another.

Unfortunately, Temam’s proof uses the compactness of the global attractor. Thus,

we must take a different approach. If we consider the set of solutions which remain

bounded in some sufficiently large ball in H2 for t ≥ T (u0), with T (u0) some fixed

time dependent on each forward bounded solution, then we may apply Temam’s proof

to this subset. Therefore, we may discern that the bounded portion of the global

attractor may be defined as previously. This leaves the unbounded portion to be

studied, i.e. the grow-up heteroclinics. If one can construct a structure of “equilibria

at infinity” which, along with their connecting orbits, attract all grow-up solutions,

then we may retain (144) as a valid definition of the construction of a non-compact

global attractor. As we shall describe in this chapter, that is exactly what we do.

2. The Poincaré Compactification

In order to properly study and visualize behavior at and within infinity, we need

an extra tool. To this end, we introduce the Poincaré compactification. This con-

struction, originally introduced by Poincaré in [25] for two dimensions, was modified

by Hell [17] to provide a “compactification” of an infinite-dimensional Hilbert space

in such a way that infinity is mapped onto a whole sphere. This “compactification” is

not, in fact, compact, as the “compactification” transforms our infinite-dimensional

space into an infinite-dimensional manifold whose boundary is the sphere at infinity.

Its use allows a great deal of work on infinity which is not possible in H2 alone. In

addition, we shall apply the recent results of Hell [17] on the application of the Conley

index at infinity and the structure of the attractor within infinity, in order to illustrate
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the behavior of the dynamical system within this region. Furthermore, these results

will provide more information on the objects to which our grow-up solutions limit.

We herein produce the formulation discussed in [17] as applied to our choice of

Hilbert space and class of reaction-diffusion equations.

We consider the Hilbert Space H2∩{Neumann Boundary Conditions} = X with

scalar product 〈u, v〉 = ∫ π

0
uv+uxvx+uxxvxxdx. In addition, we add a vertical direc-

tion onto our space and identify our original space X with the affine hyperplane X ×
{+1}, which is tangent to the unit sphere at its north pole. We project the hyperplane

centrally onto the upper hemisphere H = {(χ, z) ∈ X × R| 〈χ, χ〉+ z2 = 1, z ≥ 0}.
Given any point M on the hyperplane X × {+1}, the straight line through M and

the center of the unit sphere intersects the sphere at two antipodal points, one on

the upper hemisphere and one on the lower hemisphere. We define the projection

P(M) as the intersection point on the upper hemisphere, thus P(M) = (χ, z) with

z ≥ 0. This projection is illustrated in Figure 8. As the point M is allowed to go to

infinity, its image under the Poincaré projection moves to the equator of the infinite-

dimensional sphere, He := {(χ, 0) ∈ X × R | 〈χ, χ〉 = 1}, which is a sphere in its

own right, and is called the “sphere at infinity”. This projection provides the ability

to distinguish directions at infinity and obtain precision in the study of dynamics at

infinity.

Because the origin of X ×R, the point M , and its image under projection P(M)

are all colinear, the coordinates (χ, z) of P(M) may be computed as follows:

(145)

χ =
u

(1 + 〈u, u〉)1/2

z =
1

(1 + 〈u, u〉)1/2 .

It is easier to study invariant sets on a plane than on a sphere. Thus, we project

again onto several tangent vertical hyperplanes of X ×R and study the linearization

at equilibria there. This construction is illustrated in Figure 9.

We fix a vector e in the unit sphere of X such that (e, 0) lies on the equator of the

unit sphere of X ×R. We project a point (χ, z) = P((u, 1)) of the upper hemisphere
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Figure 8. The Poincaré compactification and projection
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(0,0)

(u,1)X x {+1}

H

e

C

z

Figure 9. A chart of the sphere at infinity and its surroundings

H onto the vertical hyperplane C which is tangent to the equator at the point (e, 0),

constructing the projection such that this projected point lies on the line defined by

(u, 1) and (0, 0). This is well-defined if the line through (u, 1), (χ, z), and (0, 0) has

an intersection with the affine half-hyperplane C which is orthogonal to (e, 0) and

tangent to the Poincaré hemisphere. Equivalently, this requires that 〈χ, e〉 or 〈u, e〉
is strictly nonnegative.
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Using the colinearity, we define the projected point M ′ = (ξ, ζ) ∈ C by the

following formulae:

(146) (ξ, ζ) =
1

〈u, e〉(u, 1) =
1

〈χ, e〉(χ, z).

We now recall that the original space is a Hilbert space, thus we have a countable

orthonormal basis of X in which coordinates (ûn)n∈N0 of any function u ∈ X may

be defined. We choose for the vector e the same basis vectors as were discussed in

previous chapters, specifically the eigenfunctions of the operator A, so as to obtain

equations in our coordinate system. For Φi, the i-th basis vector, or its negative

−Φi, we project onto the affine hyperplanes {ξi = ±1} of X × R, and thus (146) is

equivalent to

(147)

ξn = ± ûn
ûi

for all n ∈ N

ζ = ± 1

ûi
,

which holds for all u ∈ X with ith mode nonzero. The projections onto the hyper-

planes {ξi = ±1}i∈N0
build an atlas of H \ {(0, 1)}. To be precise, each chart defined

by (147) is a bijection between {(χ, z) ∈ H | 〈χ,Φi〉 > 0} and the half-hyperplane

C+
i := {ξi = 1, ζ ≥ 0} or {(χ, z) ∈ H | 〈χ,Φi〉 < 0} and the half-hyperplane C−

i :=

{ξi = −1, ζ ≥ 0}.
Now that the geometric aspects of the Poincaré Compactification have been illus-

trated, we focus on how the differential equations themselves are transformed. We

consider a differential equation of the form

(148) ut = L(u) = uxx + bu + g(u) = −Au+ g(u)

on the Hilbert space X. Taking the derivative of (145) with respect to time, we obtain

the following equations for z �= 0 and Lz, the homothety of L with factor z given by

Lz := zL(z−1) = d2

dx2 + bI + zg(z−1):

(149)
χt = 〈χ,Lz(χ)〉χLz(χ)− 〈χ,Lz(χ)〉χ

zt = −〈Lz(χ), χ〉 z.
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Taking the derivative of (146) with respect to time, we obtain the following equations

for ζ �= 0:

(150)
ξt = −〈Lζ(ξ), e〉 ξ + Lζ(ξ)

ζt = −〈Lζ(ξ), e〉 ζ.

Finally, we can view these equations in their coordinates for a given choice of basis

vector ±Φi. For a fixed i, (150) becomes:

(151)
(ξn)t = ∓Li

ζ(ξ)ξn + Ln
ζ (ξ) for all n ∈ N

ζt = ∓Li
ζ(ξ)ζ

where the (ξn)n∈N0 are the coordinates of ξ in the basis (Φn)n∈N0, and Ln
ζ (ξ) :=

〈Lζ(ξ),Φn〉 is the nth component of Lζ(ξ) with respect to the basis (Φn)n∈N0.

We recall that μi is the ith eigenvalue of the operator A from previous chapters,

where μi = i2 − b. For our particular choice of operator L, these equations become

(152)

(ξn)t = (μi − μn)ξn + (〈gζ(ξ),Φi〉 ξn + 〈gζ(ξ),Φn〉)

= (i2 − n2)ξn + (〈gζ(ξ),Φi〉 ξn + 〈gζ(ξ),Φn〉)

ζt = −〈gζ(ξ),Φi〉 ζ

in the half-hyperplane {ξi = ±1, ζ ≥ 0}. The Poincaré compactified equation does

not need to be normalized, since our nonlinearity is well-behaved and sublinear. The

zeta equation limits to ζt = 0 as zeta approaches zero, confirming that the equator is

invariant. Because the nonlinearity g is sublinear, the terms 〈gζ(ξ),Φk〉 in Equation

(152) are zero for ζ = 0 by definition of gζ. Additionally gζ limits to zero as ζ limits

to zero. Thus, on the equator Equation (152) becomes simply

(153) (ξn)t = (μi − μn)ξn = (i2 − n2)ξn for all i �= n.
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For each fixed i ∈ N0 the half-hyperplane C± = {ξi = ±1, ζ ≥ 0} contains exactly

one equilibrium of Equation (152):

(154) Φ±
i :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ξi = ±1

ξn = 0 for n �= i

ζ = 0.

Thus, on the sphere at infinity there exist a countable infinity of equilibria Φ±
i of

(152) with coordinates in the Poincaré hemisphere H given by

(155) Φ±
i :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
χi = ±1

χn = 0 for n �= i

z = 0.

The stability of these equilibria is determined through the study of Equation (153).

For i = 0, the quantity μ0−μn is always negative and the two equilibria Φ±
0 are stable.

For i ≥ 1, μi − μn is positive for 0 ≤ n ≤ i − 1 and negative for n ≥ i + 1, thus the

equilibria Φ±
i have i unstable directions and infinitely many stable directions. In [17],

Hell proved that for fixed i ∈ N0, σ ∈ {+1,−1}, and n �= i, the ξn-axis is invariant

and consists of heteroclinics from

Φσ
i to Φ±

n if μi − μn > 0, i.e. n ≤ i− 1

Φ±
n to Φσ

i if μi − μn < 0, i.e. n ≥ i+ 1.

Additionally, a generic initial condition in the i-dimensional unstable manifold of Φ±
i

converges to Φ±
0 .

We direct the reader to note that the equilibria Φ±
i in the sphere at infinity are

the same objects that transfinite heteroclinics limit to, as we have proven in previous

chapters.

3. The Global Attractor Decomposed

Based on the gradient-structure of the flows to (143), the Lyapunov functional, and

the compactness of the semigroup, it follows that each orbit which remains bounded

tends to an equilibrium. In Theorem 7.4 we proved that a grow-up heteroclinic
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tends towards a Φ±
i at infinity, which the work of Hell [17] proved were equilibria at

infinity, and whose connections within infinity were determined. Thus, all solutions

to (143) limit to some equilibrium, and the non-compact attractor A shares a second

definition with those of traditional global attractors: it is the set of equilibria and

their heteroclinics. We now introduce a theorem which ties together all the previous

results on these heteroclinics to provide an explicit deconstruction of the attractor.

We remind the reader that a complete decomposition for the attractor requires all

bounded equilibria to by hyperbolic, and that the set of nonlinearities such that

this holds is open and dense set in the set of nonlinearities in G depending only

on u. The results introduced in the following theorem only provide the explicit

connection structure for one equilibrium at a time and thus, Theorem 8.1 holds for

all nonlinearities g(u) ∈ G. Let us now define Ω(v) to be the set of equilibria distinct

from v to which v connects via heteroclinic trajectory. Thus, ΩE(v) ⊂ Ω(v), as Ω(v)

may include equilibria at infinity, rather than exclusively those equilibria in E.

Theorem 8.1. Let g(u) ∈ G, b > 0, and let v ∈ E be a bounded hyperbolic

stationary solution of (143). Then v connects to all bounded equilibria w ∈ E and

equilibria at infinity Φ±
i which are not blocked by Lemmas 5.1 - 5.7.

Equivalently, v connects to bounded equilibria and equilibria at infinity as follows:

(1) If v = η∗, or if v �= η∗ and i(v) = l(v), then

Ω(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}
∪ {Φ+

k | 0 ≤ k < K+} ∪ {Φ−
k | 0 ≤ k < K−}.

(2) If v(0) > η∗ and i(v) = l(v) + 1, then

Ω(v) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5, where

Ω1 = {vk | K+ ≤ k < i(v)},
Ω2 = {vk | K− ≤ k < i(v)− 1},
if K− < i(v), either Ω3 = {vi(v)−1} if EJv = ∅, or else Ω3 = v ∪ ⋃

k<l(v)

Wk,

Ω4 = {Φ+
k | 0 ≤ k < K+}, and

Ω5 = {Φ−
k | 0 ≤ k < K−}.
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(3) If v(0) < η∗ and i(v)= l(v) + 1, then

Ω(v) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5, where

Ω1 = {vk | K− ≤ k < i(v)},
Ω2 = {vk | K+ ≤ k < i(v)− 1},
if K+ < i(v), either Ω3 = {vi(v)−1} if EJv = ∅, or else Ω3 = v ∪ ⋃

k<l(v)

Wk,

Ω4 = {Φ+
k | 0 ≤ k < K+}, and

Ω5 = {Φ−
k | 0 ≤ k < K−}.

(4) If v is a spatially homogeneous stationary solution v(x) = η �= η∗ such that

i(v) = l(v) + j with j > 1, then

Ω(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}
∪ {Φ+

k | 0 ≤ k < K+} ∪ {Φ−
k | 0 ≤ k < K−}.

Proof. Case 1: By Lemma 7.8, v connects to {vk | K− ≤ k < i(v)}∪{vk | K+ ≤
k < i(v)} when K+, K− < i(v) (otherwise these sets are empty sets). By definition,

for k < K+ and k < K−, there do not exist any stationary solutions respectively

above or below v which block connections to infinity. Theorem 7.4 thus proved that

for every σ = +1 and k < K+ or σ = −1 and k < K−, there exist trajectories uσk(t, ·)
connecting v to Φσ

k in forward time. Thus, Case 1 is proved through combining the

previous results of Lemma 7.8 and Theorem 7.4.

Case 2: By Lemma 7.8, v connects to {vk | K+ ≤ k < i(v)} ∪ {vk | K− ≤ k <

i(v)− 1} when K+ < i(v) and K− < i(v)− 1 (otherwise these sets are empty sets).

Additionally, the lemma proved that if EJv = ∅, then v also connects to vi(v)−1, and

if EJv �= ∅, then v connects to all elements of the set v ∪ ⋃
k<l(v)

Wk. By definition,

for k < K+ and k < K−, there do not exist any stationary solutions which block

connections to infinity. Theorem 7.4 thus proved that for every σ = +1 and k < K+

or σ = −1 and k < K−, there exist trajectories uσk(t, ·) connecting v to Φσ
k in forward

time. Thus, Case 2 is proved through combining the previous results of Lemma 7.8

and Theorem 7.4.
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Case 3: By Lemma 7.8, v connects to {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k <

i(v)− 1} when K− < i(v) and K+ < i(v)− 1 (otherwise these sets are empty sets).

Additionally, the lemma proved that if EJv = ∅, then v also connects to vi(v)−1, and

if EJv �= ∅, then v connects to all elements of the set v ∪ ⋃
k<l(v)

Wk. By definition,

for k < K+ and k < K−, there do not exist any stationary solutions which block

connections to infinity. Theorem 7.4 thus proved that for every σ = +1 and k < K+

or σ = −1 and k < K−, there exist trajectories uσk(t, ·) connecting v to Φσ
k in forward

time. Thus, Case 3 is proved through combining the previous results of Lemma 7.8

and Theorem 7.4.

Case 4: By Lemma 7.8, v connects to {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤
k < i(v)} when K+, K− < i(v) (otherwise these sets are empty sets). By definition,

for k < K+ and k < K−, there do not exist any stationary solutions which block

connections to infinity. Theorem 7.4 thus proved that for every σ = +1 and k < K+

or σ = −1 and k < K− there exist trajectories uσk(t, ·) connecting v to Φσ
k in forward

time. Thus, Case 4 is proved through combining the previous results of Lemma 7.8

and Theorem 7.4. �

Let us denote by Gh the class of nonlinearities g(u) ∈ G wherein all stationary so-

lutions and equilibria at infinity for Equation (143) are hyperbolic and g is dependent

only on u. We remind the reader that Gh is open and dense in the set of nonlinearities

in G depending only on u.

Corollary 8.2. For any fixed b > 0 and g(u) ∈ Gh, the non-compact global

attractor A is comprised of the bounded equilibria v ∈ E, their heteroclinic connec-

tions as defined by Theorem 8.1, the equilibria at infinity Φ±
k , k ≤ �√b�, and the

connections of each Φ±
k to the set {Φ+

i , Φ
−
i | i < k}.

Proof. The dynamical system defined by Equation (143) with b > 0 and

g(u) ∈ Gh is a gradient system with a strict Lyapunov functional possessing a com-

pact semigroup, as discussed in Chapter 2. Therefore all trajectories which remain

bounded must limit to some bounded equilibrium. Furthermore, the existence of an
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inertial manifold M which contains all invariant sets implies that all bounded regions

in H2∩{Neumann Boundary Conditions} are exponentially attracted to M. Addi-

tionally, all solutions not in M are tracked by solutions in M, which themselves are

attracted to the set of stationary solutions and their heteroclinics. Finally, in [17]

Hell proved that each Φ±
k connects to all those Φ+

i , Φ
−
i for which i < k. Thus, for any

initial condition u0 ∈ H2∩{Neumann Boundary Conditions} such that u0 /∈ A, the

corresponding solution u(t, ·) to Equation (143) may be decomposed into the Fourier

series

u(t, ·) =
∞∑
j=0

ûj(t)Φj(x), ûj(t) = 〈u(t, x),Φj(x)〉0 ,

where each mode is determined by the equation

(156) ûj(t) = e(b−j2)tûj(0) +

∫ t

0

e(b−j2)(t−s)gj(s)ds.

Therefore, for j ≥ k = �√b�, the quantity b− j2 is negative, and the jth mode must

remain bounded. If the solution u(t, ·) remains bounded, it must limit to a stationary

solution v ∈ E, and therefore will limit to A. If u(t, ·) is a grow-up solution, then the

jth modes will die out relative to the norm of u, and therefore u may only limit to

one of the Φ±
j where j ≤ k. Since A contains the only objects at infinity to which

any initial conditions may limit, it therefore contains the only objects at infinity to

which any sets of initial conditions may limit. Thus A, which is comprised of the

set of bounded equilibria, their heteroclinics, and the attracting equilibria at infinity

with their heteroclinics, forms the minimal invariant set which attracts all bounded

sets in H2 ∩ {Neumann Boundary Conditions}. �
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CHAPTER 9

Case Study: f(u) = bu+ asin(u)

Now that we have laid out the results in their most general forms, let us look

at an interesting example to see exactly how these results may be applied and what

information may be obtained. To this end, we shall focus on a simple choice of

nonlinearity g(u) which produces a wealth of interesting results.

Let us consider the nonlinearity

(157) g(u) = a sin(u), a ∈ R.

It is clear that such a nonlinearity easily fulfills our requirements; it is not only C2 but

C∞, is bounded with upper bound γ = |a| and lower bound γ = −|a|, thus Γ = |a|.
It is not only Lipschitz continuous in L2 but C1 in H2 with bound ‖ Dg ‖≤ |a|, thus
the constants c and C1 in Chapter 6 are c =

√
π|a|

μN+1
=

√
π|a|

(N+1)2−b
and C1 = |a|. Our

evolutionary equation is now

(158)
ut = uxx + bu+ a sin(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

As shown in Lemma 2.3 in Chapter 2, the system generated by Equation (158) is

clearly non-dissipative for b > 0. In addition, for b = 0 the system is also non-

dissipative, although its behavior is noticeably different than that occurring for b > 0,

as it is not a slowly non-dissipative system. For a �= 0, the partial differential equation

ut = uxx + a sin(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0

has infinitely many spatially homogeneous equilibria u(x) = nπ, n ∈ Z. In addition,

one can quickly derive that half of these equilibria, those for which u(x) = 2nπ, have

Morse index i(u) = 1, and that their unstable manifolds connect them to the two
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adjacent equilibria. As we cannot bound the set of equilibria, the system is clearly

non-dissipative, despite not having asymptotically linear growth.

1. The Time Map and Bifurcation Diagrams

The function g(u) = a sin(u) being odd provides for a number of simplifications

regarding the time map and bifurcation diagram. First and foremost is that η∗ = 0.

Additionally, for any choice of η not contained on or inside a homoclinic orbit in the

phase plane, α(η) = −η. Due to sin(u) being an odd function, the phase portrait

is symmetric across both the vertical and horizontal axes. Therefore, for v(0) = η

contained in a homoclinic orbit such that v is a stationary solution of Equation (158),

−v is also a stationary solution of (158), with α(−v(0)) = −α(v(0)), i(v) = i(−v)
and l(v) = l(−v). It thus follows that the bifurcation diagram is symmetric across

the horizontal axis.

As g(u) = a sin(u) has infinitely many intersections with the u-axis, it follows

that the n-branches will intersect the lines b = n2 infinitely many times, as long as

a �= 0. For a = 0, the lines b = n2 are exactly the n-branches. Figures 10, 11, and

12 illustrate three examples of such bifurcation diagrams, dependent on the choice

of a. As dictated by Lemmas 3.4 and 3.9, each n-branch intersects the horizontal

axis at b = n2 − a and asymptotically approaches the line b = n2 as |u(0)| increases.
For a �= 0 we can see how the nonlinearity deforms the bifurcation diagram of the

linear equation, with the linear growth term overpowering the perturbation as |u(0)|
becomes large. For any given b, as we increase |a| away from zero, the perturbations

of the n-branches from the straight lines in Figure 11 become larger, as can be seen by

comparing Figure 10 to Figure 12. Thus, for any given b, the number of n-branches

intersecting a line in the bifurcation diagram at that value of b will increase as | a |
increases.

We can also see how the choice of nonlinearity affects the pitchfork branches

bifurcating off the 0-branch. In Figure 10, only the pitchfork branches on the portion

of the curve nearest 0 are clearly visible, for higher segments the regions in which

142



the pitchfork branches exist become miniscule, and the deviations from the 0-branch

correspondingly difficult to discern. For the second sets of pitchforks, those in the
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Figure 10. Bifurcation diagram for a = 1 and g(u) = a sin(u)
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Figure 11. Bifurcation diagram for g(u) = 0
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Figure 12. Bifurcation diagram for a = −3 and g(u) = a sin(u)

region of (0, 4π) and (0,−4π), the length of the pitchfork is less than .0001 and is

only visible in the figure as a visual artifact.

On the other hand, in Figure 12, all six sets of pitchforks in the depicted region are

clearly visible to the naked eye, and their deviations from the 0-branch have become

large enough to show distinct behavior. Comparing Figures 10 and 12 illustrates

the way the value of Γ, i.e. the size of the nonlinearity, relative to b can make all

deviations from the linear equation more pronounced. Both the wiggling nature of

the bifurcations and the distance of the pitchfork branches from the 0-branch become

noticeably more pronounced for Γ = 3, as shown in Figure 12, as opposed to Γ = 1,

as shown in Figure 10.

We now fix two different choices of a and b and investigate the results for these two

systems. For the first choice, we let a = 16 and b = 10. For this choice of constants,

Equation (158) becomes

(159)
ut = uxx + 10u+ 16 sin(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.
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We may plot the time map, as shown in Figure 13, and locate all non-spatially

homogeneous bounded stationary solutions to (159) via the intersections of the time

map with the various lines at heights π
n
.
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T(η,10,16sin(u))

Figure 13. Plot of the time map for Equation (159)

It is clear from Figure 13 that in addition to the trivial solution u(x) ≡ 0, there

exist two bounded stationary solutions with lap number 5, two with lap number 4,

and four with lap number 3. As the time map does not cross the lines at π, π
2
, or π

n

for n > 5, it follows that there do not exist any stationary solutions with lap number

1 or 2 or lap number greater than 5. Since 10u + 16sin(u) = 0 only at u = 0,

it follows that there do not exist any nontrivial spatially homogeneous stationary

solutions. Figure 14 depicts the relevant region of the bifurcation diagram, with all

the stationary solutions for b = 10 emphasized, while Figure 15 depicts the phase

portrait for

(160) 0 = uxx + 10u+ 16 sin(u)

with the stationary solutions of Equation (159) depicted in colors corresponding to

their lap numbers and matching the colors chosen in Figure 14. Each curve in the
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Figure 14. Bifurcation diagram for g(u) = 16 sin(u) depicting all

bounded stationary solutions for b = 10
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Figure 15. Phase portrait for 0 = uxx+10u+16 sin(u) depicting all

bounded stationary solutions of Equation (159)
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phase portrait corresponds to two stationary solutions of Equation (159), representing

its two intersection points with the u-axis, while the fixed point in the phase portrait

corresponds to one unique stationary solution, the spatially homogeneous solution

u(x) ≡ 0. We provide identifying notation in Figure 14 for each bounded equilibrium

for use in decomposing the heteroclinic structure of the attractor.

For our second choice of constants, we let a = −3 and b = 0.7, focusing in on a

particular choice of b from the bifurcation diagram presented in Figure 12. This allows

us to depict the differing behavior of the time map, phase portrait, and connections

in the attractor for a choice of b wherein pitchfork branches exist. For this choice of

constants, Equation (158) becomes

(161)
ut = uxx + 0.7u− 3 sin(u), x ∈ [0, π]

ux(t, 0) = ux(t, π) = 0.

We may plot the time map, as shown in Figure 16, and locate all non-spatially

homogeneous bounded stationary solutions to (161) via the intersections of the time

map with the lines at heights π
n
.
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Figure 16. Plot of the time map for Equation (159)
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From Figure 16 it is clear that in addition to the trivial solution u(x) ≡ 0, there

exist two more spatially homogeneous solutions, and all other stationary solutions

have lap number 1. We have plotted the line at height π
2
to illustrate the fact that

there do not exist any stationary solutions of Equation (161) with lap number greater

than 1, as the time map does not cross the line at π
2
. Further, since η = 0 corresponds

to a fixed point and T (0, 0.7,−3sin(u)) = ∞, it follows that u(x) ≡ 0 must be a saddle

point in the phase portrait. Thus, the other singularities in the time map must be

at its δ-points, the intersection of the homoclinic orbit with the u-axis. The minima

between these singularities correspond to the β-points of these homoclinics, which are

stationary solutions of Equation (161).

Figure 17 depicts the relevant region of the bifurcation diagram, with all the

stationary solutions for b = 0.7 emphasized, while Figure 18 depicts the phase portrait

for

(162) 0 = uxx + 0.7u− 3sin(u)
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Figure 17. Bifurcation diagram for g(u) = −3 sin(u) depicting all

bounded stationary solutions for b = 0.7
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Figure 18. Phase portrait for 0 = uxx + 0.7u− 3 sin(u) depicting all

bounded stationary solutions of Equation (161)

with the stationary solutions of Equation (161) depicted in colors corresponding to

their lap numbers and matching the colors chosen in Figure 17. Each curve in the

phase portrait corresponds to two stationary solutions of Equation (161), represent-

ing its two intersection points with the u-axis, while fixed points in the phase por-

trait correspond to the three spatially homogeneous stationary solutions v0(x) ≡ 0,

v+η (x) ≡ 2.5146, and v−η (x) ≡ −2.5146.

It is clear from a comparison between Figures 16 and 18 that those regions in the

time map diagram which lie between singularities do indeed correspond to the regions

in the phase portrait bounded by homoclinic orbits.

2. The Non-compact Global Attractor for g(u) = a sin(u)

The nonlinearity g(u) = a sin(u) is globally Lipschitz from L2 into L2, thus it

is sufficiently well-behaved to ensure the existence of a completed inertial manifold.

Thus, Theorems 7.4 and 8.1 apply and we are able to explicitly determine all hetero-

clinic connections for a generic form of Equation (158), whether bounded, transfinite,
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or intra-infinite. Thus, for our two choices of sinusoidal nonlinearities presented in the

previous section, we can explicitly determine all connections which exist. We present

these connections in two ways, first as a table and then in figure form.

In the study of Equation (159), the heteroclinic connections between equilibria

are listed in Table 1, and depicted in Figure 19. We carry over the color scheme from

Figure 14 and depict equilibria at infinity with differing lap numbers using differing

colors as well.

Table 1. Global attractor decomposition for Equation (159)

Equilibria to Which Heteroclinic Connections Exist in Forward Time

v0 v+5 , v
−
5 , v

+
4 , v

−
4 , v

+,1
3 , v−,1

3 , Φ+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v+5 v+4 , v
−
4 , v

+,1
3 , v−,1

3 , Φ+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v−5 v+4 , v
−
4 , v

+,1
3 , v−,1

3 , Φ+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v+4 v+,1
3 , v−,1

3 , Φ+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v−4 v+,1
3 , v−,1

3 , Φ+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v+,1
3 Φ+

2 ,Φ
−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v−,1
3 Φ+

2 ,Φ
−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v+,2
3 v+,1

3 , Φ+
3 , Φ

+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

v−,2
3 v−,1

3 , Φ−
3 , Φ

+
2 ,Φ

−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

Φ+
3 Φ+

2 ,Φ
−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

Φ−
3 Φ+

2 ,Φ
−
2 , Φ

+
1 , Φ

−
1 , Φ

+
0 , Φ

−
0

Φ+
2 Φ+

1 , Φ
−
1 , Φ

+
0 , Φ

−
0

Φ−
2 Φ+

1 , Φ
−
1 , Φ

+
0 , Φ

−
0

Φ+
1 Φ+

0 , Φ
−
0

Φ−
1 Φ+

0 , Φ
−
0

Φ+
0 Stable Equilibrium

Φ−
0 Stable Equilibrium
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Figure 19. Graphical depiction of the non-compact global attractor

for Equation (159)

Due to the number of total equilibria, including those equilibria at infinity, it

becomes increasingly difficult to gain insight from a visual depiction if all heteroclinic

connections are depicted. Thus, we adopt a standard practice in the depiction of

attractors with Chafee-Infante structure, which takes advantage of the Cascading

Principle. We presume that any time a connection is depicted from v1 to v2 and

another is depicted from v2 to v3, then there exists a direct connection from v1 to v3.

Additionally, we remind the reader that any time the Morse indices of two equi-

libria with a heteroclinic connection differ by more than one, there in fact exist

infinitely many such connections corresponding to the infinite number of possible

dropping times of the lap number, rather than just the singular connection drawn.
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The only time there is truly only one heteroclinic between two equilibria is when the

Morse indices of these equilibria differ by one.

We remind the reader that the various Φ solutions are equilibria at infinity. As

shown in both Figure 19 and Table 1, all equilibria of Equation (159) experience

cascading connections, i.e. A connecting to B which connects to C implies that A

connects to C via a separate trajectory.

Table 2. Global attractor decomposition for Equation (161)

Equilibria to Which Heteroclinic Connections Exist in Forward Time

v0 Stable Equilibrium

v+,1
p v0, Φ

+
0

v−,1
p v0, Φ

−
0

v+η v+,1
p , v+,2

p , Φ+
0 , v0

v−η v−,1
p , v−,2

p , v0, Φ
−
0

v+,2
p v0, Φ

+
0

v−,2
p v0, Φ

−
0

v+,1
1 v+,2

1 , v+,2
p , v0, Φ

+
0 , Φ

−
0

v−,1
1 v−,2

1 , v−,2
p , v0, Φ

+
0 , Φ

−
0

v+,2
1 Φ+

0 , Φ
−
0

v−,2
1 Φ+

0 , Φ
−
0

Φ+
0 Stable Equilibrium

Φ−
0 Stable Equilibrium

For Equation (161), the situation is rather more complicated, due to the existence

of pitchfork bifurcations and solutions of lower lap number inhabiting EJv±,1
1

. We

list the heteroclinic connections between equilibria in Table 2, and depict the more

complicated attractor in Figure 20.

152



v0

v 
1vv v111

0

+

v vvp p

v η

v

v

p

η

p

+ 

Φ

−,1

−,1−,2

−  

+,1 +,2

+,1 +,2

−,2 

Φ0

−

Figure 20. Graphical depiction of the non-compact global attractor

for Equation (161)

It becomes clear that despite the simplicity of the nonlinearity presented by g(u) =

a sin(u), Equation (158) produces a variety of interesting phenomena that we may

study through the use of the results presented in previous chapters.
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CHAPTER 10

The Dirichlet Case

Up to this point, we have only studied the asymptotic behavior of solutions to

(163) ut = uxx + bu + g(u), x ∈ [0, π], g(u) ∈ G

for Neumann boundary conditions. But we may extend this work to Dirichlet bound-

ary conditions with a reasonable amount of effort. In this chapter we address what

adjustments need to be made and in what ways the global picture has changed.

Henceforth we study the equation

(164)
ut = uxx + bu+ g(u), x ∈ [0, π]

u(t, 0) = u(t, π) = 0, g(u) ∈ G.

1. Zero Number

Recall the simple relation between the lap number and the zero number of a given

C1 function u(t, x),

(165) l(u) =

⎧⎨⎩ z(ux) + 1, if ux �= 0

0, if ux ≡ 0

⎫⎬⎭ .

In [4, 23, 40] it was proven that the zero number of a solution u(t, x) to

ut = uxx + f(u)

with Dirichlet boundary conditions is nonincreasing in forward time. Further, in [4]

it was proven that the zero number of any solution to

ut = uxx + f(x, u)

is nonincreasing in forward time provided that f(x, 0) = 0 for all x ∈ [0, π]. Thus, we

have the same properties on the zero number for Dirichlet boundary conditions as we

used in the study of Neumann boundary conditions.
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2. Non-dissipativity

Unlike the case of Neumann boundary conditions, there exists at most one spa-

tially homogeneous stationary solution in the Dirichlet boundary condition equation

(164), the trivial solution u∗(x) ≡ 0. In fact, if g(u) �= 0, there are no spatially ho-

mogeneous stationary solutions to Equation (164). Thus, Lemma 2.2 does not carry

over to the Dirichlet case.

Lemma 10.1. Given a scalar parabolic equation of the form (164), the correspond-

ing semigroup S is not point dissipative if b > 1.

Proof. For a given b > 1 and g(u) ∈ G, where γ ≤ g(u) ≤ γ, we are able to again

use the time map and bifurcation diagram to determine an ordering of the bounded

equilibria. We extract from this set those equilibria with zero number equal to 0. As

a consequence of Lemma 10.5, for any b > 1 the set of stationary solutions with zero

number equal to 0 is bounded, although the bound may be very large for b close to 1.

Thus, the Lyapunov functional over the set of stationary solutions with zero number

equal to 0 is bounded below.

Let us consider an initial condition u0 = a sin(x). The value of the Lyapunov

functional V (u0) may be studied as follows:

V (u) =

∫ π

0

1

2
u2x(s)−

b

2
u2(s)−G(u(s))ds

⇒ V (u0) = V (asin(x)) =

∫ π

0

a2

2
cos2(s)− ba2

2
sin2(s)−G(asin(s))ds

≤
∫ π

0

a2

2
cos2(s)− ba2

2
sin2(s)− γasin(s)ds

=

∫ π

0

a2

4
(1 + cos(2s))− ba2

4
(1− cos(2s))− γasin(s)ds

=
a2π

4
+ 0− ba2π

4
+ 0− 2aγ =

(1− b)π

4
a2 − 2aγ.

Since 1 − b < 0, by a sufficiently large choice of a we may always find an initial

condition u0 at which the Lyapunov functional has lower value than at any bounded

stationary solution with zero number equal to 0. Since z(u0) = z(asin(x)) = 0,
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it follows that the z(u(t, ·)) = 0 for all forward time for the solution u(t, ·) where

u(0, ·) = u0 = a sin(x). The value of the Lyapunov functional along the orbit given

by u(t, ·) must decrease as time moves forward, but due to the nonincrease of the

zero number [4, 23, 40], this orbit cannot contain any solutions with zero number

greater than 0 for t positive. Since the Lyapunov functional at all bounded equilibria

w with z(w) = 0 has higher value than at u0, it follows that these bounded equilibria

cannot be in the omega limit set of u0. By Lemma 2.1 we know that an orbit not

limiting to any bounded equilibrium cannot remain bounded for all time. Thus,

we have determined that the trajectory u(t, ·) corresponding to the above described

initial condition u0 does not remain in any bounded set for all time. As we have

now discovered at least one trajectory which does not remain bounded for all forward

time, it follows that the semigroup S is not point dissipative, and thus is not compact

dissipative.

Thus, for arbitrary nonlinearity g(u) ∈ G and b > 1, the semigroup S is non-

dissipative. �

Remark 10.2. If the domain of x is changed from [0, π] to [0, L], the semigroup

S is not point dissipative for b > L2

π2 .

3. The Time Map

Recalling the definitions given in the beginning of Chapter 3, we reiterate the def-

inition of the time map T (η, f) and the nth time map Tn(η, f) for Dirichlet boundary

conditions. For Dirichlet conditions, the time map T (η, f) determines the period of

a periodic solution to the second order equation

(166) uxx + f(u) = 0

intersecting the point (u(0), ux(0)) = (0, η). It determines the “time” in x needed for a

solution in the phase plane to travel from a point on the ux-axis to its first subsequent

intersection with the ux-axis [3, 30, 37]. As introduced in [35, 36, 37], we define

the time map by studying the length of time it takes for a trajectory originating at
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(0, η) in the phase plane to reach the point (α(η), 0), its first intersection with the

u-axis. This is exactly half the time it takes to reach its first intersection with the

ux-axis. Thus, assuming η > 0, we define the time map for our specific system via

the formulae

(167)

T (η, b, g) =
√
2

∫ α(η)

0

du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

T (−η, b, g) =
√
2

∫ 0

α(−η)

du√
b
2
(α(−η))2 − b

2
u2 +G(α(−η))−G(u)

.

As before, all stationary solutions of Equation (164) must be either the zero solution,

must take “time” π
n
, with n ∈ N, to travel from (0, η) to (0,−η), or must take time

π
n
, with n ∈ N, to travel from (0, η) back to (0, η), in order to fulfill the boundary

conditions.

The nth time map Tn(η, f) for solutions to Equation (166) is the nth positive zero

of the solution v(x) to Equation (166) which satisfies

v(0) = 0, vx(0) = η,

whenever this zero exists [7]. As with Neumann boundary conditions, the 2nd time

map follows from the first, although not in the same manner. In the Dirichlet case, the

formula for the 2nd time map is T2(η, f) = T (η, f)+T (−η, f). This follows from the

Hamiltonian [6]. By definition, u(0) = 0 = u(T (η, f)); plugging this into Equation

(9) implies that u2x(0) = u2x(T (η, f)). The equality ux(0) = ux(T (η, f)) is impossible

for a periodic orbit, as it would imply a homoclinic orbit in the phase plane, which

implies T (η, f) = ∞ and T2(η, f) does not exist. Thus ux(0) = −ux(T (η, f)) = η,

and T2(η, f) = T (η, f) + T (−η, f). As F (α(η)) = F (α(−η)), it follows that we may

define T2(η, b, g) explicitly via the formulae

(168)

T2(η, b, g) =
√
2

∫ α(η)

α(−η)

du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

, α(η) > α(−η)

T2(η, b, g) =
√
2

∫ α(η)

α(−η)

−du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

, α(η) < α(−η).

157



Further, we can explicitly define the nth time map for any given b and g:

(169)

n even : Tn(η, b, g) =
n

2
T2(η, b, g) =

n√
2

∫ α(η)

α(−η)

sign(η)du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

n odd : Tn(η, b, g) =
n− 1

2
T2(η, b, g) + T (η, b, g) =

n− 1√
2

∫ α(η)

α(−η)

sign(η)du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

+
√
2

∫ α(η)

0

sign(η)du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

.

It becomes clear that, unlike in the case of Neumann boundary conditions, we

cannot simply evaluate one time map and derive all our information therein. For

every choice of b and g we must evaluate every successive time map until we determine

the value of n for which Tn(η, b, g) > π for all η, only then will we have found all

bounded stationary solutions.

Recalling Figures 1 and 2, one can see that there are a number of regions in the

phase portrait containing solutions to the Neumann form of Equation (166) which

do not contain any solutions to the Dirichlet form. Any solutions contained within

a homoclinic loop which does not intersect the ux-axis are invisible to the Dirichlet

problem. Thus, the locations of fixed points in the phase portraits, although they

cannot be stationary solutions of the Dirichlet problem, do give us information on

the locations of stationary solutions. With the introduction of explicit formulae for

each successive time map, we may now prove analogs of the lemmas in Chapter 3.

Lemma 10.3. As ux(0) = η approaches ±∞, the time map for any choice of

g(u) ∈ G and b > 0 fulfilling Dirichlet boundary conditions will approach the value

π√
b
, i.e.

lim
η→±∞

T (η, b, g) =
π√
b
.

Proof. We choose |η| > max
{|η+|, |η−|}, where η+ is defined as the value η > 0

such that T (η, b, g) < ∞ for all η+ < η < ∞, and η− is defined as the value η < 0

158



such that T (η, b, g) <∞ for all −∞ < η < η−. Essentially, we choose to start with η

outside of all separatrices in the phase plane, as these contribute the only points where

the time map is infinite [3]. The dominance of the linear part of f(u) = bu + g(u)

ensures that the region of discontinuities of T is bounded. As we have chosen η

outside of the separatrices, it is ensured that α(η) is outside of the separatrices as

well, as α(η) is determined by the solution to the equation

(170)
1

2
η2 =

b

2
α2(η) +G(α(η)),

where (α(η), 0) is the unique point on the phase plane trajectory which contains the

point (u(0), ux(0)) = (0, η) such that sign(α(η)) = sign(η). By definition of η±, it is

clear that bα(η)+ g(α(η)) �= 0 and bα(−η)+ g(α(−η)) �= 0 for all α(η) corresponding

to |η| > max
{|η+|, |η−|}. As dα(η)

dη
= η

bα(η)+g(α(η))
, it is clear that dα(η)

dη
is defined

everywhere in the regions |η| > max
{|η+|, |η−|}.

Studying the Hamiltonian (170), and recalling that η and α(η) refer to points in

the phase plane where u = 0 and ux = 0 respectively, it is clear that solutions to

0 = uxx + bu + g(u) which are outside of all separatrices must be nested. Further,

recalling that sign(α(±η)) = sign(±η), it follows that dα(η)
dη

> 0 and lim
η→±∞

α(η) =

±∞
Thus, lim

η→±∞
T (η, b, g) = lim

η→±∞
2
∫ α(η)

0
sign(α(η))du√

b(α(η))2−bu2+2G(α(η))−2G(u)
. Recalling the

fact that γα(η) ≤ G(α(η)) ≤ γα(η) when γ ≤ g(u) ≤ γ, and applying a change

of variables xα(η) = u enables the following calculations:

lim
η→∞

√
2

∫ α(η)

0

sign(η)du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

= lim
α(η)→∞

2

∫ α(η)

0

sign(η)du√
b(α(η))2 − bu2 + 2G(α(η))− 2G(u)

= lim
α(η)→∞

2

∫ 1

0

| α(η) | dx√
b(α(η))2 − b(α(η))2x2 + 2G(α(η))− 2G(xα(η))

= lim
α(η)→∞

2

∫ 1

0

dx√
b− bx2 + 2 G(η)

(α(η))2
− 2G(xα(η))

(α(η))2
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= 2

∫ 1

0

dx√
b− bx2

=
2√
b

∫ 1

0

dx√
1− x2

=
π√
b

lim
η→−∞

√
2

∫ α(η)

0

sign(η)du√
b
2
(α(η))2 − b

2
u2 +G(α(η))−G(u)

lim
α(η)→−∞

2

∫ α(η)

0

sign(η)du√
b(α(η))2 − bu2 + 2G(α(η))− 2G(u)

= lim
α(η)→−∞

2

∫ 1

0

| α(η) | dx√
b(α(η))2 − b(α(η))2x2 + 2G(α(η))− 2G(xα(η))

= lim
α(η)→−∞

2

∫ 1

0

dx√
b− bx2 + 2G(α(η))

(α(η))2
− 2G(xα(η))

(α(η))2

= 2

∫ 1

0

dx√
b− bx2

=
2√
b

∫ 1

0

dx√
1− x2

=
π√
b
.

It is clear that as long as g(u) is bounded and C2, the limit of the time map as ux(0)

approaches infinity remains the same. It is entirely dependent on the asymptotic

linearity, rather than the specific nonlinearity. �

Corollary 10.4. As ux(0) = η approaches ±∞, the nth time map Tn for any

choice of g(u) ∈ G and b > 0 fulfilling Dirichlet boundary conditions will approach

the limit nπ√
b
, i.e.

lim
η→±∞

Tn(η, b, g) =
nπ√
b
.

Proof. This result follows directly from Equations (168) and (169) and Lemma

10.3. For n even,

lim
η→±∞

Tn(η, b, g) = lim
η→±∞

n

2
T2(η, b, g) = lim

η→±∞
(
n

2
T (η, b, g) +

n

2
T (−η, b, g))

=
n

2
( lim
η→±∞

T (η, b, g) + lim
η→±∞

T (−η, b, g)) = n

2
(
π√
b
+

π√
b
) =

n

2
(
2π√
b
) =

nπ√
b

and for n odd,

lim
η→±∞

Tn(η, b, g) = lim
η→±∞

(
n− 1

2
T2(η, b, g) + T (η, b, g))

= lim
η→±∞

(
n+ 1

2
T (η, b, g) +

n− 1

2
T (−η, b, g))

=
n+ 1

2
( lim
η→±∞

T (η, b, g)) +
n− 1

2
( lim
η→±∞

T (−η, b, g))
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=
n + 1

2

π√
b
+
n− 1

2

π√
b
=
nπ√
b
.

�

Furthermore, all stationary solutions to Equation (164) are nested about each

other, as they must all either oscillate around the origin or intersect the origin, and

may not intersect each other.

4. The Bifurcation Diagram

As in the Neumann case, studying the time map provides us with the global bi-

furcation diagram of stationary solutions as well as information about it, although

not as readily as in the Neumann case. In the case of Neumann boundary conditions,

we only needed to plot the first time map T (η, b, g); its intersections with lines at

heights π, π
2
, . . . , π

n
determined where there were non-spatially homogeneous station-

ary solutions in the bifurcation diagram and which lap numbers they possessed. For

Dirichlet boundary conditions, we must plot all time maps T1, . . . , Tn and locate

their intersections with a line at height π. As Tn > Tn−1 > . . . > T1, it follows that

we are finished once we have reached a jth time map wherein Tj(η, b, g) > π for all

η. For a given value of η, the corresponding stationary solution has zero number j if

the j +1st time map is equal to π at that point. Since the various time maps cannot

intersect, this identifies uniquely the stationary solution in the bifurcation diagram.

The natural ordering of values η = ux(0) leads to a logical ordering of solutions, and

thus forms the vertical axis of our bifurcation diagram. By plotting various time

maps and increasing b, we may construct the global bifurcation diagram of stationary

solutions.

Similarly to the Neumann case, we designate a curve in the bifurcation diagram as

an n-branch when said curve is parametrized over η and is comprised of all solutions

with zero number equal to n − 1. For any given j, if Tj(η, b, g) = π, it follows that

the stationary solution with left intercept u(0) = 0, ux(0) = η must cross the ux-

axis j − 1 times, i.e. it has zero number equal to j − 1. Therefore, the n-branch

corresponds to those values of b and ux(0) = η for which Tn(η, b, g) = π. The only
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other possible curve in the bifurcation diagram is the line of trivial solutions at η = 0,

although this does not necessarily exist if g(0) �= 0. We note that for nonlinearities

g(u) which are odd functions of u, the nonzero n-branches are unchanged by the

transition from Neumann to Dirichlet boundary conditions, although the solutions

which are represented by the points on these branches are altered.

Lemma 10.5. An n-branch will asymptotically approach the line b = n2 in the

bifurcation diagram.

Proof. As proven in Lemmas 10.3 and 10.4, lim
η→±∞

Tn(η, b, g) = nπ√
b
for fixed b.

As we have defined an n-branch for Dirichlet boundary conditions, all solutions on

an n-branch are stationary solutions of (164) with ux(0) = η whose nth time map

Tn(η, b, g) = π. For a fixed b �= n2, as η limits to ±∞, lim
η→±∞

Tn(η, b, g) =
nπ√
b
�= π. As

the time map is continuous for η sufficiently large, it follows that there exists an ηb

such that for | η |>| ηb |, the nth time map Tn(η, b, g) �= π, and thus, the n-branch

does not intersect the line at this fixed b. Equivalently, there are no equilibrium

solutions for | η |>| ηb |. Only for b = n2 will this property not hold. The n-branch

is continuous, defined by the intersections of the nth time map Tn with the line at π

for variable b. Thus, as η limits to positive or negative infinity, the n-branch must

approach the line b = n2. �

Since there is no 0-branch or branch of spatially homogeneous stationary solutions

in the Dirichlet case, it follows that there cannot be any pitchfork bifurcations in the

Dirichlet bifurcation diagram. As in the Neumann case, the n-branches bifurcate

from the horizontal axis (which is the curve of trivial solutions if there exists a trivial

solution) at the value b fulfilling b + g′(0) = n2. Again, the sign of g′(0) determines

whether these bifurcations open to the left or right: for g′(0) > 0 the bifurcation will

be annihilated as b decreases, while for g′(0) < 0 the bifurcation will be annihilated

as b increases.

The relationship between the zero number and Morse index is much the same as

the relationship between the lap number and Morse index.
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Lemma 10.6. The Morse index i(v) and zero number z(v) of a hyperbolic station-

ary solution to Equation (164) are related by

i(v) ∈ {z(v), z(v) + 1} .

This has already been proven in a number of sources [2, 6] as a consequence of

the Sturm-Picone Comparison Theorem. The proof follows nearly identically to the

proof of Lemma 3.11, as well as the proof presented in [6], and as such will not be

replicated here.

Lemma 10.7. For v a hyperbolic stationary solution to (164) with vx(0) = η0 �= 0,

(171)

η0 · db
dη

(η0) > 0 ⇒ i(v) = z(v)

η0 · db
dη

(η0) < 0 ⇒ i(v) = z(v) + 1.

Proof. The first portion of this proof follows from [7]; although the proof in

that paper was for a more restrictive class of inequalities, the same proof holds for

f(u) = bu + g(u), g ∈ G. Thus, for v a hyperbolic stationary solution of Equation

(164) with η0 = vx(0) �= 0 and z(v) = n

(172)
η0T

′
n+1(η0) > 0 ⇒ i(v) = n

η0T
′
n+1(η0) < 0 ⇒ i(v) = n+ 1.

As in Neumann boundary conditions, dTn+1

db
(η) < 0 for fixed η. For a fixed η0 > 0 such

that η0T
′
n+1(η0) > 0, as b is increased, the value of η at which Tn+1(η) = π increases,

while for η0 < 0 such that η0T
′
n+1(η0) > 0, this intersection point decreases. Such

changes occur in the time map for increasing b if and only if η0
db
dη
(η0) > 0.

For a fixed η0 > 0 such that η0T
′
n+1(η0) < 0, as b is increased, the value of η

at which Tn+1(η) = π decreases, while for η0 < 0 such that η0T
′
n+1(η0) < 0, this

intersection point increases. Such changes occur in the time map for increasing b if
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and only if η0
db
dη
(η0) < 0. Thus

(173)

η0 · db
dη

(η0) > 0 ⇒ i(v) = z(v)

η0 · db
dη

(η0) < 0 ⇒ i(v) = z(v) + 1.

�

Thus, as in the case of Neumann boundary conditions, we may produce a global

bifurcation diagram of stationary solutions and determine the degeneracy of a given

stationary solution, as well as its zero number and its Morse index, just from the

solution’s location in the bifurcation diagram.

5. The Y -Map

For Dirichlet boundary conditions we may prove the same results as in Chapter 4

for the equation

(174)

ut = uxx + bu+ g(x, u)︸ ︷︷ ︸
f(x,u)

, x ∈ [0, π]

u(t, 0) = u(t, π) = 0.

We retain the definitions of G, G0, F and F0, and construct the y-map in an analogous

manner. As we did not construct the y-map to study the lap number over time but

rather to study a shifted zero number, the Dirichlet case is more straightforward than

the Neumann in terms of the y-map. We provide an analogue to Proposition 4.1 for

the Dirichlet case here:

Proposition 10.8. Any equation of the form (174) where g(x, u) = g(u), i.e.

where g and f are only dependent on u, may be rewritten into an equivalent equation

in ũ where g̃ ∈ G0 and f̃ ∈ F0.

Proof. We introduce the change of variables ũ = u− v, where v is any bounded

hyperbolic stationary solution of Equation (174). Applying this change of variables
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transforms Equation (174) into

(175)

ũt = ũxx + bũ+ g(ũ+ v)− g(v)

ũ(t, 0) = ũ(t, π) = 0

g̃(x, ũ) = g(ũ+ v(x))− g(v(x)), f̃(x, ũ) = bũ+ g̃(x, ũ).

It is clear that g(ũ+ v(x))− g(v(x)) is a function of both x and ũ, and additionally

that g̃(x, 0) = 0 and thus f̃(x, 0) = 0. Thus, f̃ ∈ F0 and g̃ ∈ G0, and therefore

Equation (175) is a scalar parabolic partial differential equation of the form (174).

Furthermore, it is possible to rewrite Equation (175) to see that it is linear in ũ. As

nonlinearities in G are twice continuously differentiable, we may rewrite g(ũ+v)−g(v)
as g̃(x, ũ) =

∫ 1

0
g′(v + θũ)dθ · ũ. �

As in Chapter 4, we assume that g(u) ∈ G0; if not, we may transform Equation

(174) into Equation (175) and g̃(x, ũ) ∈ G0.

We define the dropping times tk as before, but must redefine σk as follows:

(176) σk :=

⎧⎨⎩ sign ux(t, 0) for some t ∈ (tk, tk−1), if tk < tk−1

0, otherwise.

Each σk is well-defined since ux(t, 0) �= 0 for tk < t < tk−1 via Lemma 10.9.

Lemma 10.9. Given f = f(x, u) ∈ F0 and zero number z(u(0, ·)) <∞, define the

dropping times of u(t, ·) as in (30), and assume tk < tk−1. Then

ux(t, 0) �= 0 for all t ∈ (tk, tk−1)

and thus sign(ux(t, 0)) does not depend on t ∈ (tk, tk−1).

Proof. This proof follows identically to the equivalent proof in [6], but applied to

a broader range of nonlinearities. A result of Fiedler and Brunovský from [5], which

corresponds to the equivalent result for Neumann boundary conditions discussed in

Lemma 4.2, implies that for any t ∈ (tk, tk−1), there exists an ε > 0 such that u(t′, x′)

has one sign only for 0 < x′ < ε and |t − t′| < ε. This implies that ux(t
′, 0) �= 0,
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for |t − t′| < ε, via the strong maximum principle [34], and thus sign(ux(t, 0)) is

independent of t ∈ (tk, tk−1). �

As before, it is clear that y maps into Sn and that y(u0) = σek implies that

0 = tn = . . . = tk and tk−1 = ∞, or in other words, z(u0) = k and z(u(t, ·)) = k for

all finite forward time. From Lemma 10.9 it follows that the sign of ux(t, 0) cannot

change for t ∈ (tk, tk−1) and thus σ · ux(t, 0) > 0 for all non-dropping times.

Lemma 4.3 holds identically for Dirichlet boundary conditions. The only changes

we must introduce into the proof are noting that u(t, x) is a map into H2(R, [0, π])∩
H1

0 (R, [0, π]) rather thanH
2(R, [0, π])∩{Neumann Boundary Conditions}, replacing

u(t, 0; f, u0) with ux(t, 0; f, u0), and finally replacing u(t, 0; f, u0) �= 0 by implication

of Lemma 4.2 with ux(t, 0; f, u0) �= 0 by implication of Lemma 10.9.

Recall that the Sturm-Liouville eigenfunctions of

(177)
uxx + b(x)u = λu

u(0) = u(π) = 0

fulfill Dirichlet boundary conditions rather than Neumann, and thus sign conventions

are chosen based on (ϕi(0))x > 0. We may proceed identically to Chapter 4 in order

to prove that y : Σn → Sn is an essential mapping for the Dirichlet system. Thus, we

may proceed to prove Dirichlet forms of Lemma 4.6 and Corollary 4.7.

Lemma 10.10. Let v ≡ 0 be a hyperbolic stationary solution of (174) with unstable

manifold W u of dimension i(v) > 0. Let Σ ⊂W u\{v} be homotopic in W u\{v} to a

small sphere centered at W u of dimension n = i(v)− 1. For any finite sequence

(178)
0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sk ∈ {1,−1} , 0 ≤ k ≤ n,

there exists a point u0 ∈ Σ corresponding to an initial condition u(0, ·) ∈ X such that

the graph t→ z(u(t, ·)) is determined by (δk). In other words, for any 0 ≤ t <∞,

(179)
t ≥ δk ⇔ z(u(t, ·)) ≤ k

δk < t < δk−1 ⇒ sign(ux(t, 0)) = sk.
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Proof. The assumption that v ≡ 0 is a stationary solution of Equation (174)

implies that f(x, 0) = 0, thus f ∈ F0. If we wish to focus on a nonlinearity f(u)

where f(0) �= 0, then we assume that the nonlinearity f(x, u) = f̃(x, ũ) and drop the

tildes for convenience of notation.

We first assume that the restricted y-map, y : Σ → Sn is essential. Therefore, y

is surjective. We now define the vector ς exactly as y was defined in (30, 32, 176),

replacing tk with δk and σk with sk. By the surjectivity of y, there exists an initial

datum u0 ∈ Σ such that y(u0) = ς. But as we noted earlier, knowing y(u0) uniquely

determines the dropping times tk and signs σk of the solution u(t, ·) corresponding to

u0. Thus, it is determined that tk = δk and σk = sk whenever δk < δk−1.

In order to prove that y is essential, we must homotopically deform our nonlin-

earity f from the corresponding linear form. We define

(180) fϑ(x, u) := ϑf(x, u) + (1− ϑ)fu(x, 0) · u

or, recalling the types of nonlinearities f over which we are interested,

(181)
fϑ(x, u) = bu+ gϑ(x, u) := bu + ϑg(x, u) + (1− ϑ)gu(x, 0) · u

⇒ gϑ(x, u) := ϑg(x, u) + (1− ϑ)gu(x, 0) · u

with the homotopy parameter 0 ≤ ϑ ≤ 1. As we deform f , the unstable manifold of

the stationary solution v ≡ 0 of (174) with a specific nonlinearity fϑ is simultaneously

deformed. The linearization at v ≡ 0 in the homotopically deformed system

(182) 0 = uxx + bu+ ϑgu(x, 0)u+ (1− ϑ)gu(x, 0)u = uxx + bu+ gu(x, 0)u

is entirely unchanged. Additionally, fϑ ∈ F0 depends continuously on ϑ as F0 sup-

ports the weak Whitney topology.

We denote the cut-off tangent space of W u(fϑ) at v ≡ 0 for ϑ = 0 by

(183) W u
loc(f0) := span {ϕ0, . . . , ϕn} ∩ {u0 ∈ X||u0| < 2ε} .
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The local unstable manifolds with respect to an fϑ are then parametrized by diffeo-

morphisms

(184) ρϑ :W u
loc(f0) → W u

loc(fϑ)

where ρ−1
ϑ is induced by the orthogonal projection onto span {ϕ0, . . . , ϕn}. We observe

that ρϑ depends continuously on ϑ in the uniform C0 topology.

Now we fix a sphere

(185) Σn := {u ∈ W u
loc(f0)| |u| < ε}

in the cut-off unstable manifold of v ≡ 0 and let yϑ denote the restriction to ρϑ(Σ
n)

of the y-map associated to fϑ. After a homotopy we may assume that Σ = ρ1(Σ
n).

Finally, we define

(186) yϑ := yϑ · ρϑ : Σn → Sn.

This mapping is well-defined, as z(u) ≤ n on W u(fϑ). The mapping is continuous,

and depends continuously on ϑ thanks to the Dirichlet form of Lemma 4.3. The

Dirichlet form of Lemma 4.5 implies that y0 = y0 · ρ0 = y0 : Σn → Sn is essential.

By the homotopy invariance of this property, y1 = y1 · ρ1 = y · ρ1 is essential, and

therefore y is essential.

Thus, choosing a sequence of δk and sk we have shown that for any 0 ≤ t <∞

t ≥ δk ⇔ z(u(t, ·)) = z(u(t, ·)− v) ≤ k

δk < t < δk−1 ⇒ sign(ux(t, 0)) = sk.

�

Corollary 10.11. Let v be a non-trivial hyperbolic stationary solution of

(187)
ut = uxx + bu+ g(u), x ∈ [0, π]

u(t, 0) = u(t, π) = 0, g(u) ∈ G
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with Morse index i(v) = n + 1 > 0. Let Σ ⊂ W u\{v} be homotopic in W u\{v} to a

small sphere centered at W u of dimension n. For any finite sequence

(188)
0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sk ∈ {1,−1} , 0 ≤ k ≤ n,

there exists a point u0 ∈ Σ corresponding to an initial condition u(0, ·) ∈ X such

that the graph t → z(u(t, ·) − v(·)) is determined by (δk). In other words, for any

0 ≤ t <∞,

(189)
t ≥ δk ⇔ z(u(t, ·)− v(·)) ≤ k

δk < t < δk−1 ⇒ sign(ux(t, 0)− vx(0)) = sk.

Proof. We now extend the results of Lemma 10.10 to any hyperbolic stationary

solution v of (187). Let u be a solution of (187) with g(u) ∈ G. Then ũ := u − v

satisfies

(190)
ũt = ũxx + bũ+ g̃(x, ũ)

g̃(x, ũ) := g(ũ+ v(x))− g(v(x)),

noting that g̃(x, 0) = 0. The eigenvalue problem of (190) at a hyperbolic stationary

solution w̃ = w − v is

(191) λu = uxx + bu + g̃u(x, w̃)u = uxx + bu+ gu(w)u.

If we assume that the stationary solution w in Equation (187) has Morse index j and

therefore λ0 > λ1 > . . . > λj−1 > 0 > λj > . . ., with corresponding eigenfunctions

ϕ0, . . . , ϕj−1, . . ., it is clear that w̃ must have the same eigenfunctions and eigenvalues,

and therefore the same Morse index, since the eigenvalue problem for a stationary

solution w of (187) is the same as the eigenvalue problem for the corresponding

stationary solution w̃ of (190).

The arguments within the proof of Lemma 10.10 hold in the shifted system, but

regarding initial datum ũ0 = u0 − v and corresponding solutions ũ = u − v. This is

due to the fact that the zero number of the difference of two solutions to Equation
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(187) is nonincreasing in time. Thus, Lemma 10.10 asserts that there exists an initial

datum ũ0 such that for 0 ≤ t <∞
t ≥ δk ⇔ z(ũ(t, ·)) ≤ k

δk < t < δk−1 ⇒ sign(ũx(t, 0)) = sk

for any choice of sequences

0 = δn ≤ δn−1 ≤ . . . ≤ δ0 ≤ ∞

sj ∈ {1,−1} , 0 ≤ j ≤ n.

�

Finally, in place of Lemma 4.8 we introduce Lemma 4.2 of [6]. We redefine the set

Jv to be (−vx(0), vx(0)), recalling that the symmetry in the phase portrait ensures

that vx(
π
n
) = −vx(0) for a stationary solution with lap number n.

Lemma 10.12. Consider an equation

(192)

ut = uxx + f(u)

x ∈ [0, π], t ≥ 0, f ∈ C2

u(t, 0) = u(t, π) = 0.

Let v1 and v2 be two distinct stationary solutions. Then | v1x(0) |≥| v2x(0) | implies

(193) z(v1 − v2) = z(v1).

We do not require an analogue to Corollary 4.9, as there do not exist any pitchfork

bifurcations in the bifurcation diagram for Dirichlet conditions, except those of the

n-branches from the b-axis.

6. Heteroclinic Connections and the Asymptotic Behavior of Grow-Up

Solutions

Now that we have proved the existence of an analogous y-map for Dirichlet bound-

ary conditions, we may proceed to prove analogous blocking lemmas and an analogous

grow-up lemma.
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Lemma 10.13. (Finite Blocking Lemma for Dirichlet Boundary Conditions)

Let v and w be two distinct stationary solutions of Equation (187), v hyperbolic,

and let w(0, ·) be a function which solves Equation (187) such that wx(0) lies strictly

between vx(0) and wx(0, 0). Then

z(v − w) ≤ z(w − w)

implies that v does not connect to w.

We remind readers that v connects to a function u(0, ·) solving Equation (187) if

there exists some solution u(t, ·) to (187) such that u(T, ·) = u(0, ·) for some T ≥ 0

and lim
t→−∞

u(t, ·) = v.

Proof. We proceed by contradiction. Assume that v connects to w via a trajec-

tory u(t, ·), t ∈ (−∞, T ]. Then ũ = u− w satisfies an equation of the form

(194)
ũt = ũxx + bũ+ g̃(x, ũ)

g̃(x, ũ) := g(ũ+ w(x))− g(w(x)), g̃(x, 0) = 0.

Via the results of Lemma 10.10 and Corollary 10.11, we may assume that w = 0

without loss of generality by working in the shifted system (194). Thus, either ṽx(0) <

0 < w̃x(0, 0) or w̃x(0, 0) < 0 < ṽx(0). The nonincrease of the zero number z(u(t, ·))
on the trajectory connecting v to w and the concomitant nonincrease of z(ũ(t, ·)) on
the trajectory connecting ṽ to w̃ imply that

z(v − w) = z(ṽ) ≥ z(w̃) = z(w − w).

Recalling Lemma 10.9, we know that z(ṽ) �= z(w̃) as ṽx(0) and w̃x(0, 0) have opposite

signs. Therefore z(v −w) > z(w −w) if v connects to w and the lemma is proved by

contraposition. �

Remark 10.14. If we let w(0, ·) be a stationary solution of Equation (187), then

the Dirichlet Finite Blocking Lemma 10.13 still holds with T = ∞.
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Lemma 10.15. (Infinite Blocking Lemma for Dirichlet Boundary Conditions)

Let v and w be two distinct stationary solutions to (187), v hyperbolic. Let σ =

sign(wx(0)− vx(0)). If

z(v − w) ≤ k,

then all trajectories u(t, ·) in the unstable manifold of v wherein sign(ux(t, 0) −
vx(0)) = σ and z(u(t, ·) − v(·)) = j ≥ k for all t ∈ (tj ,∞] with tj < ∞ remain

bounded. In other words, v does not contain any heteroclinic connections to objects

at infinity with zero number greater than or equal to k.

Proof. We proceed by contradiction. Assume that v connects to an object at

infinity Φ∞ via a given trajectory u(t, ·), t ∈ R. We require that the renormalized

Φ∞ have only simple zeros, which can be shown to hold for all relevant objects at

infinity. Thus, the zero number of Φ∞ is well defined; let z(Φ∞) = z(Φ∞ − v) = j

and sign(Φ∞
x (0)) = σ. This implies that u(t, ·) limits to infinity in the C1-norm

(and thus all lower norms) as t goes to infinity, i.e. u(t, ·) is a grow-up solution. Let

w(0, ·) be any function such that wx(0) lies strictly between vx(0) and wx(0, 0) and

z(w − w) = j. By Lemma 10.13, v does not connect to w, since j ≥ k.

If v connects to Φ∞ where z(Φ∞) = j via a trajectory u(t, ·), then in the shifted

equation, v must connect to Φ∞−w = Φ∞ via a trajectory ũ(t, ·). It then follows that

z(u(t, ·) − v(·)) ≥ j for all time t ∈ R. This implies that at some time T < ∞, the

value of wx(0) must lie between ux(T, 0) = wx(0, 0) and vx(0), since it lies between

Φ∞
x (0) and vx(0). But this leads to a contradiction, as the Dirichlet Finite Blocking

Lemma 10.13 prevents ux(t, ·) from ever crossing wx in its left intercept. Therefore, v

cannot connect to any object at infinity with zero number greater than or equal to k.

Thus, any trajectories in the unstable manifold of v where the shifted zero number

never drops below k must remain bounded. �

Lemma 10.16. Let v be a hyperbolic stationary solution to (187) such that i(v) =

n+1. Fix k such that 0 ≤ k ≤ n and σ ∈ {1,−1}. If v is not blocked from connecting

to infinity in the sense of Lemma 10.15, i.e. there does not exist a stationary solution
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w to (187) such that z(w) = k, w /∈ EJv, and sign(wx(0) − vx(0)) = σ, and when

k = n = z(v), there additionally does not exist any w ∈ EJv such that z(w) ≤ n,

then there exists an initial condition u0 ∈ W u(v) and a corresponding solution u(t, ·)
to (187) such that the following hold:

(195)

z(u(t, ·)− v(·)) = k for all 0 ≤ t <∞

sign(ux(t, 0)− vx(0)) = σ

lim
t→−∞

u(t, ·) = v

lim
t→∞

‖ u(t, ·) ‖L2= ∞.

Proof. We may apply Lemma 10.10 for v ≡ 0 or Corollary 10.11 for v nontrivial

to the set of solutions of (187), choosing

δj :=

⎧⎨⎩ 0 for j ≥ k

∞ for j < k

sk := σ.

By Lemma 10.10 or Corollary 10.11 there exists an initial condition u0 ∈ W u(v)

corresponding to our choice of k and σ, and the lemma or corollary asserts that for

the solution u(t, ·) corresponding to u(0, ·) = u0, the properties z(u(t, ·)− v) = k and

sign(ux(t, 0)−vx(0)) = σ hold for all 0 ≤ t <∞. Since u0 is in the unstable manifold

of v, this implies that lim
t→−∞

u(t, ·) = v.

Further, u(t, ·) cannot connect to some bounded equilibrium w ∈ EJv with zero

number less than k. For u(t, ·) to connect to w, the zero number in the shifted system

z(ũ(t, ·)) = z(u(t, ·)−v) must drop at t = ∞. To show why this is not possible, let us

assume that lim
t→∞

u(t, ·) = w with z(w) < k. Then lim
t→∞

ũ(t, ·) = w − v = w̃. Because

w̃(t, ·) �= 0, it follows that w̃ must have only simple zeros, as it solves the ordinary

differential equation 0 = ũxx+bũ+g̃(x, w̃). Any solution in a small neighborhood of w̃

must also have simple zeros. Thus, the shifted zero number is constant over some small

neighborhood of w̃, and therefore in this neighborhood z(ũ) = z(w̃) = z(w − v) < k.

173



But if this is the case, then z(u(t, ·)−v(·)) would have to drop at some finite time

as u(t, ·) approaches w. Therefore, if u(t, ·) connects to a bounded equilibrium, this

equilibrium must fulfill z(w − v) = k, which occurs when z(w) = k for w /∈ EJv,

or when k = z(v) for w ∈ EJv. Since k = z(v) implies that k = n, and u(t, ·) will
only limit to stationary solutions w ∈ EJv if i(w) < i(v) and therefore z(w) ≤ n

by Lemma 10.17, it follows that the only bounded stationary solutions to which

u(t, ·) may connect are those listed in the lemma. Additionally, Lemma 10.10 and

Corollary 10.11 imply that the sign of (ux(t, 0) − vx(0)) remains always positive or

always negative, therefore, if u(t, ·) were to limit to any bounded equilibrium w, it

would have to be one such that wx(0)− vx(0) = σ.

Since there does not exist any bounded stationary solutions w fulfilling these

conditions, we may conclude that u(t, ·) cannot limit to any bounded stationary

solution. But as Lemma 2.1 states, u(t, ·) can then not be bounded in any ball, no

matter how large, and therefore lim
t→∞

‖ u(t, ·) ‖= ∞ in any appropriate norm in H2.

Since the L2-norm of u(t, ·) must be less than or equal to theH1, H2 and C1 norms, we

choose it for the formulation of our lemma, to guarantee the infiniteness of the other

norms. Finally, knowing that u(t, ·) grows to be infinitely large, we may conclude

that there exist infinitely many times tl > 0 at which z(u(tl, ·)− v) = z(u(tl, ·)). �

Remark 5.5 holds for Dirichlet boundary conditions with the substitution of zero

number for lap number and w±
i (0) for (w±

i (0))x. We have thus determined when

trajectories in the unstable manifold of a stationary solution for the Dirichlet problem

are grow-up solutions.

Lemma 10.17. If v, w ∈ E satisfy i(w) ≥ i(v), then v does not connect to w.

Proof. In [19], Henry proved that for v and w stationary solutions to (187),

not necessarily hyperbolic, the stable and unstable manifolds of v and w intersect

transversely if they intersect at all. Since dim W u(v) = i(v) ≤ i(w) = codim W s(w),

it follows that dim W u(v)∩W s(w) ≤ 0. Since v �= w, it follows that v cannot connect

to w. �
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Lemma 10.18. Let v ∈ E be a hyperbolic stationary solution of (187) and let

w ∈ E be a second stationary solution, w �= v, such that z(v − w) ≥ i(v). Then v

does not connect to w.

Proof. Let us assume that v connects to w, i.e. that there exists an initial condi-

tion u0 ∈ W u(v) such that lim
t→−∞

u(t, ·) = v and lim
t→∞

u(t, ·) = w for the corresponding

solution u(t, ·). Then Lemma 10.17 implies that i(w) < i(v). Further, Fiedler and

Brunovský proved in [4] that z(u− v) ≥ i(v) for u ∈ W s(v)\{v} and z(u− v) < i(v)

for u ∈ W u(v)\{v}.
By Lemma 10.10 or Corollary 10.11, any stationary solution to which v connects

must satisfy z(w−v) = k and sign(wx(0)−vx(0)) = σ for some choice of 0 ≤ k < i(v)

and σ ∈ {1,−1}, due to the property that z(u0 − v) < i(v) for all initial datum u0 in

the unstable manifold of v. Thus k = z(v − w) < i(v), and the lemma is proved by

contraposition. �

Finally, we provide a Dirichlet form of Lemma 5.8.

Lemma 10.19. Given any non-trivial stationary solution v where i(v) = z(v) + 1,

let w be the nearest stationary solution such that w /∈ EJv and z(w) ≤ z(v). If w

exists, then z(w) = i(w).

Proof. Due to the spacing of n-branch origination points, and the fact that they

cannot intersect, it follows that the n−1-branch, if it exists, is between the n-branch

and all lower branches, and the n+ 1-branch is between the n-branch and all higher

branches. By Lemma 10.7, we know that for vx(0) = η0, (η0) · db
dη
< 0. It follows

that the nearest branch, both above and below EJv, must be either the n+1-branch

or the n-branch if any stationary solutions exist either above or below EJv. Let us

assume there exists a stationary solution w /∈ EJv such that z(w) ≤ z(v), and let us

fix z(w) = k.

For i(w) = k + 1, we would need wx(0) · db
dη

|wx(0)< 0. But since lower branches

always exist to the left of higher branches, it follows that we must first have a region

where η0 · db
dη
> 0 on the n+1-branch if it crosses the line at b, then on the n-branch,
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and so forth for all intermediary branches, or else the k-branch could not cross the

line at b. But the stationary solutions in these regions have i(wn+1) = z(wn+1),

i(wn) = z(wn), . . .. Thus, there exists a stationary solution wj between v and all

solutions such that z(w) = k < j ≤ n = z(v). Furthermore, the continuity of the

k-branch to its origination point implies that the k-branch itself must first cross the

line at b with (η− η∗) · db
dη
> 0. Therefore, excluding solutions in EJv and those with

z(w) > z(v), it follows that the nearest stationary solutions both above and below v

such that z(w) = k ≤ n must fulfill z(w) = i(w) = k if they exist. If they do not

exist, then there are no stationary solutions with z(w) ≤ k, as all lower lap number

stationary solutions are to the left of the k-branch. �

We define K+ and K− as before, but with respect to zero number rather than lap

number. Remark 5.5 then ensures that there do not exist any bounded equilibria not

in EJv with left boundary slope greater than vx(0) and zero number less than K+,

and that there do not exist any bounded equilibria not in EJv with left boundary

slope less than vx(0) and zero number less than K−. Then Lemma 10.16 on infinite

liberalism states that there exist heteroclinics in W u(v) which grow to infinity with

K+ + K− distinct behaviors denoted by sign and asymptotic zero number. In the

vast majority of cases, there will be infinitely many heteroclinics of each type, in a

small minority of situations (such as when the difference between the Conley index

of v and its limiting object differs by only 1), there will be only one heteroclinic of a

given type.

We consider a specific grow-up solution. Let u±k (t, ·) denote the solution with

z(u±k (t, ·)− v(·)) = k for 0 ≤ t < ∞ with ux(t, 0) > vx(0) for u
+
k and ux(t, 0) < vx(0)

for u−k . For u
+
k it is clear that k < K+. For u−k it is clear that k < K−. Our analysis in

Section 5.2 holds for Dirichlet boundary conditions with only the replacement of the

eigenfunctions Φj(x) = cj cos(jx) with Φj(x) = cj sin((j + 1)x), i.e. for the Dirichlet

case the 0th eigenfunction is c0 sin(x). The analysis proceeds as before, implying

the limit of u(t,·)
‖u(t,·)‖L2

to a single eigenfunction Φ±
k with k ≤ K+ or k ≤ K− for the
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appropriate sign, but again we reach the inability to determine C1-closeness via a

straightforward evaluation of the strong limit.

The construction of the inertial manifold in the case of Dirichlet boundary condi-

tions is essentially unchanged, we must simply replace the Neumann eigenfunctions

with the Dirichlet and H2∩{Neumann Boundary Conditions} with H2∩H1
0 . Thus,

all results follow for our equation with Dirichlet boundary conditions just as in Neu-

mann boundary conditions.

The existence of an inertial manifold which is Lipschitz with values in C1 pro-

vides the ability to determine C1-closeness as well as L2-closeness of solutions, and

thus prevents the dropping of the zero number at infinity for unbounded solutions.

Combining all these elements yields Dirichlet versions of Theorem 7.4 and Theorem

8.1.

Theorem 10.20. Let g(u) ∈ G, b > 1, and let v be a hyperbolic stationary solution

of

(196)
ut = uxx + bu+ g(u), x ∈ [0, π]

u(t, 0) = u(t, π) = 0

such that i(v) = n + 1 and z(v) ∈ {n + 1, n}. For every σ ∈ {1,−1} and 0 ≤ k ≤ n

such that v is not blocked from reaching infinity by Lemma 10.15 , v connects to an

equilibrium at infinity Φσ
k with z(Φσ

k) = k and sign(Φσ
k(0))x = σ. In other words

there exists a trajectory uσk(t, ·) ∈ W u(v) such that

lim
t→−∞

uσk(t, ·) = v

sign((uσk)x(t, 0)− vx(0)) = σ

lim
t→∞

z(uσk(t, ·)− v(·)) = k

lim
t→∞

‖ uσk(t, ·) ‖L2= ∞

lim
t→∞

‖ uσk(t, ·)
‖ uσk(t, ·) ‖L2

− Φσ
k(·)

‖ Φσ
k(·) ‖L2

‖C1= 0

where Φσ
k(x) = σsin((k + 1)x) and

Φσ
k(·)

‖Φσ
k (·)‖L2

= Φσ
k(·).
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Proof. The proof of Theorem 10.20 follows exactly from the proof of Theorem

7.4, as it is the culmination of the results derived in previous chapters. We only need

to replace in the Dirichlet-appropriate notation, zero number z(v) for lap number

l(v), Lemma 10.16 for Lemma 5.4, and ux(t, 0) − vx(0) for u(t, 0) − v(0). Thus the

dynamics of uσk(t, ·) are determined by the (N + 1)-dimensional ODE

(197)

dp

dt
= −Ap + PNg(p+Ψ(p))

p = [p0, . . . , pN ], pi(t, ·) = p̂i(t)Φi(·) = 〈uσk(t, ·),Φi(·)〉0Φi(·)

pi(t, 0) = pi(t, π) = 0,

with Φi the ith eigenfunction of the operator A = − d2

dx2 − bI with Dirichlet boundary

conditions. �

For the Dirichlet problem we define our frequently referred to sets as follows:

Zn := {v ∈ E|z(v) = n or v ≡ 0},

ΩE(v) := {w ∈ E|v connects to w �= v},

Wk(v) := {w ∈ Zk| wx(0) ∈ EJv\EJv, i(w) < i(v)},

and for 0 ≤ k < i(v) we define

vk is the bounded stationary solution v̂ with z(v̂) = k such that

v̂ /∈ EJv, v̂x(0) > vx(0) is minimal,

vk is the bounded stationary solution v̂ with z(v̂) = k such that

v̂ /∈ EJv, v̂x(0) < vx(0) is maximal,

v is the stationary solution w ∈ EJv ∩ Zz(v) with maximal wx(0),

v is the stationary solution w ∈ EJv ∩ Zz(v) with minimal wx(0),

and

L := v ∪
⋃

k<z(v)

Wk(v) or L := v ∪
⋃

k<z(v)

Wk(v)

as appropriate, and

K := L ∩ (Zn−1 ∪ Zn).
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Lemmas 7.6 and 7.7 were independent of the choice of boundary conditions and

simply require the replacement of l(v) with z(v). Lemmas 7.5 and 7.8 on the other

hand, require minor changes for their application to Dirichlet boundary conditions.

We must replace Neumann-specific notation, i.e. the lap number, definition of σ, the

definition of sets and special solutions, and references to lemmas in previous chapters

with the Dirichlet-specific definitions, references and zero number. Finally, we use

the result proved in [7] which showed that for Dirichlet boundary conditions, if v

connects to any element of L, then it connects to all elements of L, which carries over

to the slowly non-dissipative equation.

Theorem 10.21. Let g(u) ∈ G, b > 1 and let v ∈ E be a bounded hyperbolic

stationary solution of (196). Then v connects to all bounded equilibria w ∈ E and

equilibria at infinity Φ±
i which are not blocked by Lemmas 10.13 - 10.18.

Equivalently, v connects to bounded equilibria and equilibria at infinity as follows:

(1) If v ≡ 0, or if v �= 0 and i(v) = z(v), then

Ω(v) = {vk | K− ≤ k < i(v)} ∪ {vk | K+ ≤ k < i(v)}
∪ {Φ+

i | 0 ≤ k < K+} ∪ {Φ−
i | 0 ≤ k < K−}.

(2) If vx(0) > 0 and i(v) = z(v) + 1, then

Ω(v) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5, where

Ω1 = {vk | K+ ≤ k < i(v)},
Ω2 = {vk | K− ≤ k < i(v)− 1},
if K− < i(v), either Ω3 = {vi(v)−1} if EJv = ∅, or else Ω3 = v ∪ ⋃

k<z(v)

Wk,

Ω4 = {Φ+
k | 0 ≤ k < K+}, and

Ω5 = {Φ−
k | 0 ≤ k < K−}.

(3) If vx(0) < 0 and i(v) = z(v) + 1, then

Ω(v) = Ω1 ∪ Ω2 ∪ Ω3 ∪ Ω4 ∪ Ω5, where

Ω1 = {vk | K− ≤ k < i(v)},
Ω2 = {vk | K+ ≤ k < i(v)− 1},
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if K+ < i(v), either Ω3 = {vi(v)−1} if EJv = ∅, or else Ω3 = v ∪ ⋃
k<z(v)

Wk,

Ω4 = {Φ+
k | 0 ≤ k < K+}, and

Ω5 = {Φ−
k | 0 ≤ k < K−}.

Proof. Again, the proof of Theorem 8.1 carries over to the Dirichlet case with

a few simple changes of definition and the use of the Dirichlet lemmas and theorem

provided in this chapter rather than their Neumann counterparts, as in the proof of

Theorem 10.20. �

The non-compact global attractor is defined equivalently for the Dirichlet equa-

tion, with the caveat that the semigroup S is non-dissipative for b > 1 rather b > 0.

Thus, it is straightforward to see that all results presented in this thesis for the

Neumann form of the slowly non-dissipative dynamical system carry over to the

Dirichlet form with a little extra work. Although characteristics of each individ-

ual dynamical system may change, i.e. the lack of spatially homogenous stationary

solutions and pitchfork branches, the greater results on the asymptotics of solutions

and the non-compact attractor do not.
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CHAPTER 11

Conclusion

1. Summary of Results

In this thesis we have solved the so-called “connection problem” and “asymptotics

problem” in the realm of slowly non-dissipative systems, and in so doing, provided

a full decomposition of the non-compact global attractor for a generic class of such

systems and described the long-time behavior of solutions therein. We have extended

a number of useful techniques to the realm of slowly non-dissipative systems, among

these the y-map for the study of asymptotic nodal properties. We have shown the ex-

istence of characteristic behaviors for all scalar slowly non-dissipative PDEs, including

the behavior of global bifurcation diagrams, as well as the existence and asymptotic

behaviors of grow-up solutions.

We have proven the existence of a completed inertial manifold for a general class

of grow-up systems, taking the classical inertial manifold for dissipative systems and

constructing a corresponding object for slowly non-dissipative systems. We have

further proven that this manifold is Lipschitz with values in C1. This completed

inertial manifold provides the same advantages as its predecessor without requiring

the mollification of solutions far from the origin. We have used the existence of such

a finite-dimensional attracting manifold and its smoothness properties to shed light

on the behavior of solutions limiting to infinity, and determine the behavior on all

transfinite heteroclinic orbits in the Hilbert space H2∩{Boundary Conditions}, both
for Dirichlet and Neumann boundary conditions.

We have defined the concept of a non-compact global attractor, and used the

existence of so-called equilibria at infinity to provide an analogy between the non-

compact attractor for a slowly non-dissipative system and the classical global attractor

for a dissipative system. Thus doing, we have proven theorems which explicitly detail
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all the heteroclinic connections, bounded, transfinite, and intra-infinite, which, when

combined with bounded equilibria and equilibria at infinity, provide the full structure

of the non-compact attractor. Thus doing, we have introduced full solutions to the

much studied connection problem for a new realm of scalar parabolic PDEs, and as a

result of such work, expanded existing techniques in the theory of infinite-dimensional

dynamical systems to realms previously unaddressed.

2. Future Extensions

There are three primary directions in which one may extend the work presented

in this thesis. The first is to address the connection between slowly non-dissipative

systems and related dissipative and fast non-dissipative systems. For a given nonlinear

evolutionary equation of the form

(198) ut = uxx + bu+ g(u), x ∈ [0, π],

we may study the correlations between this equation and a pair of fast non-dissipative

and dissipative equations which limit to Equation (198), for example

(199) ut = uxx + bu+ g(u) + εh(u), x ∈ [0, π]

and

(200) ut = uxx + bu+ g(u)− εh(u), x ∈ [0, π]

where h(u) = u3. Equation (200) is a dissipative nonlinear evolutionary equation with

a Chafee-Infante structure. There has been much study on such equations, including

full solutions of the connection problem [6, 7], detailed studies of the asymptotics

of solutions [22, 41], and proofs over the existence and smoothness of inertial man-

ifolds [10, 11, 21]. Additionally, much work has been produced on equations of

the form (199), including studies on the connection problem for solutions which re-

main bounded [31]. By studying the behavior of the dynamical systems induced

by Equations (199) and (200) as ε limits to zero, we may learn a great deal about

the connection between dissipative, slowly non-dissipative, and fast non-dissipative
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systems. Additionally, the behaviors which carry over as ε limits to zero should be

dependent not on the choice of function h(u), but only on ε. Thus, we should be

able to prove that alternate choices of h(u) which guarantee dissipativity, such as

h(u) = u2n+1, yield the same behaviors as ε limits to zero.

Another open problem is to extend the results of this thesis to higher dimensions.

Recently, convergence results for higher-dimensional dissipative parabolic PDEs were

proven. Additionally, inertial manifold results exist for some higher-dimensional dis-

sipative PDEs as well. For n = 2 inertial manifolds have been proven to exist for

certain specific domains, particularly square and rectangular domains, and for n = 3

they have been proven to exist for cubic domains. But for n > 3 there in fact exist

counterexamples to the existence of inertial manifolds for hypercubic domains, so the

choices of dimension and domain of definition play a very large part in determining

the viability of extending these results to higher dimensions. Despite these restric-

tions, a logical next step could be to determine if similar results to those proved in

this thesis could be proven for certain n-dimensional forms of Equation (198). For

a higher-dimensional evolutionary equation, the critical growth term would not be

linear but rather would likely be the critical Sobolev exponent. In other words, an

n-dimensional form of (198) might be

(201) ut = Δu+ bup + g(u), x ∈ Ω ⊂ R
n

where p ≥ n+2
n−2

for n ≥ 3 and g(u) maps Rn into Rn.

The final direction we might take is to study a variation on Equation (198) wherein

the linear growth term bu is replaced by a jumping nonlinearity, i.e.

(202) ut = uxx + b+u+ − b−u− + g(u), x ∈ [0, π]

wherein u+(t, x) = max{u(t, x), 0} and u−(t, x) = max{−u(t, x), 0}. There has been

a great deal of study in the past few decades on equations with jumping nonlinearities.

It has been proven by Svatopluk Fučik in [13] that equations of the form

(203) uxx + b+u+ − b−u− = g(u) + f(x),
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where g(u) is continuous and bounded and f ∈ L1(0, π) are solvable when

(204) uxx + b+u+ − b−u− = 0

is solvable. Furthermore, the solvability of (204) is determined by the location of

(b+, b−) in a Cartesian graph called the Fučik Spectrum. Additionally, all solutions of

(204) are classical solutions and can in fact be formed by “gluing” together sinusoidal

functions of the form c1sin(
√
b+x−ξ1) and c1sin(

√
b−x−ξ2) for the Dirichlet problem

or c1cos(
√
b+x− ξ1) and c1cos(

√
b−x− ξ2) for the Neumann problem.

While there has been much study on existence and uniqueness for evolutionary

equations with jumping nonlinearities and solvability in higher dimensions, there has

not yet been an attempt to study the asymptotics and connection problems answered

in this thesis for an equation of the form (202). To expand on the work presented

herein in such a direction would open a wealth of challenges unbroached under an

evolutionary equation with the simpler linear term bu. In fact, even taking the case

g(u) = 0 would introduce a number of fascinating new difficulties.
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