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Chapter 0
Introduction

In this work we introduce a generalization of the stable manifold theorem by topo-
logical means. This result is motivated by the study of differential equations with
heteroclinic attractors, that is an attractor consisting of heteroclinic orbits γi(t) with
lim

t→−∞
γi(t) = xi and lim

t→+∞
γi(t) = xi+1, as they arise in Bianchi cosmologies (c.f. e.g.

[HU09]). One goal of these studies is to extend the understanding of the dynamics
of the heteroclinic attractor to its basin of attraction.

The main tool of analysis near a heteroclinic chain is using a sequence of
Poincaré-sections, i.e. codimension 1 submanifolds, which are transverse to the
heteroclinic orbits. Often, it is useful to use Poincaré sections Σi,in and Σi,out near
the equilibrium xi, which are transverse to γi−1 respective γi. This leads then to
a sequence of local return-maps Φi,loc : Σi,in → Σi,out , which describe the passage
near xi, and global return-maps Φi,glob : Σi,out → Σi+1,in. With this construction one
can now study the time-discrete, non-autonomous dynamical system defined by(
Φi,loc,Φi,glob

)
i. One of the central questions is, whether there exist initial condi-

tions, which converge under the flow of the differential equation to the heteroclinic
chain “in phase”, i.e. whose iterates under the return-maps never leave the domains
of the return-maps.

The classical stable manifold theorem classifies the set of initial conditions,
which converge to a hyperbolic fixed point of a diffeomorphism. However, this theo-
rem and its non-autonomous versions cannot be applied directly to the return-maps,
since the local maps Φi,loc are not defined in a complete neighborhood of the het-
eroclinic points xi,in ∈ γi ∩Σi,in and are not differentiable near xi,in. Nevertheless,
it is sometimes possible to apply the techniques, which lead to the stable manifold
theorem, namely the graph transform. This approach requires subtle higher order
estimates on Φi,loc and has been done in e.g. [LHWG10].

A different approach to the problem of the basin of attraction of a heteroclinic
chain is of a more geometric or topological nature: in many cases, the geometric
relations between RanΦi,loc and Φ

−1
i+1,glob[domΦi+1,loc] alone will suffice to prove

existence of a nontrivial basin of attraction by topological methods. This approach
is the main focus of this work.
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6 0 Introduction

The primary advantage of this topological approach is that it requires only C0-
estimates on Φi,loc, which are far easier to obtain. This allows one to focus intead on
another difficulty of heteroclinic chains (xi)i: any analysis will require bounds on the
spectral gaps at xi, the domains of definition domΦi,loc and on the diffeomorphisms
Φi,glob. In many cases, however, there are no uniform bounds available for i→ ∞,
but only growth estimates.

In the first chapter we will review the classical stable manifold theorem in order
to provide a context for generalizations. Since we aim for generalizations and mod-
ifications, we will mainly focus on the methods used to prove the theorem, rather
than on an elegant formulation.

In the second chapter, we will introduce a topological generalization of the sta-
ble manifold theorem. This topological generalization, Theorem 2.19, allows us to
prove existence of stable sets, which are almost manifolds. The theory developed
in the second chapter is closely related to Conley Index theory (c.f. e.g. [RW10],
[FR00]). Even while Conley Index theory has the advantage of being more elegant
and more powerful in many cases, the theory developed in Chapter 2 is “elemen-
tary”, i.e. does not require a sophisticated topological framework to use, especially
since we will focus on relatively closed but noncompact sets. If we are only inter-
ested in proving existence of a nontrivial basin of attraction, instead of building a
grand theory of topological invariants of dynamical systems, our approach is suffi-
cient.

In the third chapter we will apply the topological techniques to the example of
a 3-dimensional system with a homoclinic orbit, where the stable manifold theo-
rem is not applicable because of the non-differentiability of the Poincaré map. The
application of the topological techniques then shows that the basin of attraction of
the homoclinic orbit is “topologically separating” (Definition 2.9). This applica-
tion serves to demonstrate that the topological techniques are especially useful in
conjuction with direct calculations, since they require only C0-estimates, which are
generally easier to prove directly.

We will close by discussing possible application of the approach to heteroclinic
chains in n-dimensional systems as well as future applications in mathematical cos-
mology.



Chapter 1
Invariant Manifolds

The goal of this chapter is to review the classical stable manifold theorem in order
provide a context for the topological theorems which will be introduced as a lower
regularity substitute for the classical theorem in Chapter 2 and which will be applied
to a toy model in Chapter 3. The setup of this chapter was guided by two principles:
Firstly, since we eventually aim for generalizations of the stable manifold theorem,
we focus on the methods of proof rather than concise and elegant formulations. Sec-
ondly, to give a different perspective on regularity results and for reasons concerning
generalizations discussed in detail in Section 1.1.3, we will refrain as much as pos-
sible from using the implicit function theorem to prove regularity results. Instead
we will use a combination of a contraction mapping principle and apriori bounds on
higher derivatives, as outlined in 1.17.

We will start by reviewing some basic facts and definitions about dynamical sys-
tems in the first section, among which is the Picard-Lindeloef Theorem 1.14. We
will then use the Perron-method and the variations-of-constants formula to prove a
first version of the stable manifold theorem in the second section. In the third sec-
tion, we will prove several invariant manifold theorems with the graph transform
approach.

1.1 Dynamical Systems and Invariant Sets

Dynamical systems broadly fall into four categories: One can study time-discrete
or time-continuous systems, which can be either autonomous (time-independent)
or non-autonomous. Even though we are mainly interested in time-continuous au-
tonomous systems, i.e. flows or solutions to differential equations ẋ = f (x), we will
need tools used for the study of the other types of systems. Therefore we will start by
giving some definitions on all four of these classes. We will then prove the Picard-
Lindeloef Theorem 1.14, which establishes the solutions of many differential equa-
tions as flows. This section will close by reviewing Poincaré-Sections, which allow
to apply methods from time-discrete systems to time-continuous ones.

7



8 1 Invariant Manifolds

1.1.1 Time-discrete Systems

The simplest case of a dynamical system is a continuous map F : X → X on a
topological space X . Note that we do not require the map F to be injective or even
bijective. Let I = N or I = Z.

Definition 1.1. Let xk be a sequence in X , i.e. (xk)k∈I ∈ X I . We call it an orbit of F ,
if

xk+1 = F(xk) ∀k ∈ I

Since we mainly study orbits, we will sometimes write xk+1 as a shorthand for
F(xk), implicitly assuming that we are dealing with an orbit. One of the main points
of interest are invariant sets.

Definition 1.2. Let M ⊂ X . M is called forward invariant with respect to F if
F [M]⊂M. For U ⊂ X , define the maximal foward invariant subset of U as

inv+
F (U) =

⋂
n∈N

F−n[U ],

where F−1[U ] denotes the complete preimage of U under F .

Proposition 1.3. The set inv+
F (U) is forward invariant and is maximal, i.e. has the

property that every forward invariant M ⊂U is a subset of inv+
F (U).

Proof. inv+
F (U) is forward invariant, since

F

(
U ∩

⋂
n≥1

F−n[U ]

)
⊂ F(U)∩

⋂
n≥1

F(F−n(U))

= F(U)∩ inv+
F (U) .

Furthermore, F(M) ⊂M implies for all n ∈ N that Fn(M) ⊂M ⊂U and therefore
M ⊂ F−n(U). Taking the intersection over all n ∈ N proves the assertion. ut

Forward invariant sets are the subjects of the stable manifold theorem and will be
studied in detail later on.

Remark 1.4. There is also a comparable definition of backward invariance. Since
this definition is more subtle for non-injective maps and is not required for the re-
mainder of this work, we will refrain from a lengthy discussion. However, for the
sake of completeness we will give the definition:

Definition 1.5. M is called backward invariant with respect to F if M ⊂ F [M].

One often encounters non-autonomous systems, where the map F• = (Fn)n∈I and
the spaces X• = (Xn)n∈I depend on n.
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Definition 1.6. Let X• = (Xn)n∈I be a sequence of topological spaces andF• be a
sequence of continuous maps Fn : Xn → Xn+1. We call a sequence x• ∈ ∏k∈I Xk an
orbit, if

xk+1 = Fk(xk) ∀k ∈ I.

Again, we are interested in forward invariant sets. In general the definition of in-
variance for non-autonomous systems is more subtle. One prominent approach for
example is the co-chain approach (cf. e.g. [Sel67]). By considering the sequence
Z→ Fk as a map into a function space this approach provides structures via a pull
back, e.g. pulling back the topology allows for compactedness arguments. Since we
do not need this kind of structures in the context of this work it suffices to em-
ploy the following very simple generalization of the definitions of invariance in the
autonomous case.

Definition 1.7. Let M• ⊂ X•.M• is called forward invariant if Fk[Mk]⊂Mk+1 for all
k ∈ I. Define the maximal forward invariant subset of M• as

inv+
F• (M•)k = Mk ∩

⋂
n∈N

F−1
k ◦ . . .◦F−1

k+n[Mk+n+1].

The forward invariance and maximality of the thus defined sequence of sets can be
proved analogously to the autonomous case.

Remark 1.8. One way of viewing this definition is by considering the extended
phase-space

X = ∏

k∈IXk = {(k,Xk) : k ∈ I},

and the induced map F : X → X

F(k,x) = (k +1,Fk(x)) with x ∈ Xk.

Then the non-autonomous notions of forward invariance and orbits coincide with the
autonomous notions on the extended phase-space, i.e. a seqeuence of sets M• ⊂ X•
is forward (or backward) invariant with respect to the sequence F• if and only if the
union M =

⋃
k∈I Mk ⊂ X is forward invariant with respect to F .

The term “forward invariant” may be misleading: A forward invariant sequence of
sets is not really forward invariant, since we have no natural way of comparing
Xk+1 with Xk– “covariant” might be a better word than “invariant”. One example is
Mk = {xk} where (xk) is an orbit of (Fk).
One of the main applications of these non-autonomous concepts will be to orbits of
autonomous systems.

Example 1.9. Let F : Rn→ Rn a diffeomorphism. Let x• be an orbit of F . Consider
now the non-autonomous change of coordinates yk = x− xk and the transformed
system
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Fk(y) = F(y+ xk)− xk+1 ∀k ∈ Z

The orbit x• is transformed into a fixed point at y = 0, i.e. Fk(0) = 0. Let BX
r (x)

denote the ball with radius r around x in the space X . If we set Mk = Bn
1(xk), we can

see that

inv+
F (M•) = inv+

F• (B
n
1(0))

Therefore the study of non-autonomous fixed points includes the study of orbits of
autonomous system from a local point of view.

1.1.2 Time-continuous Dynamical Systems

Time-continuous dynamical systems are described by flows and semiflows. We will
again start with autonomous systems. Let X be a topological space.

Definition 1.10. Let φ : R≥0×X → X be continuous. We write φ t = φ(t, ·) as an
abbrevation. We say that φ is a semiflow, if the following holds:

φ
0 = id

φ
s+t = φ

s ◦φ
t ∀s, t > 0

If additionally φ t is a homeomorphism for each t > 0, call φ a flow and extend its
domain to R×X in the canonical way via φ−t = (φ t)−1.

We again are interested in forward invariant sets.

Definition 1.11. Let M⊂X . M is called forward invariant if φ t [M]⊂M for all t > 0.
For U ⊂ X , define the maximal foward invariant subset of U as

inv+
φ

(U) =
⋂
t>0

(
φ

t)−1 [U ].

The generalization of these definitions for autonomous time-continuous systems
to non-autonomous ones will be similar to the time-discrete case. We will however
only consider the case of a single space X as the domain, since this case suffices
for most applications. A similar distinction between the spaces Xk as in the time-
discrete case would require the language of vector-bundles and does not lie in the
focus of this work.

Definition 1.12. Let X be a topological space and let T = {(t,s) : t ≥ s} ⊂R2
≥0. Let

φ : T ×X→ X be a continuous map. We write φ t,s = φ(t,s, ·) as an abbrevation. We
say φ is a semi-evolution if the following holds:

φ
t,t = id ∀ t ≥ 0

φ
t2,t0 = φ

t2,t1 ◦φ
t1,t0 ∀t2 ≥ t1 ≥ t0 ≥ 0
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If φ t,s is a homeomorphism for all t ≥ s≥ 0, we call φ an evolution and extend the
domain of φ to R2

≥0×X in the canonical way via φ s,t = (φ t,s)−1.

Again, we define invariant sets:

Definition 1.13. Let M ⊂ R×X and let Ms = {x ∈ X : (s,x) ∈M} denote the time
sections.

M is called forward invariant if φ t,s[Ms]⊂Mt for all t ≥ s≥ 0. Define the maxi-
mal foward invariant subset of M as

inv+
φ

(M)s =
⋂
t>s

(
φ

t,s)−1 [Mt ].

1.1.3 Differential Equations

Differential equations are one of the most-studied classes of dynamical systems.
Using the Picard-Lindeloef Theorem we can solve many differential equations and
the solution is an evolution or a flow. Since the proof contains ideas which will be
extended later, we will review this fundamental theorem.

Theorem 1.14 (Picard Lindeloef Theorem). Let X = Rn and f : R×X → X be a
Lipschitz continuous vector field with Lipschitz bound | f |C0,1 ≤ L f in both variables
and global bound | f |∞ < ∞. Then there is a Lipschitz continuous evolution φ t,s which
is differentiable in t and solves

Dtφ
t,s(x) = f (t,φ t,s(x)) ∀t,s ∈ R.

The solution φ is almost as smooth as the vector field, i.e. for f ∈CN+1 we get φ ∈
CN,1. The solution is unique, in the sense that any differentiable curve x : [t1, t2]→X,
which solves the differential equation ẋ(t) = f (t,x(t)) for all t ∈ (t1, t2), coincides
with x(t) = φ t,t1(x(t1)).

Remark 1.15. We have will prove that the solution of a differential equation is CN,1

in x if the right hand side f is CN+1. This regularity is not optimal: the solution is
even CN+1. The usual approach of using the implicit function theorem for the Picard
iteration (1.1.3.2) does provide optimal regularity, basically by explicitly calculating
the higher derivatives (cf. e.g. [Zei95, Chapter 4.9] for a proof using the implicit
function theorem). We have, however, chosen to use a different approach, mainly
because it is easier to extend to more complicated settings, like the stable manifold
theorem for non-autonomous systems 1.29.

The proof will use the contraction mapping principle, which we will state here
for convenience:

Theorem 1.16 (Contraction Mapping Principle). Let Z be a complete metric
space and T : Z → Z be a map. Suppose that there exists a constant α < 1 such
that
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d(T x,Ty)≤ αd(x,y).

Then there exists a unique fixed point x∗ ∈ Z with T (x∗) = x∗. This fixed point can
be achieved as the limit for n→ ∞ of T nx for any x ∈ Z. Furthermore, let M ⊂ X be
a nonempty forward invariant subset of X. Then the fixed point lies in M.

Proof. We can estimate

d(T nx,T n+my)≤ α
nd(x,T my)

≤ α
n (d(x,y)+d(y,Ty)+ . . .d(T m−1y,T my)

)
< α

n
(

d(x,y)+
d(y,Ty
1−α

)
.

Therefore, T nx is a Cauchy-sequence and converges to the same fixed point of T for
all x ∈ X . If x ∈M, then all iterates T nx lie in M. Therefore their limit lies in M. ut

Before we will state the general proof idea, we need to fix some notation. We use
the notation | · | for the norm in Rn and the operator norm of matrices in Rn. In
the following table, we will summarize the notation for the most common norms in
function spaces. Let φ : X → Y .

Name Definition Notation
Supremum norm supx∈X |φ(x)| ‖φ‖∞,|φ |∞, |φ |C0 or |φ |C0

Ck-seminorm supx∈X |Dkφ(x)| |φ |Ck

Ck-norm max(|φ |C0 , . . . |φ |Ck) ‖φ‖Ck

Hoelder-bracket supx 6=y |x− y|−α |φ(x)−φ(y)| bφcα
Ck,α -Hoelder-seminorm bDkφcα |φ |k,α

Proof Outline 1.17 (Existence and Regularity with the Contraction Mapping
Principle). In order to get regularity and existence of maps φ : X → Y which have
certain properties, we will follow the following steps:

Fixed-point Formulation. We construct a (partially defined) iteration T : Y X →
Y X , such that fixed points of T have the desired property.

Well definedness. We find a nonempty closed set Z ⊆ Y X such that T : Z→ Z is
well defined. In order to get good uniqueness results, we will try to chose the set
Z as large as possible.

Contraction estimates. In order to get existence and uniqueness of a solution φ ∗

via the contraction mapping principle 1.16, we prove an estimate of the form

‖T (ψ)−T (ψ ′)‖ ≤ α‖ψ−ψ
′‖ ∀ψ,ψ ′ ∈M0

with some α < 1.
Regularity estimates. In order to archieve higher regularity up to CN+1 for some

N ≥ 0, we firstly show that there is some forward invariant set M1 ⊂CN+1. Then
we need to prove apriori bounds for φ ∈M1 of the form

‖T n
φ‖CN+1 ≤ const(φ) ∀n ∈ N.
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Such estimates follow by induction over k from simpler estimates of the follow-
ing form, when αk < 1:

|T φ |Ck+1 ≤ αk+1|T φ |Ck+1 +C(k,‖φ‖Ck) ∀0≤ k ≤ N.

By the contraction mapping principle, the fixed point φ ∗ of T therefore lies in
clC0

(
M1∩BCk+1

C(φ (0)
)

. The embedding ιCN,1→C0 is closed and we have for R > 0:

clC0BCk+1

R (0) = BCk,1

R (0).

Therefore, φ ∗ ∈ BCk,1

R (0) for some R > 0.
Higher order convergence. The iterates T nφ actually converge even in the CN-

norm. This can be proven by combining the regularity estimates and the follow-
ing well known interpolation estimate (cf. e.g. [GT98, Chapter 4]) for R > 0 and
φ ∈Ck+1(Bn

R(0)):

|φ |Ck ≤ 4ε
−1|φ |Ck−1 + ε| f |Ck+1 ∀0 < ε < min(1,R). (1.1.3.1)

Now we will prove the Picard-Lindeloef Theorem.

Proof. We will apply the previously outlined proof idea 1.17. At first we will choose
the space Z “as large as possible” in order to get good uniqueness results. Then we
will chose closed invariant subspaces in order to get regularity results. Let L > L f .
Consider the complete metric space

Z = {φ : R2×X → X , such thatd(id,φ) < ∞, φ measurable}

with the metric

d(φ1,φ2) = sup
t,s,x

e−L|t−s||φ t,s
1 x−φ

t,s
2 x|.

We will use the iteration of the map T : Z→ Z given by

T φ
t,s(x) := x+

∫ t

s
f (τ,φ τ,sx)dτ. (1.1.3.2)

This map is also called Picard-Iteration. It is from Z→ Z because

e−L|t−s||T φ
t,s(x)− x| ≤ e−L|t−s|| f |∞|t− s|< L−1| f |∞.

The iteration is a contraction, since
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e−L|t−s||T φ
t,s(x)−T φ̃

t,s(x)|= e−L|t−s||
∫ t

s
f (τ,φ τ,s(x))− f (τ, φ̃ τ,s(x))dτ|

≤ e−L|t−s||
∫ t

s
L f eL|τ−s|d(φ , φ̃)dτ|

≤
L f

L
d(φ , φ̃).

Therefore there exists a unique fixed point φ∗ of T . We will now prove the remaining
assertions by finding appropriate forward invariant subsets of Z.

Uniqueness. Let x : [t0, t2]→ X be a solution of the differential equation. Let

M = {φ ∈ Z : φ
τ,t0x(t0) = x(t)∀τ ∈ [t0, t2]}.

The set M is a closed nonempty subset of Z and differentiation by τ shows for-
ward invariance. Therefore φ

τ,t0
∗ x(t0) coincides with x(τ).

Lipschitz continuity in x. Define

‖φ‖L,Lip = sup
x,y,s,t

e−L|s−t||x− y|−1|φ t,s(x)−φ
t,s(y)|.

Suppose ‖φ‖L,Lip is finite. Then we can estimate

e−L|t−s||x− y|−1|T φ
t,s(x)−T φ

t,s(y)|

≤e−L|t−s|
(

1+
∫ t

s
L f |x− y|−1|φ τ,s(x)−φ

τ,s(y)|dτ

)
≤1+

L f

L
‖φ‖L,Lip.

Therefore, the set MLip = {φ ∈ Z : ‖φ‖L,Lip≤ (1−L f /L)−1} is forward invariant.
By an ε/3-argument it is also closed in Z.

Differentiability in t. Suppose that φ is continuous in t. Then T φ is differentiable
in t with

DtT φ
t,sx = f (t,φ t,sx)

Therefore, the set M = {φ : φ continuous in t} is forward invariant. It is closed
by an ε/3 argument and therefore φ∗ is continuous in t. Then φ∗ is continuously
differentiable in t and solves the differential equation.

Evolution property. Let φ∗ be the unique fixed point of T and x ∈ X . Then the
orbits x(t) = φ

t,r
∗ φ

r,s
∗ x and x̃(t) = φ

t,s
∗ (x) both solve the differential equation and

coincide at t = s. By uniqueness, φ
t,r
∗ φ

r,s
∗ x = φ

t,s
∗ x.

Higher regularity in x. We will prove via induction over 0≤ k≤N that φ ∈CN,1.
Suppose that f is Ck+1 and ‖ f‖Ck+1 < ∞. Suppose there are some constants
C1, . . . ,Ck > 0 such that for j = 1, . . .k the following sets M j are forward in-
variant:
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M j = M j−1∩{φ : sup
x,t,s

e−L|t−s||D j
xφ

t,sx| ≤C j}

Then we can calculate for Dk+1φ :

e−L|t−s||Dk+1
x T φ

t,sx|= e−L|t−s|
∣∣∣∣∫ t

s
Dk+1

x f (τ,φ τ,sx)dτ

∣∣∣∣
≤ e−L|t−s|

∫ t

s
|∂x f (τ,φ τ,sx)Dk+1

x φ
τ,sx|dτ

+ e−L|t−s|
∫ t

s
eL|τ−s|dτ ·C(C1, . . . ,Ck,‖ f‖Ck+1)

≤C L−1 +
L f

L
sup
x,τ,s

e−L|τ−s||Dk+1
x φ

τ,s(x)|

with a constant C = C(C1, . . .Ck,‖ f‖Ck). Therefore, there is a constant Ck+1
which makes Mk+1 forward invariant. By induction over k, we can see that
φ∗ ∈MN+1, i.e. φ∗ ∈CN,1.

ut

Remark 1.18. Besides from the suboptimal regularity, there is another caveat in this
version of the Picard-Lindeloef Theorem: The global assumptions on F , especially
boundedness, are in many cases not fulfilled. The main reason for stating such a
global theorem is to avoid having to deal with finite times of existence. The system
can be localized:

When we have a vectorfield F : U → Rn defined on an open subset U ⊂ R×Rn

we consider a regular continuation F̃ : R×Rn→Rn with F̃|U = F . Then we can ap-
ply the global Picard-Lindeloef theorem. By uniqueness of solutions, the evolutions
for two different continuations of F coincide as long as (t,x) ∈U .

1.1.4 Poincaré Sections

The Poincaré section is a useful construction, which allows to compress large times
into a single map and connecting the time-continuous and time-discrete theory.
One of the most widely used applications is to periodic orbits, i.e. orbits γ(t) with
γ(t +T ) = γ(t) for some T > 0. We will use a combination of multiple Poincaré sec-
tions and topological methods in Chapter 3 in order to prove existence of solutions
converging to a homoclinic orbit.

Definition 1.19. Let φ t : R≥0×X → X be a Ck-semiflow. Let Σ be an embedded
submanifold of X , i.e. let Σ = U ∩{x : ψ(x) = 0} with U ⊂ X open and ψ ∈Ck and
0 be a regular value of ψ . Suppose that Σ is transversal to the orbits of the semiflow,
i.e.

d
dt |t=0

ψ(φ tx) 6= 0 for x ∈ Σ



16 1 Invariant Manifolds

Define the return time by

τΣ (x) = inf{t > 0 : φ
t(x) ∈ Σ}

and the return map by

ΦΣ (x) = φ
τΣ (x)(x).

Note that the return map is only defined on a subset of the phase space.

There is a simple result for periodic orbits, which makes similar use of Poincaré
sections:

Proposition 1.20. Let φ t be a Ck semiflow on X = Rn. Let γ be a periodic orbit of
φ t and Σ be a transversal section with γ(R)∩Σ = {x0}. Then for some ε > 0:

{x : sup
t>0

d(φ t(x),γ) < ε}∩Σ ⊂ inv+
ΦΣ

(Σ) .

This means that we can use the stable manifold theorem 1.29 for the equilibrium x0
of the iteration given by ΦΣ in order to study points which converge to the periodic
orbit in the continuous system.

1.2 The Perron Method for Stable Manifolds

In the previous section, we have reviewed some basic definitions on dynamical sys-
tems and especially the Picard-Lindeloef Theorem 1.14, which gives the solution of
certain differential equations as flows. In this section, we will give a proof of the
classical stable manifold theorem via the Perron method. Other proofs can be found
in e.g. [KH95] and in Section 1.3 via the graph transform. We study a dynamical
system of the form

(ẋ, ẏ) = (Ax+ f (x,y), By+g(x,y)) , (1.2.0.1)

where f (0,0) = g(0,0) = 0 and f ,g ∈Ck for k ≥ 1 and A and B are linear. Let φ t

denote the solution flow. The stable manifold theorem classifies the stable set

Ws = {(x,y) : lim
t→∞

φ
t(x,y) = 0}. (1.2.0.2)

One variant of this important theorem can be stated as following:

Theorem 1.21 (Stable Manifold Theorem). Consider the system (1.2.0.1). Assume
that

Reσ(A) < α < 0 < β < Reσ(B)
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and that |eAt | ≤ eαt and |e−Bt | ≤ e−β t for all t ≥ 0 (when the spectral bounds
hold, then the last inequalities can be achieved with a choice of norm on the vec-
tor spaces). Assume that the Lipschitz bound L fulfills max(| f |0,1, |g|0,1) ≤ L <
min(−α,β ). Then there is a Ck−1,1-map ψ0

s : X → Y , such that

Ws = graph ψ
0
s .

The Perron method, which we will use to prove this result, is basically a variation
of the method used to prove the Picard-Lindeloef Theorem. The main idea is to split
off the linear part of the system, which can be solved explicitely, and then formulate
the stable manifold as the solution to a boundary-value problem. The proof rests on
the variations-of-constants formula:

Proposition 1.22 (Variations-of-Constants Formula). Let T > 0 and consider the
differential equation

ẋ = Ax+ f (x), (1.2.0.3)

where A is linear, f is continuous and x ∈ Rn. Consider also the integral equation

x(t) = eAtx(0)+
∫ t

0
eA(t−s) f (x(s))ds ∀t ∈ [0,T ]. (1.2.0.4)

Then a trajectory x : [0,T ]→Rn solves the differential equation (1.2.0.3) if and only
if it solves the integral equation (1.2.0.4).

Proof. Let x : [0,T ] → Rn be a solution to the integral equation (1.2.0.4). Then
differentiation shows that x is a solution to the differential equation (1.2.0.3).

In order to show the other direction, let x : [0,T ]→Rn be a solution to the differ-
ential equation (1.2.0.3). Consider

ỹ(t) = eAtx(0)+
∫ t

0
sA(t−s) f (x(s))ds.

Differentiation shows that ẋ(t)− ẏ(t) = A(x− y)(t). By the Picard-Lindeloef Theo-
rem and by (x− y)(0) = 0, we can conclude that (x− y)(t) = 0. Therefore, x solves
the integral equation (1.2.0.4). ut

Proof (Stable Manifold Theorem 1.21). We will closely follow the Method 1.17
and the proof of the Picard-Lindeloef Theorem 1.14. Consider the norm ‖ψ‖ =
supx,t(1+ |x|)−1|ψ tx| and the space

Z = {ψ : [0,∞)×X → X×Y, ‖ψ‖< ∞, ψ measurable}.

The iteration we use will use the variation-of-constants formula. Heuristically, we
solve the equation forward in time in x and backward in time in y via a variant of
the Lindeloef-Iteration. Define the map T : Z→ Z as
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T ψ
tx =

(
eAtx+

∫ t

0
eA(t−τ) f (ψτ x)dτ , −

∫
∞

t
eB(t−τ)g(ψτ x)dτ

)
.

The map is from Z→ Z because

(1+ |x|)−1|T ψ
tx| ≤ 1+(1+ |x|)−1 max

(∫ t

0
eα(t−τ)| f |C0dτ ,

∫
∞

t
eβ (t−τ)|g|C0dτ

)
< ∞

The map T is a contraction, since

(1+ |x|)−1|T ψ
tx−T ψ̃

tx| ≤max
(∫ t

0
eα(t−τ)| f |C1dτ ,

∫
∞

t
eβ (t−τ)|g|C1

)
‖ψ− ψ̃‖

≤max
(
| f |C1

|α|
,
|g|C1

β

)
‖ψ− ψ̃‖.

Thus there exists a unique fixed point ψs of T . We will now show various properties
of the fixed point :

Differentiability in t. Suppose that ψ is continuous in t. Then straightforward
calculation shows thet T ψ is differentiable in t and

DtT ψ
t(x) =

(
AπX T ψ

t(x)+ f (ψ t(x)) , BπY T ψ
t(x)+g(ψ tx)

)
Therefore the set of all ψ , which are continuous in t is forward invariant and the
fixed point ψs is continuous in t. Hence, ψs is differentiable in t and ψ t

s(x) solves
the differential equation.

Uniqueness. Let (x,y) : [0,∞)→ X ×Y be a bounded solution of the differential
equation. We will show that the set

M = {ψ ∈ Z : ψ
t(x(0)) = (x(t),y(t)) ∀t ≥ 0}

is closed and forward invariant under T . In order to show this, we expand (x,y)(t)
with the variations-of-constant formula 1.22. This yields for any T0 > t:

x(t) = eAtx(0)+
∫ t

0
eA(t−s) f (x(s),y(s))

y(t) = e−B(T0−t)y(T0)−
∫ T0

t
eB(s−t)g(x(s),y(s))ds. (1.2.0.5)

Now let ψ ∈ M. Taking the limit T0 → ∞, which exists since we assumed that
(x,y) is bounded, we can see that T ψ ∈ M. Therefore, M is forward invariant.
Since it is obviously closed, the contraction mapping principle yields ψ t

s(x(0)) =
(x(s),y(s)) for all s≥ 0.

Semiflow property. Let x ∈ X and t0 ≥ 0. Then t → ψ
t+t0
s x is a solution to

the differential equation which stays bounded. By uniqueness, we therefore get
ψ t

sπX ψ
t0
s x = ψ

t+t0
s x.
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Growth Conditions. Obviously, Ws ⊂WB. By the uniqueness proof we also have
WB ⊂ ψ0

s (X). In order to prove the last inclusion ψ0
s (X)⊂Ws, consider the set

M = {ψ ∈ Z : lim
t→∞

ψ
t(x) = 0 ∀x ∈ X}.

It is easy to see that M is forward invariant under T , since f (0,0) = 0 and
g(0,0) = 0. Since M is closed in the ‖ · ‖-norm, the assertion is proved.

Regularity in x. We can mimic the regularity proof of the Picard-Lindeloef theo-
rem.

ut

Remark 1.23. The same Remarks with respect to locality (Remark 1.18) and regu-
larity (Remark 1.15) apply as for the Picard-Lindeloef Theorem.

1.3 The Graph Transform Approach

There is another widely used approach to the stable manifold theorem, which is
called the Hadamard graph transform. This mehtod is especially well suited for
time-discrete and non-autonomous systems. It can also be found in e.g. [KH95,
Capter 6.2]. The approach is motivated by the following observation: Consider a
map F : X ×Y → X ′ ×Y ′, which is contracting in X-direction and expanding in
Y -direction. When we have the graph of a map ψ ′ : X ′ → Y ′, its preimage will
be contracted in the Y direction, while it will be expanded in the X-direction. The
preimage will under certain assumptions again be the graph of a map, which is then
called the preimage graph transform of ψ ′, and it will be “smoothened out”. By
iteratedly taking the preimage and using a contraction mapping principle we can
then get a limit graph, which is invariant under the preimage graph transform. This
limit graph is the stable manifold.

1.3.1 The Preimage Graph Transform

In this section, we will define the preimage graph transform and proceed to show
well-definedness and estimates under some linear conditions.

Definition 1.24. Let X , Y , X ′ and Y ′ be toplological spaces and let F : X×Y → X ′×
Y ′ be a continuous map. Let ψ ′ : X ′ → Y ′ be a continuous map, which is defined
everywhere. If the preimage set F−1[graphψ ′] is the graph of some map ψ : X→Y ,
then we call ψ = F∗ψ ′ the preimage graph transform of ψ ′ under F , i.e.

F [graphF∗ψ ′] = graphψ
′.

Proposition 1.25. Suppose that X, Y , X ′ and Y ′ are Banach spaces and F : X×Y →
X ′×Y ′ with
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Contraction of F−1 in y-direction

x

Expansion of F−1 in x-direction

y

Fig. 1.1 The preimage contraction of the Graph transform

F(x,y) = (Ax+ f (x,y),By+g(x,y)),

where A and B are bounded and linear, B has bounded inverse and f and g are
C1-maps with f (0,0) = 0 and g(0,0) = 0. Let πX ′ and πY ′ denote the canonical
projections. Then the graph transform is equivalently defined as

πY ′F(x,ψ(x)) = ψ
′(πX ′F(x,ψ(x)))

or as

ψ(x) = B−1 [
ψ
′(Ax+ f (x,ψ(x)))−g(x,ψ(x))

]
(1.3.1.1)

The proposition follows from direct application of the definition and direct calcula-
tion. We can use the right-hand-side of this equation to get an iteration, which yields
the preimage as a graph under suitable conditions on F and ψ ′. We will consider
maps which are only locally defined, i.e. f and g are defined on BX

Rx
(0)×BY

Ry
(0).

Theorem 1.26. Let X, Y , X ′ and Y ′ be Banach spaces and F(x,y)= (Ax+ f (x,y),By+
g(x,y)), where A and B are bounded and linear, B has bounded inverse and f and g
are C1-maps with f (0,0) = 0 and g(0,0) = 0.
Suppose ψ ′ : BX ′

R′x
(0)→ Y ′, ψ ′ ∈C1 and the following bounds hold:

Rx(‖A‖+‖ f‖C1)≤ R′x
‖B−1‖(‖ψ ′‖∞|+‖g‖C1)≤ Ry

|B−1|
(
‖ψ ′‖C1‖ f‖C1 +‖g‖C1

)
< 1. (1.3.1.2)

Then the preimage F−1[graphψ ′] is the graph of a C1-function ψ = F∗ψ ′ : BX
Rx

(0)→
Y and
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Dxψ(x) =−B−1 [1+∂ygB−1−Dx′ψ
′
∂y f B−1]−1 (

∂xg−Dx′ψ
′(A+∂x f )

)
.

(1.3.1.3)

The expression for Dxψ(x) is well defined because of (1.3.1.2) and the conver-
gence of the geometric operator series (1−V )−1 = ∑n≥0 V n with V = −∂ygB−1 +
Dx′ψ

′∂y f B−1.

Proof. Consider the iteration

T [ψ](x) = B−1 [
ψ
′(Ax+ f (x,ψ(x)))−g(x,ψ(x))

]
By the first two inequalities, the iteration is well defined. Furthermore

(T [ψ1]−T [ψ2])(x)≤ |B−1|
(
|ψ ′|C1 | f |C1 + |g|C1

)
|ψ1−ψ2|∞.

Therefore the contraction mapping principle 1.16 yields a unique L∞-function ψ ,
whose graph is the complete preimage of the graph of ψ ′. The remaining assertions
follow from the implicit function theorem. ut

Now that we have established the well-definedness of the graph transform, we can
consider the contraction estimates needed for contraction mapping principles. Ap-
plication of the formula (1.3.1.3) for Dxψ yields

|F∗ψ ′|C1 ≤
|B−1|(|A|+ | f |C1)

1−|B−1|(|g|C1 + | f |C1 |ψ ′|C1)
|ψ ′|C1

+
|g|C1

1−|B−1|(|g|C1 + | f |C1 |ψ ′|C1)
. (1.3.1.4)

We can now consider contraction properties of the graph transform. We get

|ψ1−ψ2|(x)≤|B−1|[ψ ′1(Ax+ f (x,ψ1(x)))−ψ
′
1(Ax+ f (x,ψ2(x)))

+ψ
′
1(Ax+ f (x,ψ2(x)))−ψ

′
2(Ax+ f (x,ψ2(x)))

−g(x,ψ1(x))+g(x,ψ2(x))]

≤|B−1|
[
|ψ ′1|C1 | f |C1 |ψ1−ψ2|∞ + |ψ ′1−ψ

′
2|∞ + |g|C1 |ψ1−ψ2|∞

]
Solving for |ψ1−ψ2|∞ yields

|ψ1−ψ2|∞ ≤
|B−1|

1−|B−1|(|ψ ′1|C1 + |g|C1)
|ψ ′1−ψ

′
2|∞. (1.3.1.5)
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1.3.2 General construction of invariant manifolds

In order to construct stable manifolds, we will again roughly follow the Idea 1.17.
We will however need a nonautonomous version of the Contraction Mapping Prin-
ciple 1.16 in order to construct the stable manifolds.

Theorem 1.27 (Nonautonomous Contracting Mapping Principle). Consider a
dynamical system F• with I = {. . . ,−2,−1,0}and

Fk−1 : Zk−1→ Zk ∀k ∈ I,

where the Zk are metric spaces. Suppose that

dk+1(Fk(xk),Fk(x̃k))≤ λkdk(xk, x̃k) ∀k < 0, (1.3.2.1)

where all λk > 0. Let Zk denote the metric completion of the spaces Zk and let Fk :
Zk→ Zk+1 denote the unique continuous extension of Fk. The continuous extension
exists and is unique by virtue of (1.3.2.1) (c.f. e.g. [RS80, Theorem 1.7]).

Suppose further that the metric spaces Zk all have a uniformly bounded diameter,
i.e. dk(xk,yk)≤C for all k ≤ 0 and xk,yk ∈ Zk, and that

lim
n→∞

−1

∏
k=−n

λk = 0. (1.3.2.2)

Then there exists a unique orbit x• = (xk)−k∈I ∈ Z• of F•. Furthermore, for any
forward invariant sequence of sets M• ⊂ Z• in the sense of Definition 1.7, we have
x• ∈M•.

Proof. Let Z̃ = ∏k≤0 Zk be the trajectory space. Define T : Z̃→ Z̃ as

(T x•)k = Fk−1(xk−1).

Let x•, x̃• ∈ Z̃. Then we have

dk ((T nx•)k,(T nx̃•)k) = dk
(
Fk−1 ◦ . . .◦Fx−nxk−n,Fk−1 ◦ . . .◦Fx−nx̃k−n

)
≤ λk−1λk−2 . . .λk−nC.

Since ∏k<0 λk = 0, (T nx)k is a Cauchy-sequence in n and converges pointwise to a
unique fixed point x∗k of T . This fixed point is an orbit and it is unique. By consider-
ing an initial x• ∈M• it follows directly that x∗k ∈Mk. ut

When we modify the proof idea 1.17 with the preimage graph transform and the
Nonautonomous Contraction Mapping Principle 1.27, we get the following proof
idea for stable manifold theorems:

Proof Outline 1.28 (Stable Manifolds via Preimage Graph Transform). Con-
sider a dynamical system
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Fk = (Ak + fk,Bk +gk) : Xk×Yk→ Xk+1×Yk+1 ∀k ∈ N

where the fk and gk are defined on boxes BXk
Rk,x

(x)×BYk
Rk,y

(0).

Well definedness and C1-bounds. At first we need to construct a sequence of

spaces Zk ⊆ BC1(Xk,Yk)
Rk

(0) such that the preimage graph-transform fulfills F∗k :
Zk+1 → Zk and is well defined on Zk for all k ∈ N. This construction will make
use of Theorem 1.26 and estimate (1.3.1.4) and will require some fine-tuning of
constants.

Contraction esitmates. Using the estimate (1.3.1.5), we will get contraction es-
timates on F∗k : Zk+1 → Zk in the | · |C0 -norm. Furthermore, in order to apply
the Nonautonomous Contraction Mapping Principle, we will need to check the
condition (1.3.2.2).

Application of the Nonautonomous Contraction Mapping Principle. We will
then apply the Nonautonomous Contraction Mapping Prinicple 1.27. The con-

traction estimates will allow us to extend the Fk to the closure clC0Zk⊂BC0,1(Xk,Yk)
Rk

(0),
which will consist of Lipschitz-continuous functions. The Theorem 1.27 will
yield a unique Lipschitz-Graph, which is invariant under the preimage graph
transform and therefore forward invariant as a set.

Higher regularity bounds. Differentiation of the Formula (1.3.1.3) leads to apri-
ori estimates by the same idea, which was employed in 1.17.

Other Properties. In order to prove other properties of the stable manifold, we
can construct forward invariant sequences. We will use non-constant forward
invariant sequences even in autonomous systems, where Fk = F0 for all k ∈ N.

1.3.3 Exploiting the approach: The stable, strong stable and
pseudo stable manifold theorems

We will now apply the method 1.28, which has been outlined in the previous section,
in order to archieve three stable manifold theorems. The same results can be found
in [KH95]. The spectral setting for the following three applications of this method
is illustrated in 1.2. A pseudo-stable manifold is also called center-stable manifold
when the closure of the spectral gap contains the unit circle. The intersection of a
pseudo-stable and a pseudo-unstable manifold is often called a slow manifold and
the intersection of a center-stable and a center-unstable manifold is often called
center manifold.

1.3.3.1 The Stable Manifold Theorem and a weak λ -Lemma

We can use the method 1.28 to immediately prove a theorem about stable manifolds.
The basic setting is similar to the continuous-time case: We have a contracting and
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Fig. 1.2 The spectral setting for the stable, the strong stable and the pseudostable manifold theorem

an expanding direction of a dynamical system and look for solutions, which con-
verge to the equilibrium.

Theorem 1.29. Let F : X×Y → X×Y be continuous with

F(x,y) = (Ax+ f ( f ,y),By+g(x,y))

where A and B are linear and |A|< 1 as well as |B−1|< 1. Suppose further f ,g∈Ck

with f (0,0) = 0 and g(0,0) = 0 and that | f |C1 , |g|C1 < δ with

δ ≤ 1
4
(1−max(|A|, |B−1|))

Then there exists a Lipschitz function ψs : BX
1 (0)→ BY

1 (0) which is at least Ck−1,1

and invariant under the graph transform. We call graphψs the stable manifold. Set

Z = {ψ : BX
1 (0)→ BY

1 (0) : |ψ|C1 < 1,ψ ∈Ck}

Then every function in Z converges to ψs in the Ck−1-Norm.
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Proof. We proof the theorem in the previously outlined manner. At first we show
well-definedness of the preimage graph transform. By the estimate (1.3.1.4) on the
graph transform, we have for ψ ∈ Z:

‖F∗ψ‖C1 ≤
|B−1|(|A|+δ )+δ

1−2|B−1|δ
≤ 1−3δ

1−2δ

Higher order apriori bounds can be proved similar as before by induction over n and
using (1.3.1.3):

‖F∗ψ‖Cn+1 ≤
|B−1|(|A|+δ )

1−2δ

(
(|A|+δ )n +δ

(|A|+δ )n−1

1−2δ

)
+C(‖ f‖Cn+1 ,‖g‖Cn+1 ,‖ψ‖Cn)

≤ |B
−1|(|A|+δ )
(1−2δ )

(|A|+2δ )
1−2δ

+C

≤ (1−4δ )‖ψ‖Cn+1 +C(‖ f‖Cn+1 ,‖g‖Cn+1 ,‖ψ‖Cn)

Therefore, the space Z is forward invariant under the preimage graph transform and
uniform bounds on the Ck-Norm hold.

The contraction estimate (1.3.1.5) for the preimage graph transform yields:

|F∗ψ1−F∗ψ2|∞ ≤
|B−1|

1−2δ |B−1|
|ψ1−ψ2|∞ ≤

1−4δ

1−2δ
|ψ1−ψ2|∞

The results on ψs follows since

lim
n→∞
‖ψs− (F∗)n

ψ‖∞ = 0

and ‖(F∗)nψ‖Ck < C(‖ f‖Ck ,‖g‖Ck ,‖ψ‖Ck) for all iterates n and therefore

lim
n→∞
‖ψs− (F∗)n

ψ‖Ck−1 = 0.

ut

Remark 1.30. With different methods, it can be shown that the stable manifold ψs is
actually Ck and not just Ck−1,1. Furthermore the same estimates work if k is not an
integer and the norms are interpreted as Hölder norms.

There is another characterization of the stable manifold, which justifies its name: It
contains all points which converge to the equilibrium.

Proposition 1.31. Set

W = inv+
F
(
BX

1 (0)×BY
1 (0)

)
WC = inv+

F
(
BX

1 (0)×BY
1 (0)∩{(x,y) : |y| ≤ |x|}

)
Ws =

{
(x,y) : lim

n→∞
Fn(x,y) = 0

}
.
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Then

W = WC = Ws = graphψs.

Proof. Obviously, graphψs ⊆WC ⊆W . Suppose, conversely, that we have an orbit
(xn,yn)n∈N in W . Set Zn = Z∩{ψ : ψ(xn) = yn}. The sequence Zn is forward invari-
ant under the preimage graph transform. Therefore ψs lies in Z0 and ψs(x0) = y0.
This yields graphψs = WC = W .

We will now show that WC ⊆Ws and then use the obvious inclusion Ws ⊆W to
prove the assertion. Let (x•,y•) be an orbit in WC. We can then estimate |xn+1| ≤
|A||xn|−δ (|xn|+ |yn|)≤ (|A|−2δ )|xn|. Therefore, WC ⊆Ws. ut

Remark 1.32. The statement that for every map ψ in Z the itererates Fn,∗ converge
to the stable manifold ψs for n→∞ is the crucial part of the λ -Lemma or Inclination
Lemma, which can be found in e.g. [KH95, Proposition 6.2.23]. Especially the con-
vergence in the ‖ · ‖Ck−1 -norm is remarkable. This statement means geometrically,
that the iterates under F−1 of any small sheet, which is“sufficiently parallel” to the
x-axis, converge to the stable manifold in a smooth way. Since the statement of the
full λ -Lemma requires the unstable manifold we will omit it.

1.3.3.2 The Strong Stable Manifold Theorem

In the case when we only have a spectral gap which lies on the stable side and does
not contain the unit circle, the stable manifold is again a purely local construction.
However, we need slightly different methods in this case. Consider again the setting
for the preimage graph transform. Assume that now |A| < 1 and C > |B−1| ≥ 1,
i.e. A is contracting while we have bounds on the contraction of B; however, B
is not expanding. We can fix ψ ′(0) = 0 and ψ(0) = 0. Then a special choice of
norm allows us to make use of the expansion of the preimage in x-direction which
”dillutes” the graph. Define the norm ‖ψ‖1,∞ = supx

|ψ(x)|
|x| . Let ψ ′1, ψ ′2 ∈ domF∗ and

ψ1 = F∗ψ ′1, ψ2 = F∗ψ ′2. We can estimate:

|x|−1|ψ1−ψ2|(x)≤|B−1||x|−1[ψ ′1(Ax+ f (x,ψ1(x)))−ψ
′
1(Ax+ f (x,ψ2(x)))

+ψ
′
1(Ax+ f (x,ψ2(x)))−ψ

′
2(Ax+ f (x,ψ2(x)))

−g(x,ψ1(x))+g(x,ψ2(x))]

≤|B−1|[|ψ ′1|C1 | f |C1‖ψ1−ψ2‖1,∞

+‖ψ ′1−ψ
′
2‖1,∞(|A|+ | f |C1)+ |g|C1‖ψ1−ψ2‖1,∞]

By solving for ‖ψ1−ψ2‖1,∞ we get the estimate

‖ψ1−ψ2‖1,∞ ≤
|B−1|(|A|+‖ f‖C1)

1−|B−1|(‖ f‖C1 |ψ ′1|C1 + |g|C1)
‖ψ ′1−ψ

′
2‖1,∞
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This estimate allows us to repeat basically the same arguments as before as long as
we have |A||B−1|< 1.

Theorem 1.33 (Strong Stable Manifold Theorem). Let F : X×Y → X×Y be con-
tinuous with

F(x,y) = (Ax+ f (x,y),By+g(x,y))

where A and B are linear and |A| < 1 as well as |A||B−1| < 1 ≤ |B−1|. Suppose
further f ,g ∈Ck with f (0,0) = 0 and g(0,0) = 0 and that | f |C1 , |gC1 |< δ with

δ ≤ 1
4|B−1|

(1−|A||B−1|)

Then there exists a Lipschitz function ψss : BX
1 (0)→ BY

1 (0) which is at least Ck−1,1

and invariant under the graph transform. We call graphψss the strong stable mani-
fold.

Proof. Let the space

Z = {ψ : BX
1 (0)→ BY

1 (0) : |ψ|C1 < 1,ψ ∈Ck,ψ(0) = 0}

By the estimate (1.3.1.4) on the graph transform, we have for ψ ∈ Z:

‖F∗ψ‖C1 ≤
|B−1|(|A|+δ )+δ

1−2|B−1|δ
≤ 1−3|B−1|δ

1−2|B−1|δ
< 1

Higher order estimates can be proved similar as for the stable manifold in Theorem
1.29 by induction. Therefore, the space Z is forward invariant under the preimage
graph transform and uniform bounds on the Ck-Norm hold.
The contraction estimate (1.3.1.5) for the preimage graph transform yields:

‖F∗ψ1−F∗ψ2‖1,∞ ≤
|B−1|(|A|+δ )
1−2δ |B−1|

‖ψ1−ψ2‖∞

≤ 1−3|B−1|δ
1−2|B−1|δ

‖ψ1−ψ2‖∞

Therefore the nonautonomous contraction mapping principle yields the assertion.
ut

The strong stable manifold has also a characterization via growth conditions:

Proposition 1.34. Let L > 0, such that |A|+δ < L < |B−1|−1−δ . Define

WC = inv+
F
(
BX

1 (0)×BY
1 (0)∩{(x,y) : |x| ≤ |y|}

)
WL =

{
(x,y) : sup

n∈N
L−n|Fn

x (x,y)| ≤ 1
}

.
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Then

graphψss = WC = WL.

Proof. Obviously, graphψss ⊆ WC. Suppose, conversely, that we have an orbit
(xn,yn)n∈N in WC. Set Zn = Z ∩ {ψ : ψ(xn) = yn}. The sequence Zn is forward
invariant under the preimage graph transform (we have to consider WC instead of
inv+

F

(
BX

1 (0)×BY
1 (0)

)
in order to ensure that Zn is nonempty). Therefore, graphψss =

WC. In order to see that WC ⊆WL, note the estimate |Ax+ f (x,y)| ≤ (|A|+δ )|x| for
(x,y) with |y| ≤ |x| ≤ 1.

In order to see the reverse inclusion, note that we have |By+g(x,y)| ≥ (|B−1|−1−
δ )|y| and |Ax+ f (x,y)| ≤ (|A|+δ )|x| for (x,y) with |x|< |y| ≤ 1. ut

Remark 1.35. The trick used in order to prove the strong stable manifold theorem
can be extended to a somewhat more general situation. Using a similar choice of
norm ‖ψ‖1,C1 = sup |x|−1|Dψ| we can get uniform bounds on the iterates of the
graph transform if |A|2|B−1| < 1. Then we can use the | · |2,∞-Norm defined by
‖ψ‖2,∞ = sup |x|−2|ψ| to get a contraction and therefore a unique invariant mani-
fold, which is again Ck regular.
This method has been carried out in [dlL03]. The result is especially remarkable,
since the thus constructed invariant manifold is not tangent to the spectral subspace
belonging to a spectral gap; it is even not necessarily tangent to any spectral sub-
space.

1.3.3.3 The Pseudo-stable Manifold Theorem

The stable and strong stable manifold is local, i.e. it depends only on the behaviour
of F in a small neighborhood of 0. Furthermore, it has very good regularity proper-
ties: It is almost as regular as the system itself.

If we only have a spectral gap on the unstable side of the unit circle, it is still
possible to construct an invariant manifold which contains all points, which do not
diverge to quickly – i.e. an invariant manifold tangential to the most stable part of
the iteration F . This construction has however more subtle regularity properties, as
we shall see.

Theorem 1.36 (Pseudo-stable Manifold Theorem). Let F : X ×Y → X ×Y be C1

with

F(x,y) = (Ax+ f ( f ,y),By+g(x,y))

where A and B are linear with

|B−1|< 1≤ |A|.

Suppose further f (0,0) = 0 and g(0,0) = 0 and that | f |C1 , |g|C1 < δ with
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δ =
1
5
(1−|A||B−1|).

Then there exists a Lipschitz function ψps : X → Y which is invariant under the
graph transform. Set

Z = {ψ : X → Y : |ψ|C1 < 1, |ψ|∞ <
δ

1−|B−1|
,ψ ∈C1}

Then every function in Z converges to ψps in the ‖ · ‖∞-Norm.

Proof. We proof the theorem analogously to the stable manifold theorem. By the
estimate (1.3.1.4) on the graph transform, we have for ψ ∈ Z:

|F∗ψ|C1 ≤
|B−1|(|A|+δ )+δ

1−2|B−1|δ
≤ |B

−1||A|+2δ

1−2δ
≤ 1−3δ

1−2δ

as well as

|F∗ψ|∞ ≤ |B−1|(|ψ|∞ +δ ).

Therefore, the space Z is forward invariant under the preimage graph transform.
The contraction estimate (1.3.1.5) for the preimage graph transform yields:

‖F∗ψ1−F∗ψ2‖∞ ≤
|B−1|

1−2δ |B−1|
‖ψ1−ψ2‖∞

≤ 1−5δ

1−2δ
‖ψ1−ψ2‖∞

The non-autonomous contraction mapping principle now yields the assertion. ut

Regularity for pseudostable manifolds is slightly more subtle and depends on the
size of the spectral gap. We will use Hölder-spaces for the regularity results. We
will use the following well known interpolation estimate (cf. e.g. [GT98, Chapter
4]) for R > 0 and f ∈Ck,α(Bn

R(0)):

| f |Ck ≤C(α)ε−1| f |Ck−1 + ε
αbDk f cα ∀0 < ε < min(1,R) (1.3.3.1)

We will also use the fact that the | · |∞-closure of the Ck,α -ball clC0BCk,α

1 (0) =
BCk,α

1 (0).
In order to prove apriori Hölder estimates we will use the following general esti-
mates of the chain and product rule, which hold on convex domains whenever the
expressions are well-defined:

b f ◦gcα ≤ b f cα |g|αC1

b f ◦gcα ≤ | f |C1bgcα
b f ·gcα ≤ | f |∞bgcα + b f cα |g|∞
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Theorem 1.37 (Regularity of the Pseudo-stable Manifold). Suppose that the set-
ting for the pseudostable manifold theorem holds. Suppose furthermore that there is
0 < α ≤ 1 such that

(|A|+δ )k+α |B−1|< 1−8δ

and that f and g are Ck+1. Then the pseudostable manifold is actually Hölder con-
tinuous in Ck,α .

Proof. We need to check the boundedness of the preimage sequence in the Ck,α -
Norm. Let ψ ∈ Z∩Ck+1. We can estimate for n+1≤ k:

‖F∗ψ‖Cn+1 ≤
|B−1|(|A|+δ )

1−4δ

(
(|A|+δ )n +δ |B−1| (|A|+δ )n−1

1−4δ

)
‖ψ‖Cn+1

+C(‖ f‖Cn+1 ,‖g‖Cn+1 ,‖ψ‖Cn+1)

≤ 1−8δ

(1−4δ )

(
1+

δ

1−4δ

)
‖ψ‖Cn +C

≤ 1−8δ

(1−4δ )
1−3δ

1−4δ
‖ψ‖Cn

≤
(

1−4δ
1−2δ

(1−4δ )2

)
‖ψ‖Cn+1 +C(‖ f‖Cn+1 ,‖g‖Cn+1 ,‖ψ‖Cn)

Therefore we have uniform bounds on the ‖ · ‖Ck -Norm. Using the Hölder versions
of the chain and product rule we can estimate

‖F∗ψ‖Ck,α ≤
|B−1|

1−4δ

(
(|A|+δ )k+α +δ |B−1| (|A|+δ )k+α−1

1−4δ

)
‖ψ‖Ck,α

+C(‖ f‖Ck ,‖g‖Ck ,‖ψ‖Ck)

≤ 1−8δ

(1−4δ )

(
1+

δ

1−4δ

)
‖ψ‖Cn +C

≤
(

1−4δ
1−2δ

(1−4δ )2

)
‖ψ‖Cn+1 +C(‖ f‖Cn+1 ,‖g‖Cn+1 ,‖ψ‖Cn)

The non-autonomous contraction mapping principle and the properties of Hölder
spaces now yield the assertion. ut

The pseudostable manifold also has a characterization via growth conditions.

Proposition 1.38. Let L > 0, such that |A|+δ < L < |B−1|−1−δ . Define

WC = inv+
F
(
BX

1 (0)×BY
1 (0)∩{(x,y) : |x| ≤ |y|}

)
WL =

{
(x,y) : sup

n∈N
L−n|Fn

x (x,y)| ≤ 1
}

.
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Then

graphψps = WC = WL.

Proof. Obviously, graphψps ⊆ WC. Suppose, conversely, that we have an orbit
(xn,yn)n∈N in WC. Set Zn = Z ∩ {ψ : ψ(xn) = yn}. The sequence Zn is forward
invariant under the preimage graph transform (we have to consider WC instead of
inv+

F

(
BX

1 (0)×BY
1 (0)

)
in order to ensure that Zn is nonempty). Therefore, graphψss =

WC. In order to see that WC ⊆WL, note the estimate |Ax+ f (x,y)| ≤ (|A|+δ )|x| for
(x,y) with |y| ≤ |x| ≤ 1.

In order to see the reverse inclusion, note that we have |By+g(x,y)| ≥ (|B−1|−1−
δ )|y| and |Ax+ f (x,y)| ≤ (|A|+δ )|x| for (x,y) with |x|< |y| ≤ 1. ut

1.3.4 A note on Unstable Manifolds

Up to now we have only considered stable manifolds. There is a completely anal-
ogous statement about unstable manifolds with analogous techniques. Part of the
result is a simple corollary of the stable manifold theorem:

Theorem 1.39 (Unstable Manifold Theorem). Let F : X×Y → X×Y be continu-
ous with

F(x,y) = (Ax+ f ( f ,y),By+g(x,y))

where A and B are linear and |B−1|< 1 as well as 1 < |A−1|< ∞. Suppose further
that f ,g ∈ Ck with f (0,0) = 0 and g(0,0) = 0 and D f (0,0) = 0 and Dg(0,0) =
0.Then there exists an ε > 0 and a Lipschitz function ψu : BY

ε (0)→ BX
ε (0) which is

at least Ck−1,1 and has the property that graphψu is backward invariant. We call the
graphψu the unstable manifold.

Proof (rough sketch). By the inverse function theorem, F can inverted in a neigh-
borhood of 0. We can then apply the stable manifold theorem.

Remark 1.40. One can similarly construct pseudo-unstable and strong unstable man-
ifolds.

Remark 1.41. This method of proof is unsatisfactory, since it requires that A is in-
vertible.

It is possible to prove the theorem directly by considering the image graph. We
will, however, only sketch this approach. If we again assume the situation F : X ×
Y → X ′×Y ′ and ψ : Y → X , then the image graph transform F∗ψ = ψ ′ : Y ′→ X ′ is
defined by

F [graphψ] = graphF∗ψ

This can be written as
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ψ
′(ψY ′F(ψ(y),y)) = πX ′F(ψ(y),y).

We can solve this equation with a contraction mapping principle by considering
Z = {Γ : Y ′→ Y} and the iteration T : Z→ Z given by

(TΓ )(y′) = B−1y′−B−1g(ψ(Γ (y′)),Γ (y′)).

Then we can set with the fixed point Γ of T :

ψ
′(y′) = Aψ(Γ (y′))+ f (ψ(Γ (y′)),Γ (y′))

It can be shown that T is a contraction in order to prove existence and regularity for
the image graph transform. Afterwards, all theorems and ideas of proof carry over
to the unstable case.



Chapter 2
A Topological Stable Set Theorem

In this chapter, we will introduce a topological generalization of the stable manifold
theorem. We will start by giving a motivational example and then introduce some
homotopy theory. In Section 2.3, we will introduce the main concepts of this chapter.
We will close by applying these concepts to a simple system in Section 2.4.

2.1 Motivation

Consider the following example: Let Q = [0,1]× [0,1] and let L = {(x,y) : x≤ 0} ⊆
R2 and R = {(x,y) : x≥ 1} ⊆ R2. Consider a continuous map F : Q→ R2. Assume
that F(Q)⊆ intQ∪L∪R.

Assume further that F(Q∩L) ⊆ intL and F(Q∩R) ⊆ intR. For an illustration,
see Figure 2.1. We aim for results similiar to the following Proposition:

F

L R

F(Q)

Q

inv+
F (Q)

Fig. 2.1 The motivational Example

33
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Proposition 2.1. The set Q\ inv+
F (Q) is not path-connected and Q∩L and Q∩R lie

in different path-connected components of Q\ inv+
F (Q).

This Proposition implies a simple corollary, which illustrates the power of such
results:

Claim. Let y ∈ [0,1]. Then there exists x ∈ [0,1] such that (x,y) ∈ inv+
F (Q).

Proof. Consider the path γ(t) = (t,y) for t ∈ [0,1]. Since Q∩ L and Q∩R lie in
different components of Q\ inv+

F (Q), we must have γ([0,1])∩ inv+
F (Q) 6= /0. ut

We will at first state a rough proof idea for Proposition 2.1. The details will be filled
out in the remainder of this chapter, i.e. Section 2.2 and Section 2.3.

Proof (Rough Idea for Proposition 2.1).

Definition of Separation. It is useful to crystallize the main property of inv+
F (Q)

into a definition. Ee define C⊆Q to be separating, if Q∩L and Q∩R lie in differ-
ent path-connected components of Q\C. We will give a more general Definition
in Definition 2.9.

Separating Preimage Property. The next step is to show, that for any separating
C ⊆ Q the complete preimage F−1[C] is also separating (note that F is only
defined on Q). The idea of proving this is indirect (or “by duality”): For a L-R-
connecting continuous path γ , we can also get a L-R-connecting continuous path
by considering F ◦ γ . If γ does not intersect F−1[C], then F ◦ γ does not intersect
C. This step will be detailed in Lemma 2.16.

Construction of inv+
F (Q). The next step is to use the construction inv+

F (Q) =⋂
n∈N F−n[Q] in Definition 1.2 and iteratedly apply the Separating Preimage

Property. This will yield a construction of inv+
F (Q) as the intersection of a de-

scending chain of compact separating sets. More details on this step will be given
in Theorem 2.19.

Compactness argument. We can close the proof by using the fact, that the in-
tersection of a descending sequence of compact separating sets is compact and
separating. This can be seen by considering the intersection of the descending
sequence of nonempty compact sets Ranγ ∪F−n[Q]. This step will be detailed in
Lemma 2.12.

The Proposition 2.1 also has an elementary proof, which however does not general-
ize as gracefully to higher dimensions. In order to give confidence into Proposition
2.1, we will give this proof, even though the arguments in it will not be revisited
later in this work.

Proof (Proposition 2.1). Define

ML =
{

p ∈ Q : ∃n ∈ N : Fn(p)x < 0, Fk(p) ∈ Q ∀k ∈ {0, . . .n−1}
}

MR =
{

p ∈ Q : ∃n ∈ N : Fn(p)x > 1, Fk(p) ∈ Q ∀k ∈ {0, . . .n−1}
}

.
(2.1.0.1)

Intuitively, ML (resp. MR) is the set of initial conditions, for which the forward iter-
ates leave Q first to the left (resp. right) side. The three sets ML, MR and inv+

F (Q) are
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pairwise disjoint. Since F(Q)⊆Q∪L∪R, we can see that Q = inv+
F (Q)∪ML∪MR.

By continuity of F and by the definitions of ML and MR, both ML and MR are open.
Therefore, ML∪MR = Q\ inv+

F (Q) is not connected and Q∩L⊆ML and Q∩R⊆MR
lie in different connected components. ut

2.2 Topological Prerequisites: Homotopy Theory

Homotopy theory from algebraic topology will provide a convenient language to
describe our setting of interest. All definitions can be found in most books on alge-
braic topology, e.g. [Mun00] or [Oss92].
One of the main ingredients of the argument in the motivation is the topological fact
that [0,1] is connected and the usage curves γ : [0,1]→Q. The argument holds even
if we deform the curve γ , provided that it still connects the left and right boundary
of Q. These concepts are formalised by the notion of homotopy.

Definition 2.2. Let X and Y be topological spaces and f : X → Y , g : X → Y be
continuous functions. We define f and g to be homotopic if there exists a continuous
h : X × [0,1]→ Y with h(·,0) = f and h(·,1) = g. We then write f ∼ g. We call f
null-homotopic if there exists a constant function g such that f ∼ g. We write [ f ] for
the equivalence class of f under ∼.

The relation ∼ is an equivalence relation. In the language of homotopy our motiva-
tional argument yielded the following result:
All maps c : {0,1} → Q \M0 , i.e. all pairs of points (c0,c1), with c0 lying in the
left boundary of Q and c1 in the right one are not null-homotopic, i.e. there is no
deformation which makes c constant. This means that there exists no continuation
c̃ : [0,1]→ Q \M0 with c̃|0,1 = c. Therefore, there exists no continuous curve con-
necting the left and right boundary at all, which does not intersect M0.

Definition 2.3. Let X be a topological space and for n ∈ N let Sn = ∂Bn+1
1 (0) ⊂

Rn+1. Define hn(X) := C(Sn,X)/ ∼ as the set of homotopy classes of continuous
functions γ : Sn → X . We call hn trivial if it contains only the trivial, i.e. null-
homotopic, class. We sometimes call an element γ ∈C(Sn,X) an n-sphere.

The motivational example was in the case of n = 0.

Remark 2.4. Since many authors study homotopy theory from a group theoretic
point of view, we remark that it is possible to endow hn(X) with a group struc-
ture by fixing a basepoint x0 ∈ X and assuming n > 0 and path-connectedness of the
space X . This group is called the nth homotopy group or the nth fundamental group.
Since we do not use this group structure in this work, we refer to [Oss92, Chapter
3] for details.

One of our main uses for homotopy theory is the study of induced maps:
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Definition 2.5. Let X and Y be topological spaces, n ∈ N and let F : X → Y be a
continuous map. Define the induced map hn(F) : hn(X)→ hn(Y ) for γ ∈ C(Sn,X)
as

hn(F)[γ]hn(X) = [F ◦ γ]hn(Y ).

Then the following holds:

Proposition 2.6. 1. The induced map is well defined.
2. Let Z be another topological space and G : Y → Z continuous. Then hn (G◦F) =

hn(G)◦hn(F).
3. If F ∼ F ′ then hn(F) = hn(F ′).

The proof follows directly from the definitions. In order to use these definitions, we
have to understand how hn(X) looks like in some important cases. There is a deep
result, Theorem 2.8, from algebraic topology which classifies hn(Sn). A proof can
be found in [Oss92, p. 205f, Satz 5.7.10]. We will need polar coordinates in order to
state the result:

Definition 2.7. Let Pn : [0,2π]× [0,π]n−1→ Sn be the polar coordinate map defined
for n > 1 by

Pn(φ1, . . . ,φn−1,φn) = (cos(φn)Pn−1(φ1, . . . ,φn−1),sin(φn))

and for n = 1 by P1(φ) = (cos(φ),sin(φ)).

Theorem 2.8. Consider the mapping Gk : Sn→ Sn defined in polar coordinates for
k ∈ Z by

Gk : (φ1,φ2, . . . ,φN)→ (kφ1,φ2, . . . ,φn)

Then the relation Z→ hn(Sn) given by k → [Gk] is a bijection and only [G0] is
null-homotopic. We write [k] := [Gk] in hn(Sn).

Now that we have some topological language set up, it is possible to generalize
the result of our motivational argument: M0 separates the left and right boundary in
Q.

Definition 2.9 (Separating Sets). Let X be a topological space and E,M ⊂ X be
disjoint subsets of X where E 6= /0. Let n ≥ 0 and γ ∈ hn(E) not null-homotopic.
We say that M separates γ in X if γ cannot be contracted in X \M. For a more
formal definition, let ι = ιE→X\M be the inclusion map. M is a separating subset
with respect to E and γ , if hn(ι)γ is not null-homotopic.

In many cases it is not necessary to study individual γ ∈ hn(E). We therefore call
M separating in codimension n, if all non null-homotopic γ ∈ hn(E) are mapped to
non null-homotopic spheres by hn(ι), i.e. if M separates all γ ∈ hn(E).

Remark 2.10. The fact that M separates γ ∈ hn(E) is only useful, if the empty set
does not separate γ , i.e. γ cannot be contracted in X . However, we include this case
into the definition because it makes the theorems in 2.3 more convenient.
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A similiar concept is widely used in the calculus of varations. The concept there
is called “linking” and will be related to the concept of “separating sets” in Section
2.2.1.

Example 2.11. The statement of the motivational example can be found with n = 0.
The homotopy classes h0(Z) of a topological space Z just count path-connected
components: If Z has the path-connected components Z =∪i∈IZi, then the homotopy
classes h0(Z) can be represented as pairs (i, j) ∈ I2. Such a 0-sphere (i, j) is null-
homotopic if and only if i = j (by the definition of path-connected components).

In the example, consider X = Q and E = Q∩(L∪R) and M = inv+
F (Q). The set E

has two path-connected components, i.e. the left part Q∩L and the right part Q∩R.
The statement that the specific 0-sphere (L,R) is separated by M means literally
that the left and the right boundary cannot be connected in Q without intersecting
M. The statement that M is separating E in codimension 0 without qualifying any
0-sphere means, that each non-trivial 0-sphere in h0(E) is separated by M.

Separating sets have good limit properties.

Lemma 2.12 (Separating Limit Lemma).

1. Let M ⊂M′ ⊂ X \E and let γ ∈ hn(E) be not null-homotopic. If M separates γ ,
then M′ also separates γ .

2. Let (Cn)n∈N be a sequence of closed separating (with respect to γ) subsets of X
and Cn ⊂Cn+1 for all n ∈N and assume C0∩E = /0. Then C =

⋂
n∈NCn is also a

closed separating subset of X with respect to γ .

Proof. The first part follows directly from the definition.
The proof of the second assertion is indirect. We assumed that γ : Sn → E is
not null-homotopic. Assume that there exists some continuous ω : Sn × [0,1] →
X \C with ω(·,0) = γ and ω(·,1) = const. Since Cn is separating for all n ∈ N,
Kn = h−1(Cn) ⊂ Sn × [0,1] is nonempty. By continuity of ω , Kn is compact and
ω−1(C) =

⋂
n∈N Kn is nonempty, since it is the intersection of a descending sequence

of nonempty compact sets. Therefore we have a contradiction to the assumption
ω : Sn× [0,1]→ X \C. ut

2.2.1 Relations to Linking

A similiar concept to separating sets (Definition 2.9) is widely used in the calculus of
varations. The concept there is called “linking”. In [Str08], the following definition
of linking sets is given:

Definition 2.13. Let S be a closed subset of a Banach space V, Q a submanifold of
V with relative boundary ∂Q, we say S and ∂Q link if :

L1 S∩∂Q = /0
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L2 for any map φ ∈C(V,V ) such that φ|∂Q = id there holds φ(Q)∩S 6= /0

In order to illustrate the connection and the differences between the definitions of
linking and separation, we will give a short example.

Example 2.14. Consider V = R3. Let Ai = {x : xi ≥ 0,x j = 0 ∀ j 6= i} be the three
non-negative half-axes and A = A1 ∪A2 ∪A3. Let Q = {x : d(x,A) ≤ 1} and ∂Q =
{x : d(x,A) = 1}. The set Q looks like a thickened three-armed star stretching to
infinity, as illustrated in 2.2. Then the following holds:

1. The set A1∪A2 is separating for some γ ∈ h1(∂Q) with respect to some but not
all γ ∈ h1(∂Q) (separating with repect to X = Q, E = ∂Q).

2. The set A1∪A2 is linked to ∂Q.

Proof. Set γ1 : S1 → ∂Q with γ1(ξ ) = (10,cosφ ,sinξ ) and analogously γ2(ξ ) =
(sinξ ,10,cosξ ) and γ3(ξ ) = (cosξ ,sinξ ,10). It is obvious by the Figure 2.2 that
γ1 and γ2 are separated by A1∪A2, while γ3 is not separated.

Suppose that there is an “unlink”, i.e. some continuous φ : V → V with φ|∂Q =
id and φ(Q) ∩ A0 = /0. Let π be a retraction of R3 on Q, i.e. π|Q = id and
Ranπ|R3\Q ⊆ ∂Q (e.g. π(x) = x · sup{t < 1 : tx ∈ Q}). Now consider ω(s,ξ ) =
π(φ(10,scosξ ,ssinξ )). We have ω(0, ·) = const and ω(1, ·) = γ1, since Ranγ1 ⊂
∂Q and φ|∂Q = π|∂Q = id. Since Ranω ⊆Q\(A1∪A2), the existence of an “unlink”
φ would imply that the 1-sphere γ1 is not separated by A1∪A2.

A2

A1

A3

γ1

γ3

γ2

Fig. 2.2 An example for Separation and Linking

We do not use the Definition 2.13 of linking for three reasons:
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Firstly, the restriction of using only Banach spaces V as a base space is unneces-
sary. In this work we will mainly work with topological spaces X , which are subsets
of Banach spaces.

Secondly, the restriction of only working with submanifold-boundaries ∂Q is
unnecessary. In this work, we will always specify a set E, which plays the role of a
boundary. Even while it may be possible to view these sets as relative boundaries,
such a viewpoint requires more work and does not give any additional insight.

The third disadvantage is the primary reason for not using the concept of “link-
ing” in this work: We need to track some more details in our applications in dy-
namical systems, namely the induced maps hn(F) : hn(∂Q)→ hn(∂Q). This is not
possible with only the concept of “linking” without specifying exactly which ele-
ments of hn(∂Q) are separated, if any. An alternative wording of this critique would
be, that it does not suffice to know for our applications whether two sets are linked.
We need to specify how exactly they are linked, i.e. what the obstructions to an
“unlink” are.

2.3 The Forward Invariant Separating Set Theorem

With the results of the last section, i.e. the generalizations of the concepts of con-
nectedness and separation, we can generalize the other parts of the construction in
2.1. There are several ways to do this, and the choice of the construction is mainly a
matter of personal preference. We will now give a straightforward construction and
then relate it in Section 2.3.1 to standard constructions in Conley index theory.

Definition 2.15. Let X = N∪̇E and X ′ = N′∪̇E ′ be topological spaces and F : X →
X ′ be a continuous map. Suppose that

intF−1[E ′]⊃ E.

Then we call the quadruple (N,E,N′,E ′) a block pair for F .

The definition can be illustrated by Figure 2.3. We will need to study the induced
map hn(F) : hn(E)→ hn(E ′).

N′NE E ′F

F(E) F(N)

Fig. 2.3 The Block pair construction

The definition of a block is compatible with the definition of separating sets; the
following Lemma is actually the justification for these definitions:

Lemma 2.16 (Separating preimage Lemma). Let F : X → X ′ be continuous and
X = N∪̇E and X ′= N′∪̇E ′ be a block for F. Let γ ∈ hn(E) be not null-homotopic and
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let γ ′ = hn(F)γ ∈ hn(E ′) be not null-homotopic as well. Let M′ ⊂N′ be a separating
subset for γ ′. Then F−1[M] is separating for γ .

Proof. Let ω : [0,1]×Sn→ X with [ω(0, ·)] = γ and ω(1, ·) = const. Then ω ′ = F ◦
ω is continuous and [ω ′(0, ·)] = γ ′ while ω ′(1, ·) = const. Since we assumed that M
is separating for γ ′ and E ′, there is a (t,s) ∈ [0,1]×Sn with ω ′(t,s) ∈M. Therefore,
ω(t,s) ∈ F−1[M]. ut

In many cases it is not necessary to keep track of the homotopy classes in hn, since
it suffices for our purposes to know whether they are null-homotopic. In this case
we can use the following simplified corollary:

Corollary 2.17. Let F : X → X ′ be continuous and X = N∪̇E and X ′ = N′∪̇E ′ be a
block pair for F. Suppose that for some n ∈ N and M′ ⊂ N′:

1. The sets of homotopy classes hn(E) and hn(E ′) are not trivial.
2. The induced map hn(F) : hn(E)→ hn(E ′) maps non null-homotopic classes on

non null-homotopic classes.
3. M′ is separating E ′ in codimension n (in the sense of Definition 2.9).

Then M = F−1[M′] is separating E in codimension n.

With the definition of block pairs, we can immediately define a block sequence:

Definition 2.18. Let Xk = Nk∪̇Ek for k ∈N be a sequence of topological spaces and
Fk : Xk→Xk+1 be a sequence of continuous maps. The decomposition is called block
sequence, if (Nk,Ek,Nk+1,Ek+1) is a block pair for Fk for every k ∈ N.

We can now iteratedly apply the separating preimage Lemma 2.16 and use the limit
property of separating sets (Lemma 2.12) in order to achieve a separating forward
invariant set.

Theorem 2.19 (Forward Invariant Separating Set Theorem). Let Xk = Nk∪̇Ek
and Fk : Xk → Xk+1 for k ∈ N be a block sequence. Assume that γ0 ∈ hn(E0) is not
null homotopic and assume that for all k ∈ N the sphere γk ∈ hn(Ek) with γk =
hn(Fk−1)◦ . . .◦hn(F0)γ0 is not null-homotopic. Then inv+

F• (N•)k separates γk for all
k ∈ N.

Proof. We will follow the construction of inv+
F• (N•). Set C1

k = F−1
k [Nk+1]. By the

Definition 2.15 of a block sequence we have C1
k ⊆ Nk, i.e. C1

k ∩Ek = /0. By assump-
tion, Nk+1 separates γk+1 and by the separating preimage Lemma 2.16, C1

k separates
γk.

Define

Cm
k = F−1

k [Cm−1
k+1 ].

By continuity, the separating preimage Lemma and induction over m, Cm
k ⊆ Nk is

closed and separates γk for all k,m ∈ N. Furthermore and also by induction over m,
the Cm

k are a descending chain, i.e. Cm+1
k ⊆Cm

k . Define C∞
k =

⋂
m∈NCm

k . By the limit
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property of separating sets (Lemma 2.12), we can see that C∞
k separates γk for all

k ∈ N.
In order to see that

(
C∞

k

)
k∈N = inv+

F• (N•), consider the construction of inv+
F• (N•)

in Definition 1.7 as the intersection U∞
k of the descending chain defined by U0

k =
Nk and Um

k = F−1
k [Um−1

k+1 ]. We have Um+1
k ⊆ Cm+1

k ⊆ Um
k and therefore the limits

coincide. ut

Similarly to the simpler version of the separating preimage Lemma 2.16, i.e. Corol-
lary 2.17, it is often not necessary to track the entire sequence γk of homotopy
classes. This makes the formulation simpler:

Corollary 2.20. Let Nk∪̇Ek and Fk : Xk → Xk+1 for k ∈ N be a block sequence. Let
n ∈ N. Suppose that:

1. The set of homotopy classes hn(Ek) is not trivial for k ∈ N.
2. The induced maps hn(Fk) : hn(Ek)→ hn(Ek+1) map non null-homotopic classes

on non null-homotopic classes.

Then (inv+
F• (N•))k is a closed separating subset for Ek in codimension n and for all

k ∈ N.

If we study an autonomous system, we can also state a simpler version of the theo-
rem for which we need to check only finitely many conditions.

Corollary 2.21. Let X = N∪̇E and F : X → X be a block, i.e. let (N,E,N,E) be a
block pair in the non-autonomous sense. Suppose that hn(E) is non-trivial and that
hn(F) : hn(E)→ hn(E) maps non null-homotopic classes to non null-homotopic
ones. Then inv+

F (N) is separating for E in codimension n.

2.3.1 Relations To Conley Index Theory

We will now discuss the relations of our Definition 2.15 of block pairs to other
theories and the rationale of our definition. The Figure 2.4 makes clear a drawback
of our choice of definition for block pairs: In most applications, we will be faced
with a map F : N∪̇E → Y with N′∪̇E ′ ( Y , i.e. the assumption F(X) ⊆ X ′ fails.
If we are only interested in forward invariant sets inv+

N• (F•), this does not pose an

N′N E E ′

F(E) F(N)

F

Fig. 2.4 A realistic example for the Block pair construction

insurmountable problem: Points, whose images are not in N′ cannot belong to the
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maximal forward invariant set anyway. This problem does however introduce some
technicalities. There are at least three ways of handling this problem:

The first approach is the one used in this work. If F does not satisfy F(X)⊆ X ′,
then we try to find some continuous map π : RanF→ X ′ and consider F̃ = π ◦F . If
we can archieve F̃−1[N′] = F−1[N] and F̃|F−1[N] = F|F−1[N], then this will allow us to
use the theory developed in this chapter, since we will then get inv+

F (N) = inv+
F̃ (N).

The second approach is used in [Zgl04], where a similiar theory is constructed
for the special case X = {x ∈ Rn : |x|∞ ≤ 1}. In this paper, the analogous Definition
[Zgl04][Definition 2] to our Definition 2.15 of block pairs includes the case when
F(X) 6⊆ X ′, but makes many more technical assumptions. This approach has the
immediate drawback of making the definition of a block pair immensely unflexible
and inapplicable to situations as encountered in Chapter 3. Therefore, we will not
go into more details on this approach.

The third approach is used in Conley Index theory, as in e.g. [FR00],[Gid98] and
[RW10]. The basic idea is to collapse (identify) the set E ′.

We will now illustrate the approach of collapsing E ′, which is used in Conley
Index theory. Afterwards we will discuss the approach which is used in this work.

In [RW10], Richeson uses the following definition of block pairs:

Definition 2.22. Let X and X ′ be topological spaces and F : X → X ′ be continuous.
Let L ⊂ N 6= /0 be subsets of X . Let L′ ⊂ N′ 6= /0 be subsets of X ′. They are called a
block pair (in the sense of Richeson), if L is an open neighborhood of N∪F−1[X ′ \
N̊′].

With this definition, Richeson studies the homotopy type of the pointed quotient
spaces (N/L,L) and (N′/L′,L′) as well as induced map F̂ on the pointed quotient
spaces. Our definition is similar if one considers X = N \L∪̇L and a retraction π :
RanF → L. Then the maps hn+1(F) : hn+1(N/L,L)→ hn+1(N′/L′,L′) and hn(π ◦
F) : hn(E)→ hn(E ′) are comparable. This definition and its application is illustrated
in Figure 2.5.

We will now discuss how to apply our Definition 2.15 of block pairs. We will
project back some neighborhood M⊇N′∪̇E ′ with an appropriate projection π : M→
N′∪E ′ , as illustrated in Figure 2.6. Then we can apply our definitions and theory to
the composed map F̃ = π ◦F . However, the induced map hn(π ◦F) : hn(E)→ hn(E ′)
may in general depend on the choice of M and π , as illustrated in Figure 2.7.

This ambiguity is the reason I decided to define block pairs for F̃ = π ◦F and
not for maps F : N∪̇E→Y . This means that the problem of choosing an appropriate
retraction π has to be solved in each specific application of the definition of block
pairs. Even while the Conley Index approach of collapsing the exit set is more ele-
gant than our approach, it requires some more topological machinery and is not all
that helpful in the applications in this work, where we can give retractions explic-
itly. Furthermore, the ambiguity does not need to concern us when we restrict our
ambitions to proving existence of forward invariant separating sets and do not seek
to construct topological invariants of dynamical systems.
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The diagramm commutes

N

f̂ (N)

N′

N′

N

[E]

F̂

F(N)

E ′

F(E)

πnat

E

π ′nat

[E ′] = F̂([E])

F

Fig. 2.5 The block pair construction in [RW10]

N′N

N′

FE
π : M \ (E ∪N)→ E

F(N)

E ′

F(E)

M

π

F̃ = π ◦F

F̃(E) F̃(N)

E ′

Fig. 2.6 Application of block pairs and retractions

The induced map is given by (E1,E2,E3,E4)→ (E ′1,E
′
2,E
′
2,E
′
1)

The induced map is given by (E1,E2,E3,E4)→ (E ′1,E
′
2,E
′
2,E
′
2)

N

N′

N′

F(E1)

F(E1)

F(E4)
F(E3)

E ′1 E ′2

F(E2)

M2

F

F

M1

F(N)

E1 E2

E3E4

π : M1 \ (E ′∪N′)→ E ′
E ′2

F(E2)

E ′1

F(E3)F(E4)

π : M2 \ (E ′∪N′)→ E ′

F(N)

Fig. 2.7 An illustration of ambiguity
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Now we will explain the details of what an “appropriate” projection is and in
which cases we can get induced maps independently of the chosen projection. We
will need some definitions first:

Definition 2.23. Let X be a topological space and A ⊂ X . We call a continuous
map π : X → A with π|A = id a retraction of X to A. We call a continuous map
R : [0,1]×X → X with R(0, ·) = id, R(1, ·) ⊂ A and R(·, ·|A) = id a deformation
retraction of X to A. If such maps exist we call A a retract, respective a deformation
retract, of X .

We can contruct a block pair in applications by choosing a ”strip” M ⊆ Y with
RanF ⊆M and a retraction π : M→M∩X ′ such that π|M\N′ : M \N′→ E ′ ∩M is
also a retraction.

Proposition 2.24. Let F : E∪̇N→Y be continuous and suppose RanF ⊆M⊆Y . Let
X ′ = N′∪̇E ′ ⊂ Y and π : M→ X ′ be continuous with π|X ′∩M = id and RanπM\X ′ ⊂
E ′. Suppose further that F(E) ⊂ M \X ′ and that X ′ ∩M is relatively closed in M.
Then (N,E,N′,E ′) is a block pair for F̃ = π ◦F.

Proof. We need to show that E ⊂ int F̃−1(E ′). Since F(E) ⊂M \X ′ we have E ⊂
F−1(M \X ′). Because of the projection we have F−1(M \X ′) ⊂ F̃−1(E ′). The set
F−1(M \X ′) is however open, since F is continuous and X ′ is relatively closed in
M. ut

This approach yields block pairs but has the unsatisfactory property of the resulting
induced map hn(F̃) not being independent of the choice of M and π . If we use
deformation retractions instead, the resulting induced map becomes at least partially
independent of this choice:

Proposition 2.25. Let F : E∪̇N → Y be continuous and X ′ = N′∪̇E ′ ⊂ Y . Suppose
that RanF ⊂ M ⊂ M̂ ⊂ Y and R : [0,1]×M → M and R̂ : [0,1]× M̂ are two de-
formation retractions on X ′ ∩M and X ′ ∩ M̂ respectively. Suppose further that the
retractions fulfill R(1, ·) : M \X ′→ E ′∩M and R̂(1, ·) : M̂ \X ′→ E ′∩ M̂.

Then hn(R(1, ·) ◦ F) = hn(R̂(1, ·) ◦ F) for the induced maps hn(F̃) : hn(E) →
hn(E ′).

Proof. Consider the homotopy f : [0,1]×E→ E ′ given by

f (t,x) =

 R̂(1,R(1−2t,F(x))) for t ∈ [0,1/2]

R̂(2−2t,F(x)) for t ∈ [1/2,1]

By this homotopy we have R(1, ·) ◦F ∼ R̂(1, ·) ◦F and therefore hn(R(1, ·) ◦F) =
hn(R̂(1, ·)◦F). ut

In general, however, the induced map hn(π ◦F) : hn(E)→ hn(E ′) may depend on
the choice of M and π , even when π is a deformation retraction, as illustrated in
Figure 2.7.
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2.4 An Application of the Theorem

In this section we will show how to apply the topological theorem to cases similar
to the ones covered by the stable manifold theorem.

Proposition 2.26. Let F : Rm×Rn+1→ Rm×Rn+1 with

F(x,y) = (Ax+ f (x,y),By+g(x,y))

where A and B are linear and |A|, |B−1| < σ < 1 and f , g are continuous and
bounded. Assume ‖ f‖∞ < 1−σ and ‖g‖∞ < 1−σ .
Set

X = {(x,y) : x ∈ Rm,y ∈ Rn+1, |y| ≤ 1, |x| ≤ 1}

E = {(x,y) : x ∈ Rm,y ∈ Rn+1, |y|= 1, |x| ≤ 1}

Set N = X \E. Then inv+
F (N) is separating in E in codimension n.

Proof. We wish to apply the topological theorem and therefore need to set up condi-
tions for it. At first we will set up the block pair for Corollary 2.21 and a projection
like the one used in Proposition 2.24. Let U = {(x,y) : |x| ≤ 1}. Then F(X) ⊂U
since |Ax+ f (x,y)| ≤ σ +‖ f‖∞ < 1. Set

π(x,y) = (x,
y

max(1, |y|)
)

Then π : U → X is continuous and maps U \X to E while π|X = id. Now we will
show that F(E)⊂U \X .
Assume (x,y) ∈ E. Then |Fy(x,y)| = |By + g(x,y)| ≥ σ |y| − ‖g‖∞ > 1. Since F is
continuous and X is relatively closed in U , F−1(U \X) is relatively open in X .

Now consider F̃ = π ◦F . The map F̃ is continuous as the composition of continu-
ous maps. Furthermore F̃−1(E) = F−1

(
π−1(E)

)
⊃ F−1(U \X). Therefore F̃−1(E)

contains an open neighborhood of E and inv+
F (N) = inv+

F̃ (N).
We have set up a (constant) block sequence for F̃ . We can easily see that hn(E) =

hn(Bm
1 (0)×Sn) = hn(Sn) = Z. Now we need to determine the induced map hn(F) :

hn(E)→ hn(E). It is given by hn(F̃)([k]) = [(signdetB)k]. Then we can apply the
topological stable set theorem. This proves that inv+

F (N) separates E codimension
n.

In order to complete the proof, we still need to establish the fact that hn(F̃) =
signdetB. Although this seems to be intuitively clear, a formal proof would be
lengthy and does not lie in the scope of this work and will therefore just be sketched.
The basic idea is to exploit that F ∼ G implies hn(F) = hn(G) and homotope away
the nonlinearity. Then one can use the fact that GL(n) has only two path-connected
components, namely {A∈GL(n) : detA > 0} and {A∈GL(n) : detA < 0}. This can
be proved by considering the real Jordan form and then homotoping pairs of eigen-
values around the zero in the complex plane. An alternative proof can be found in
[Oss92, p. 204, Satz 5.7.4]. ut
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In order to see that separation is a strong concept, we will give a short corollary of
the fact that inv+

F (N) separates E in codimension n:

Corollary 2.27. Let x0 ∈ Rm with |x0|< 1. Then there exists a ŷ such that (x0, ŷ) ∈
inv+

F (N).

Note that we had a similar statement for the stable manifold theorem: In this case
ŷ ∈ Rn is unique and therefore defines a function ŷ = ψ(x0). This function has even
better regularity, as shown in Theorem 1.29.

Proof. Consider the map ω : Sn× [0,1]→ X given by ω(y, t) = (x0,(1− t)y). Then
ω(·,0) ∈ hn(E) is not null-homotopic, while ω(·,1) = const. Since inv+

F (N) is sep-
arating E in codimension n, there exists (y0, t0) ∈ Sn× [0,1] such that ω(y0, t0) ∈
inv+

F (N). Therefore, there exists ŷ = t0y0 such that (x0,y0) lies in the maximal for-
ward invariant subset of N. ut



Chapter 3
Application to Homoclinic Orbits in a
3-Dimensional System

In this section we want to study a 3-dimensional time-continuous system with the
flow φ t and a homoclinic orbit, i.e. a trajectory γ(t) with limt→±∞ γ(t) = x0.

xout

Σin

Σout

xin

xunstable

γ

Fig. 3.1 The homoclinic orbit

Assumptions 3.1. More precisely the system we study has the form

ẋi =−λixi + fi(xi,xo,xu)
ẋo = λoxo + fo(xi,xo,xu)
ẋu = λuxu + fu(xi,xo,xu),

(3.0.0.1)

where f = ( fi, fo, fu) fulfills f ∈C3 and f (0) = 0 as well as D f (0) = 0. We assume
that there is a homoclinic orbit γ(t) with lim

t→±∞
γ(t) = 0, which is tangent to the xi-

47
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axis for t→ ∞ and tangent to the xo-axis for t→−∞. Furthermore, the eigenvalues
are assumed to fulfill the following inequalities:

0 <λo < λi (3.0.0.2)
0 <λu < λo (3.0.0.3)

Let Ws denote the stable set of γ , i.e.

Ws = {x ∈ R3 : lim
t→∞

d(φ t(x),γ) = 0.} (3.0.0.4)

We will see how to apply the topological Theorem 2.19 to prove that Ws is sepa-
rating in codimension 1 (and therefore especially nontrivial) under some additional
geometric assumptions. This chapter will culminate in the following main theorem:

Theorem 3.2. Suppose we have a system fulfilling the Assumptions 3.1. Then there
exists a vector v(t) along γ which determines whether Ws is trivial, i.e. whether there
are points which converge to the homoclinic orbit. v is invariant under the flow, i.e.

d
dt

v(t) = DF(γ(t))v(t)

and it fulfills

lim
t→∞

v(t)
|v(t)|

= eo

Suppose that v(t) points to the same side of the unstable manifold as γin for t→
−∞. Then Ws is separating a cusp in codimension 1 (the cusp is defined in (3.2.4.2)
in Section 3.2.4). The stable set is tangent to v in the sense, that it is contained in a
cusp around v. Therefore, Ws is especially nontrivial.

A more precise statement of the assumption on v(t) is this: Let the local unstable
manifold Wu in a neighborhood U of 0 be given by Wu = {x ∈U : ψ(x) = 0} with
ψ ∈ C1, where 0 is a regular value of ψ and Dxiψ(0) > 0. Then we suppose that
there is T0 < 0 such that Dv(t)ψ(γ(t)) > 0 for all t < T0.

Remark 3.3. The last assumption (3.0.0.3) is made for technical reasons. Although
the relation

λi > λo > λu > 0. (3.0.0.5)

is needed in our proof, there are strong indications that (3.0.0.2) and λo−λi < λu
might be enough. The regularity assumption f ∈ C3 is made for technical reasons
as well. There are indications, that f ∈C1 might be enough.

Remark 3.4. We would actually like to construct a stable manifold to the homoclinic
orbit. A naive way would be to look at the equilibrium and construct an invariant
manifold which contains both the incoming and the exiting part of the homoclinic
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orbit. However, the standard theorems of Chapter 1 do not provide such a manifold:
We can only take intersections of strong or pseudo-stable and unstable manifolds,
i.e. get an invariant manifold tangent to the spectral subspace to an interval. Since
−λi < λu < λo, we cannot get a manifold tangent to the xixo-plane with these meth-
ods. This is one of the reasons why the results of [dlL03], which have been men-
tioned in Remark 1.35, are remarkable. However, these results do not help us in this
spectral setting, since we are not looking for a subset of the stable manifold.

Even if we were in the situation−λi < λo < λu, the existence of orbits converging
to the homoclinic would not be obvious. We could construct a pseudostable mani-
fold tangent to the xixo-plane– but in view of its non-uniqueness, it may not coincide
with the stable set constructed in this chapter.

The general idea to prove that Ws is nontrivial for the described setting is to con-
sider two small sections Σin = {x : xi = δi} and Σout = {x : xo = δo}. The homoclinic
orbit will return from Σout to Σin in finite time, thus yielding a smooth Poincaré map
Φglob : U ⊂ Σout → Σin for some small neighborhood of the point corresponding
to the homoclinic orbit. The passage near the equilibrium will yield a Poincaré map
Φloc : Σin→ Σout . However, the domain of this local map will not contain a complete
neighborhood of the point corresponding to the homoclinic orbit. We will show that
it is continuous in the interior of a small cone, the tip of which is the homoclinic
orbit. Because of this lack of smoothness, the stable manifold theorem and the the-
ory of the first chapter are not applicable. This is the reason for using a topological
theorem.

C
C

Σin Σout

Φloc

Φ
−1
glob

Σin

Fig. 3.2 The cone-like block pairs

We will construct a block pair for the local map as depicted in Figure 3.2. The
first block will be a cusp-like cone in Σin with the homoclinic orbit as tip; the second
block will be a ”pancake”-like cone in Σout which has a tangency at the homoclinic
orbit. Then we will consider the global map Φglob and modify our construction
slightly in order to make the pair a block pair for Φglob. Since Φglob is a diffeomor-
phism this will work similar to the example in Section 2.4.

This will then enable us to apply Theorem 2.19 to obtain the desired separating
set.

Remark 3.5. Most proofs in this chapter can be modified to remain valid in the case
λu = 0. The necessary modifications will be sketched in Section 3.2.6.
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3.1 The Linear Case

Since the local estimates are lengthy in the general case, we will start by assum-
ing that our system is linear near the equilibrium. Once the entire construction is
completed, we will relax the required conditions.

We consider the system (3.0.0.1) with the Assumptions 3.1 and a box B = {x :
|xi| ≤ 1, |xo| ≤ 1, |xu| ≤ 1}. We assume that f = ( fi, fo, fu) vanishes inside of B, i.e.

f (x) = 0 ∀x ∈ B. (3.1.0.6)

Furthermore we assume that γ contains the positive xi-axis as well as the positive
xo-axis in B.

Remark 3.6. It is in some cases possible to achieve a linear system by a change of
coordinates. We do not study this viewpoint in detail becaus it does not generalize
to more interesting situation like a line of equilibria (i.e. λu = 0). An overview of
linearization theorems can be found e.g. in [BD84] for Ck-maps and in [KH95,
Chapter 6.6].

The goal of this section is to prove the following theorem for the linear setting,
which is analogous to Theorem 3.2:

Theorem 3.7. Suppose we have a system fulfilling the Assumptions 3.1 as well as
(3.1.0.6). Let γ be parametrized such that γ(0) = ei γ(−T ) = eo. Let v(t) be the
solution to

d
dt

v(t) = DF(γ(t))v(t) v(0) = eo.

Suppose that v(−T )i > 0. Then there is ε > 0 such that Ws is separating the region
Nin (defined in (3.1.1.2) in Section 3.1.1) in codimension 1 (see Definition 2.9).
Therefore, Ws is especially nontrivial.

The proof will follow in Section 3.1.3 after we constructed a suitable block se-
quence as outlined the introduction of this chapter.

3.1.1 Constructing a Block Pair for the Local Poincaré Map

Since the system is linear in the neighborhood of 0, we can get an explicit formula
for the local return map. Define

Σin = {x : xi = 1,0 < xo ≤ 1, |xu| ≤ 1}

and analogously

Σout = {x : xo = 1,0 < xi ≤ 1, |xu| ≤ 1}
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The return map for Φloc : Σin→ Σout is given by

T = −λ
−1
o logxo(0)

xo(T ) =1

xi(T ) =xo(0)
λi
λo

xu(T ) =xo(0)−
λu
λo xu(0)

(3.1.1.1)

The map is well defined and continuous in the cone C = {x : xi = 1, 0 < xo <
1, |xu| ≤ xo}. We therefore have a superlinear contraction in the xixo-direction and a
superlinear expansion of the xu direction.

The next step is the construction of apropriate block pairs. The incoming block
will be cusp-like with the following form for εin > 0 and ϑin ≥ 0:

Nϑin,εin
in = {x ∈ Σin : 0 < xo ≤ εin, |xu|< |xo|1+ϑin}

Eϑin,εin
in = {x ∈ Σin : 0 < xo ≤ εin, |xu|= |xo|1+ϑin}.

(3.1.1.2)

The outgoing block will be pancake-like for εout > 0 and ϑout > 0:

Nϑout ,εout
out = {x ∈ Σout : 0 < xi ≤ εout , |xu|< |xi|1−ϑout}

Eϑout ,εout
out = {x ∈ Σout : 0 < xi ≤ εout , |xu|= |xi|1−ϑout}.

(3.1.1.3)

In view of the explicit formula, we can check the parameter ranges for which these
sets form a block pair for Φloc. We will consider the projection πout : {x : xo = 1,0 <
xi < εout}→ Nout ∪Eout defined via

πout(xi,xo = 1,xu) =

 (xi,1,(signxu)x
1−ϑout
i ) for x /∈ Nout

(xi,1,xu) for x ∈ Nout

(3.1.1.4)

Lemma 3.8 (Block pair for the local map). Suppose that we have εout > ε

λi
λo

in as
well as

λu +λi(1+ϑout)−λo(1+ϑin) > 0.

Then
(

Nϑin,εin
in ,Eϑin,εin

in ,Nϑout ,εout
out ,Eϑout ,εout

out

)
is a block pair for Φ̃loc = πout ◦Φloc.

Furthermore, the induced map h0(Φ̃loc) : h0(Ein)→ h0(Eout) maps non null-homotopic
to non null-homotopic classes (i.e. does not merge any path-connected components).
This means the the images of the ±xu > 0 sides of Ein are contained in the ±xu > 0
sides of Eout .
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Proof. The proof is done by direct calculation. At first we have to check, that the
image of any point in Nin∪Ein lies in the strip on which πout is defined. This can be
calculated easily.

Secondly, we have to check that the images of the components of Ein lie outside
of Eout , i.e. that for ±xu = x1+ϑin

o in Σin the image under Φloc has ±xu > x1−ϑout
i .

Plugging in the explicit formula of Φloc we get for ±xu = x1+ϑin
o

log
∣∣∣xu(T )xi(T )−(1−ϑout )

∣∣∣= log±xu(0)− λu

λo
logxo(0)− (1−ϑout)

λi

λo
logxo(0)

=
(

1+ϑin−
λu

λo
− (1−ϑout)

λi

λo

)
logxo(0)

=−(λu +λi(1−ϑout)−λo(1+ϑin))λ
−1
o logxo(0)

Positivity of the last term shows that the proof is done. ut

With these calculation we can see that it is possible to chose positive ϑin and ϑout
which make (Nin,Ein,Nout ,Eout) a block pair. The other parameters εin and εout will
be chosen later.

3.1.2 Constructing a Block Pair for the Global Poincaré Map

Our aim is now to make (Nout ,Eout ,Nin,Ein) a block pair for the global return
map Φglob : Σout → Σin. By the assumptions on the homoclinic orbit we have
Φglob(0,1,0) = (1,0,0) and by the implicit function theorem Φglob is a local dif-
feomorphism. Since Φglob is a diffeomorphism we can equivalently prove that
(Nout ,Eout ,Φ

−1
glob[Nout ],Φ−1

glob[Eout ]) is block pair for a suitable projection (i.e. for
F = id and F̃ = π).

Whether this is the case depends on the vector DΦ
−1
glob(1,0,0) ·eo where eo is the

unit vector in xo-direction. This is because Nin is a cusp around eo; if DΦ
−1
glob(1,0,0) ·

eo points into the inside of Nout we can construct a block pair, as depicted in Figure
3.3.

Lemma 3.9 (Block pair for the global map). Suppose that (Nout ,Eout) and (Nin,Ein)
have been constructed with some ϑin > 0 and ϑout > 0. Suppose further that(

DΦ
−1
glob(1,0,0) · eo

)
i
> 0, i.e. ∂xoΦ

−1
glob(0,0,1)i > 0. Then it is possible to chose

εout > 0 and εin > 0 small enough that a block pair for Φ
−1
glob is formed.

Proof. The easiest way to proof this is “proof by picture” and say that the assertion
is obvious by Figure 3.3. This however does not provide us with explicit estimates
on the ε and may be unsatisfactory if one is not inclined to visual proofs. Therefore
we will now construct εin explicitly.

Consider
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Σout
Σin

Nout

Φ
−1
glob

bad case for DΦ
−1
glob(0,0,1)

good case for DΦ
−1
glob(0,0,1)

Eout Ein

xixoxu

xu

xi

xu

xo

Fig. 3.3 The geometric condition for Block pairs

A = DΦ
−1
glob(1,0,0) =

(
∂xoΦ

−1
glob,u ∂xoΦ

−1
glob,i

∂xuΦ
−1
glob,i ∂xuΦ

−1
glob,u

)
=
(

ai
o au

o
ai

u au
u

)
. (3.1.2.1)

The required sign condition reads now as ai
o > 0. Suppose that εin > 0 is small

enough that |Φ−1
glob−A|

B
Σin
εin (1,0,0),C1 < δ for some δ > 0, which will be fixed later.

The set Ein consists of two curves γ± with γ±,u = ±γ
1+ϑin
±,o . The curves are graphs

over the xo-axis with

±
dγ±,u

dγ±,o
= (1+ϑin)γ

ϑin
±,o ≤ 2ε

ϑin
in .

The preimages of these two bounding curves are again curves γ̃± with

|
dγ̃±,u

dγ̃±,i
|=

∂xoΦ
−1
glob,udγ±,o +∂xuΦ

−1
glob,udγ±,u

∂xoΦ
−1
glob,idγ±,o +∂xuΦ

−1
glob,idγ±,u

≤
|au

o|+ |au
u|2ε

ϑin
in +2δ

ai
o−|ai

u|2ε
ϑin
in −2δ

If 0 < δ < 1
3 ai

o and εin are small enough we therefore get bounds on the derivatives
and the curves are again graphs over the xi-axis. Next, we need to construct an ap-
propriate projection of the block Nout ∪Eout on Φ

−1
glob[Ein∪Nin] which is the identity

on Φ
−1
glob[Nin] and projects the remainder of the strip on Ein. A similar projection as

in the previous part works well, if the upper boundary of the cusp lies above the
strip, i.e. if
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(ai
o−|ai

u|ε
ϑin
in −2δ )εin ≥ εout

The next part –the most important part– is to show that the bounding curves γ̃±
do not intersect the bounding curves ζ± of the Eout -block. We can calculate that

±
dζ±,u

dζ±,i
= (1−ϑout)ζ

−ϑout
±,o ≥ 1

2
ε
−ϑout
out .

The assertion therefore holds when

1
2

ε
−ϑout
out ≥ |a

u
o|+ |au

u|2εin +2δ

ai
o−|ai

u|2εin−2δ
.

which is certainly true for εout small enough. ut

The assumptions on DΦ
−1
glob of Lemma 3.9 are unsatisfactorily dependent on our

choice of the Poincaré-sections. There is another characterization, which was used
in the Theorem 3.7.

Proposition 3.10. Let γ be parametrized such that γ(0) = ei γ(−T ) = eo. Let v(t)
be the solution to

d
dt

v(t) = DF(γ(t))v(t) v(0) = eo.

Then vi(T ) > 0 if and only if ∂xoΦ(1,0,0)i > 0.

Proof. We have v(T ) = Dφ−T (1,0,0) · eo. By the implicit function theorem,

DΦ
−1
glob =

(
Dφ
−T
xi

,Dφ
−T
xu

)>
.

ut

3.1.3 Application of the Topological Method

Now we finally prove Theorem 3.7 by combing the two block pairs in Lemma 3.8
and Lemma 3.9 to get a block sequence and applying Theorem 2.19 to obtain a
separating stable set.

Proof (Proof of Theorem 3.7). By Proposition 3.10, we can apply the two Lemmas
Lemmas 3.8 and 3.9 on block pairs. We just need two show that we can fulfill the
requirements on εin and εout simultaneously. Therefore we will walk through all the
Lemmas again and chose one constant after the other.

Chose 0 < ϑin < 1/2 and 0 < ϑout < 1/2 according to the Lemma on the block
pair for the local map. Then chose 0 < εin small enough that the bounds on the
slopes of the bounding curves in the global Lemma 3.9 are finite. Then there are
constants C1 > 0 and C2 > 0, such that εout < C1εin and εout < C2 suffice for Lemma
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3.9 to hold. Fix εout = C1/2εin and chose εin small enough that εout < C2 and
C1/2εin = εout > ε

λi/λo
in in Lemma 3.8 (which is possible since λi > λo). There-

fore, we have constructed a block sequence for Φglob and Φloc and can apply the
topological Theorem 2.19. ut

3.2 The Nonlinear Case

If we want to extend our analysis to the nonlinear case, where f does not vanish
outside of a neighborhood of 0, we have one main difficulty: We do not have an
explicit formula for Φglob anymore, as it was used in Section 3.1.1. We therefore
have to work harder to get local estimates, which allow for an analogue of the Local
Block Lemma 3.8. We will start by using a set of standard changes of coordinates
to simplify our system in Section 3.2.1. Then we will show some basic local esti-
mates and argue that these estimates are insufficient for a satisfactory Local Block
Lemma in Section 3.2.2. In the Section 3.2.3, we will construct an approximate sta-
ble manifold to γin, which will allow us to a local block Lemma in Section 3.2.4 and
thus prove the main Theorem 3.2 in Section 3.2.5. We will close by discussing the
necessary changes to our proof in the center case λu = 0 in Section 3.2.6.

3.2.1 Changing the Coordinates

We will now use the invariant manifold theorems of Chapter 1 to change the coor-
dinates of the System 3.1. The goal of this section is to prove the following propo-
sition:

Proposition 3.11. Suppose we have a dynamical system ẋ = F(x), which fulfills the
Assumptions 3.1 and suppose that εg > 0. Then there is a C1-diffeomorphism ψ :
R3→R3 and a bounded C1-Euler Multiplier µ : R3→R with supx∈R3(µ(x),µ(x)−1)<
∞, such that the transformed system ẋ = F̃(x) with F̃(x) = µ(x)Dψ(x)−1F(ψ(x))
has the following properties:

1. The system fulfills the Assumptions 3.1, except for the regularity assumptions.
2. The homoclinic orbit is locally contained in the xi and xo axis i.e. has the property

that for B = {x : |xi| ≤ 1, |xo| ≤ 1, |xu| ≤ 1} the following holds:

γ(R)∩B = {x : xi ∈ (0,1],xo = 0,xu = 0}∪{x : xi = 0,xo ∈ (0,1],xu = 0}.

3. The system has locally the following form (i.e. F̃|B is given by):

ẋi =−λixi +gi
i(xi,xo,xu)xi

ẋo = λoxo +go
o(xi,xo,xu)xo +gu

o(xi,xo,xu)xu

ẋu = λuxu +gio
u (xi,xo,xu)xixo,

(3.2.1.1)
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4. The following estimates on the nonlinearities hold:

max
(
‖gi

i‖C2,B,‖gu
o‖C2,B,‖go

o‖C2,B,‖gio
u ‖C1,B

)
≤ εg

The change of coordinates only uses standard methods. Readers who are familiar
with such changes of coordinates may therefore omit the remainder of this section.

3.2.1.1 Application of Invariant Manifold Theorems

The first step of our transformation is to apply invariant manifold theorems in order
to ensure that the homoclinic orbit γ lies locally on the xi and the xo half-axes.

The Unstable Manifold.
By the unstable manifold theorem, there exists a neighborhood U ⊂ R2 of 0 and a
function ξ ou : U → R with ξ ou ∈Ck, such that

Muo = {(xi,xo,xu) : xi = ξ
ou(xo,xu),(xo,xu) ∈U}

is the set of those x, which converge to 0 under the time-reversed flow and whose
projections never leave U. The unstable manifold is tangential to the xoxu-plane,
i.e. ξ ou(0) = 0 and Dξ ou(0) = 0. The unstable manifold contains the backward
part of the homoclinic orbit, i.e. for t < t0 we have γ(t) ∈Mou.
Consider the changed coordinates

x̃ = ϕ(x) = (xi−ξ
ou(xo,xu),xo,xu)

This change of coordinates is C3 and the unstable manifold in these coordinates has
the simple form

Muo = {x̃ : x̃i = 0}

Since the unstable manifold is invariant we can assume for the transformed
vectorfield

d
dt

x̃ = (−λix̃i,λox̃o,λux̃u)+ f̃ (x̃)

that f̃i(0, x̃o, x̃u) = 0. We then rename the variables back and can therefore without
loss of generality assume this identity.

The Strong Unstable Manifold.
By the strong unstable manifold theorem, there exists a neighborhood 0 ∈U ⊂ R
and a function ξ o : U → R2 with ξ o ∈Ck, such that

Mo = {(xi,xo,xu) : xi = ξ
o
i (xo),xu = ξ

o
u (xo),xu ∈U}

is the set of x, which converge to 0 under the time-reversed flow sufficiently fast
and whose projections never leave U . Furthermore, the homoclinic orbit γ lies in
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Mo for all sufficiently small times, i.e. for t→−∞. The strong unstable manifold is
tangential to the xo-axis, i.e. ξ o(0) = 0 and Dξ o(0) = 0. By our first change of
coordinates and since the strong unstable manifold is a submanifold of the unstable
manifold, we have ξ o

i = 0.
Consider the changed coordinates x̃ = ϕ(x) = (xi,xo,xu−ξ o

u (xo)). This change of
coordinates is C3 and the strong unstable manifold in these coordinates has the
simple form Mo = {x̃ : x̃i = 0, x̃u = 0}. Since the strong unstable manifold is
invariant we can assume for the transformed vectorfield that f̃u(0, x̃o,0) = 0. The
identity f̃i(0, x̃o, x̃u) = 0 is preserved. We then rename the variables back and can
therefore without loss of generality assume these identities.

The Stable Manifold.
By the stable manifold theorem, there exists a neighborhood 0 ∈U ⊂ R and a
function ξ i : U → R2 with ξ i ∈Ck, such that

Mi = {(xi,xo,xu) : xo = ξ
i
o(xi),xu = ξ

i
u(xi),xi ∈U}

is the set of x, which converge to 0 under the flow and whose projections never
leave U. The stable manifold is tangential to the xi-axis, i.e. ξ i(0) = 0 and
Dξ i(0) = 0. The stable manifold contains the forward part of the homoclinic orbit,
i.e. for t > t0 we have γ(t) ∈Mi.
Consider the changed coordinates x̃ = ϕ(x) = (xi,xo−ξ i

o(xi),xu−ξ i
u(xi)) This

change of coordinates is C3 and the stable manifold in these coordinates has the
simple form Mi = {x̃ : x̃o = 0, x̃u = 0}
Since the stable manifold is invariant we can assume for the transformed
vectorfield that f̃o(xi,0,0) = 0 and f̃u(xi,0,0) = 0.
Since ξ i(0) = 0, the change of coordinates is the identity on the unstable manifold.
Therefore the previous identities get preserved.

3.2.1.2 Applying the Taylor Theorem

By the unstable manifold theorem, we can assume w.l.o.g. that fi(0,xo,xu) = 0 in a
neighborhood U of 0. By the strong unstable manifold theorem we can assume that
fu(0,xo,0) = 0 in a neighborhood U of 0. By the stable manifold theorem we can
assume that fo(xi,0,0) = fu(xi,0,0) = 0 in a neighborhood U of 0. We will now
use a Taylor expansion in order to show that we can write the system in a form
similiar to the one given in Proposition 3.11.
By applying the Taylor theorem we can write

fi(xi,xo,xu) =
∫ 1

0
∂xi fi(ϑxi,xo,xu)dϑ · xi = gi(xi,xo,xu)xi

Similarly we can write
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fo(xi,xo,xu) =
∫ 1

0
∂xo fo(xi,ϑxo,ϑxu)dϑ · xo

+
∫ 1

0
∂xu fo(xi,ϑxo,ϑxu)dϑ · xu

=go
o(xi,xo,xu)xo +gu

o(xi,xo,xu)xu

In order to rewrite fu we need to apply the Taylor theorem twice. Just as we did for
fo we first project onto the stable manifold:

fu(xi,xo,xu) =
∫ 1

0
∂xu fu(xi,ϑxo,ϑxu)dϑ · xu

+
∫ 1

0
∂xo fu(xi,ϑxo,ϑxu)dϑ · xo

Then we project onto the strong stable manifold:

∂xo fu(xi,ϑxo,ϑxu) = ∂xo fu(0,ϑxo,0)

+
∫ 1

0
∂xi∂xo fu(σxi,ϑxo,σϑxu)dσ · xi

+
∫ 1

0
∂xu∂xo fu(σxi,ϑxo,σϑxu)dσ ·ϑxu

The first term vanishes identically. The other terms can be plugged into the first
integral and yield

fu(xi,xo,xu) = gu
u(xi,xo,xu)xu +gio

u (xi,xo,xu)xixo.

3.2.1.3 Rescaling and Euler Multipliers

We have now shown that we can transform the systen (3.0.0.1) into the following
form:

ẋi =−λixi +gi
ixi

ẋo = λoxo +go
oxo +gu

oxu

ẋu = λuxu +gu
uxu +gio

u xixo,

(3.2.1.2)

In order to prove Propositoin 3.11, we will now prove that we can also archieve the
estimates on the g and go

o ≡ 0. At first we will rescale the system in order to get the
estimates on |g|∞ < εg.
Consider the change of coordinates ψ(x) = x/λ for λ > 0 and a vectorfield
F(x) = Ax+ f (x) with f ∈CN , N ≥ 2 and f (0) = 0 as well as D f (0) = 0. Then the
transformed vectorfield F̃ = Dψ−1F ◦ψ has the form F̃ = Ax̃+ f̃ (x̃) with
f̃ (x̃) = λ f ( x

λ
). Therefore we get for 2≤ k ≤ N:
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| f̃ |Ck,B1(0) ≤ λ
1−k| f |Ck,B

λ−1 (0)

This yields immediately the estimates

| f̃ |C1,B1(0) ≤ λ
−1| f |C2,B

λ−1 (0)

and

| f̃ |C0,B1(0) ≤ λ
−1| f |C2,B

λ−1 (0).

By considering the construction of the g in Section 3.2.1.2, we can see that
rescaling with λ > 0 suffieciently large yields

max
(
‖gi

i‖C2,B,‖gu
o‖C2,B,‖go

o‖C2,B,‖gu
u‖C2,B,‖gio

i ‖C1,B
)
≤ εg

The final step is to use an Euler multiplier to archieve gu
u ≡ 0. Suppose we study a

system ẋ = f (x) with x ∈ Rn. A Lipschitz continuous function µ : Rn→ R+ which
is bounded and bounded away from zero is called Euler multiplier. Then the
changed system ẋ = µ(x) f (x) has obviously the same trajectories as the original
systems and all Poincaré-maps are unchanged. Euler multipliers can be viewed as a
space-dependent rescaling of time.
Consider the Euler multiplier

µ(xi,xo,xu) =
λu

λu +gu
u(xi,xo,xu)

.

This Euler multiplier is well-defined when εg < λu. Furthermore, |1−µ|C2,B ≤ εg
for λ > 0 large enough.
The equations then become after multiplying with µ:

ẋi =−λixi +
λugi +λigu

u

λu +gu
u

xi

ẋo = λoxo +
λugo

o−λogu
u

λu +gu
u

xo +
λugo

u

λu +gu
u

xu

ẋu = λuxu +
λugu

io
λu +gu

u
xixo

After renaming all functions we see that Proposition 3.11 is proven.

3.2.2 General Estimates

We have now proven, that we can consider without loss of generality a system of
the form stated in Proposition 3.11. We will now start with a local analysis, similiar
to Section 3.1.1 in the linear case. We will now fix εg > 0 small enough, such that :
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εg <
1
4
(λi−λo) (3.2.2.1)

We want to get a well defined map which maps an initial condition in
Σin = {x : xi = 1} to a point in Σout = {x : xo = 1}. This must fail for initial
conditions which result in the trajectory leaving the box
B = {x : |xi| ≤ 1, |xo| ≤ 1, |xu| ≤ 1} through any other boundary. Therefore we will
only consider solutions in the “tent”
C = {(xi,xo,xu) : |xu| ≤ xo,0 < xo < 1,0 < xi < 1}. Furthermore, we will make
heavy use of the quantity d = xixo, which is a good measure for the distance from
the homoclinic orbit.

Proposition 3.12. Let x ∈ B and let To = inf{t > 0 : x(t) ∈ B} denote the exit time
of x. If |xu(t)≤ xo(t)|, then |xu(τ)| ≤ xo(τ) for all τ ∈ [t,To]. If d(t)≤ |xu(t)|, then
d(τ)≤ |xu(τ)| for all τ ∈ [t,To].

Proof. Suppose that for some time |xu|= xo. Then Dt |xu| ≤ (λu +2εg) |xu| and
d
dt xo ≥ (λo−2εg)xo. But by our assumptions, xu = x0 and λu +2εg < λo−2εg.
Suppose that for some time d(t) = |xu(t)|. Then ḋd < 0 and ẋu/xu > 0. ut

Let To denote the time at which an orbit leaves B. By Proposition 3.12, the return
map Φloc : C∩Σin→ Σout is well-defined and continuous (it is continuous since the
passage time To is finite at every point. It is well-defined, since we must leave the
box trough Σout , by virtue of Proposition 3.12) We get inside of C the following
trivial bounds:

λo−λi−3εg ≤ ḋ/d ≤ λo−λi +3εg

λo−2εg ≤ ẋo/xo ≤ λo +2εg

−λi− εg ≤ ẋi/xi ≤−λi + εg

(3.2.2.2)

Since xo(To) = 1 we get

−1
λo +2εg

logxo(0)≤ To ≤
−1

λo−2εg
logxo(0)

and therefore

xi(To)≤ x

(
λi−εg

λo+2εg

)
o (0)

Therefore we have a superlinear contraction for the local passage in the xix0

direction with a power λi−εg
λo+2εg

> 1.

Remark 3.13. In principle we could now construct a local block-pair, since we can
prove estimates on xu(To) for the boundary cases xu(0) =±xo(0):
By Propositon 3.12, we can assume |xu(t)|> d(t) for all t ∈ [0,To] when
±xu(t) = xo(0). Then ẋu

xu
≥ λu−2εg. Therefore we get
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log |xu(To)| ≥
(

1−
λu−2εg

λo +2εg

)
logxo(0).

We could immediately use these estimates to construct a block-pair which is
cusp-like in Σin and pancake-like in Σout . This would allow us to prove the
following Theorem:

Claim. Suppose we have a system fulfilling the Assumptions 3.1 in the form given
in Proposition 3.11. Suppose that

DΦ
−1
glob[C∩Σin]⊆ {x : xi > 0}.

Then there is a ε > 0, such that Ws is separating the cone-boundaries
∂±C = {x ∈ B

Σin
(ε)1,0,0 : xo =±xu} in C. Therefore, Ws is especially nontrivial.

This geometric condition on DΦglob is however extremely unsatisfactory. Further
rescaling allows us to construct block pairs for smaller cones C, but will at the
same time cost us in terms of DΦglob. Therefore we will not prove this claim and
will instead do a more intricate local analysis, in order to get a useful geometric
condition.

3.2.3 Approximation of the Stable Set

We have changed the coordinates of the System (3.1) to the form given in
Proposition 3.11 and proven some preliminary estimates. These estimates do
however not suffice to prove our main Theorem 3.2. We will need to construct a
block-pair which is cusp-like in Σin.
If we consider the equation for xu,

ẋu = λuxu +gio
u (xi,xo,xu)xixo

then we see that the nonlinear terms are of the same order as the xu terms near the
stable trajectory. Therefore, we can only get control of the xu dynamics when xu is
of the same order as the distance from the stable manifold. In order to chose
arbirarily small cones or get estimates for a cusp, we will need to turn the nonlinear
gio

u -term into a higher order term.
The rough idea is that the stable set should intuitively be a C1 Manifold.
Coordinates in this stable manifold would make the term vanish completely.
Coordinates which at least have the correct tangent space along the incoming
trajectory should transform the linear order part in the xo-direction away and leave
us with only higher order terms. Then we should be able to construct a block pair
which is a cusp around the tangent vector v to the stable manifold in the section
Σin. This would allow us to prove the main Theorem 3.2.
There are many different ways to archieve such coordinates. Our approach will be
to consider a suitable approximation, which will allow us to immediately find the
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stable manifold. Then we will show that the difference in behaviour from the
approximation is of higher order.

Remark 3.14. An alternative approach is to consider the linearization along the γin
trajectory. Then we can consider the non-autonomous linear system v̇ = DF(γ(t))v
and look for solutions with limt→∞ vu(t) = 0. Since the system is linear, there are
no regularity problems and the approach generalizes to higher dimensions. The
main appeal of this aproach in higher dimensions is that we can use topological
methods to achieve some solution with prescribed asymptotics and can then take
direct sums of the spanned subspaces (in nonlinear systems we can only take
intersections of invariant manifolds and never get any regularity for free). We will
revisit this approach in Proposition 3.19.

The main problem in finding a stable manifold is the instability of the xo-direction;
however, the product d = xixo is stable and is in some sense the stable direction our
stable set corresponds to. Therefore we will simplify the system by replacing xo by
d and then apply the stable manifold theorem. Let x′ denote the approximate
vectorfield and ẋ denote the original one. A good approximation is given by

x′i =−λixi +gi
i(xi,0,xu)xi +∂xogi

i(xi,0,xu)d

x′u =λuxu +gio
u (xi,0,xu)d

d′ =(λo−λi)d +(gi
i(xi,0,xu)+go

o(xi,0,xu))d
+(gu

o(xi,0,xu)xi +∂xogu
o(xi,0,xu)d)xu

(3.2.3.1)

Let ξu = ξu(xi,d) be the stable manifold of the approximate system. By the stable
manifold theorem, ξu is C1 and invariant. Therefore we get

x′u(xi,ξu(xi,d),d) = ∂xiξu(xi,d)x′i(xi,ξu(xi,d),d)+∂dξu(xi,d)d′(xi,ξu(xi,d),d)

Putting the invariance into the original equation yields

d
dt

(xu−ξu) =ẋu−∂xiξuẋi−∂dξuḋ (3.2.3.2)

=ẋu(xi,xo,xu)− x′u(xi,ξu(xi,xixo),xixo) (3.2.3.3)

−∂xiξu(xi,xixo) ·
(
ẋi(xi,xo,xu)− x′i(xi,ξu(xi,xixo),xixo)

)
(3.2.3.4)

−∂dξu(xi,xixo) ·
(
ḋ(xi,xo,xu)−d′(xi,ξu(xi,xixo),xixo)

)
(3.2.3.5)

We will spend the remaining part of this section proving the following fact:

Proposition 3.15. There exist C0-Functions g̃u and g̃ioo
u with |g̃u|B,C0 ≤ 7εg and

|g̃ioo
u |B,C0 ≤ 4εg such that

d
dt

(xu−ξu) = (λu + g̃u · xi)(xu−ξu)+ g̃ioo
u xix2

o. (3.2.3.6)
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In view of the rescaling in Section 3.2.1.3, we will however assume without loss of
generality that |g̃u|B,C0 ≤ εg and that |g̃ioo

u |B,C0 ≤ εg.

Proof. Each of the three terms of (3.2.3.2) will be handled separately. All three
terms can be split into one part which can be absorbed into xu−ξu and another part
of order xix2

o. We expand the first term (3.2.3.3) by Taylor’s formula:

ẋu− x′u =λu(xu−ξu(xi,xixo))+
(
gio

u (xi,xo,xu)−gio
u (xi,0,ξu(xi,xixo))

)
xixo

=λu(xu−ξu)+
∫ 1

0

∂

∂xo
gio

u (xi,ϑxo,ϑxu +(1−ϑ)ξu)dϑ · xo · xixo

+
∫ 1

0

∂

∂xu
gio

u (xi,ϑxo,ϑxu +(1−ϑ)ξu)dϑ · (xu−ξu) · xixo

=(λu + g̃u,uxixo)(xu−ξu)+ g̃u,iooxix2
o

The second term (3.2.3.4) can be handled with a mixed-order Taylor’s Formula.
The first order expansion yields

ẋi− x′i =
(
gi

i(xi,xo,xu)−gi
i(xi,0,ξu)−∂xogi

i(xi,0,ξu)xo
)

xi

=
∫ 1

0
∂xogi

i(xi,ϑxo,ϑxu +(1−ϑ)ξu)−∂xogi
i(xi,0,ξu)dϑ · xo · xi

+
∫ 1

0
∂xu gi

i(xi,ϑxo,ϑxu +(1−ϑ)ξu)dϑ · (xu−ξu) · xi.

A second-order expansion then provides

ẋi− x′i =
∫ 1

0

∫ 1

0
∂

2
xogi

i(xi,σϑxo,σϑxu +(1−σϑ)ξu)ϑxodσdϑ · xo · xi

+
∫ 1

0

∫ 1

0
∂xu∂xogi

i(xi,σϑxo,σϑxu +(1−σϑ)ξu)ϑ(xu−ξu)dσdϑ · xo · xi

+
∫ 1

0
∂xugi

i(xi,ϑxo,ϑxu +(1−ϑ)ξu)dϑ · (xu−ξu) · xi

=g̃i,uxi(xu−ξu)+ g̃i,iooxix2
o

The third term (3.2.3.5) can be split:

ḋ−d′ =(gi
i(xi,xo,xu)+go

o(xi,xo,xu))xixo +gu
o(xi,xo,xu)xixu

− (gi
i(xi,0,ξu)+go

o(xi,0,ξu))xixo +(gu
o(xi,0,ξu)+∂xogu

o(xi,0,ξu)xo)xiξu

=
(
gi

i(xi,0,ξu)+go
o(xi,0,ξu)−gi

i(xi,xo,xu)−go
o(xi,xo,xu)

)
xixo

+(gu
o(xi,0,ξu)+∂xogu

o(xi,0,ξu)xo) · xi · (xu−ξu)
− (gu

o(xi,0,ξu)+∂xogu
o(xi,0,ξu)xo−gu

o(xi,xo,xu))xixu

The first of these three subterms can be handled analogously to the term (3.2.3.3),
i.e. via first-order Taylor’s formula. The second subterm can be immediately
absorbed into xu−ξu. The third subterm allows a similar mixed-order Taylor
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expansion as the term of (3.2.3.4). We therefore get

ḋ−d′ = g̃d,uxi · (xu−ξu)+ g̃d,iooxix2
o

Combining the three terms yields the expression in the proposition. Counting the
absorbed terms and using the estimates in Proposition 3.11 yields the estimates on
g̃u and g̃ioo

u . ut

3.2.4 Constructing a Block Pair for the Local Poicaré Map

In this section, we will prove a local block Lemma comparable to Lemma 3.1.1.
The stable manifold to the approximate system has given us the coordinates which
allow finer estimates. We will split the passage of an orbit into two sections: At first
xi > xo and we have higher order control over xu−ξu. This allows us to control
initial conditions in a cusp around ξu, which will get blown up to a “pancake” even
in the first part of the passage. Afterwards everything is harmless: The cusp has
expanded to a pancake, which is larger than a cone and we have already controlled
cones with our general estimates in Section 3.2.2.
We will again use a cusp-like incoming block comparable to (3.1.1.2). Define

Nϑin,εin
in = {x ∈ Σin : 0 < xo ≤ εin, |xu−ξu(1,xo)|< |xo|1+ϑin}

Eϑin,εin
in = {x ∈ Σin : 0 < xo ≤ εin, |xu−ξu(1,xo)|= |xo|1+ϑin}

(3.2.4.1)

We will use the same pancake-like outgoing block used in (3.1.1.3), which will be
stated here again for convenience:

Nϑout ,εout
out = {x ∈ Σout : 0 < xi ≤ εout , |xu|< |xi|1−ϑout}

Eϑout ,εout
out = {x ∈ Σout : 0 < xi ≤ εout , |xu|= |xi|1−ϑout}.

(3.2.4.2)

We also use the same projection πout : {x : xo = 1,0 < xi < εout}→ Nout ∪Eout
which was used in (3.1.1.4) and will be stated here again for convenience:

πout(xi,xo = 1,xu) =


(

xi,1,(signxu)x
1−ϑout
i

)
for x /∈ Nϑout ,εout

out

(xi,1,xu) for x ∈ Nout

(3.2.4.3)

Lemma 3.16 (Local Block Pair). There exist 0 < ϑin < 1/2 and 0 < ϑout < 1/2
as well as ϑ̂ > 0, such that

(
Nϑin,εin

in ,Eϑin,εin
in ,Nϑout ,εout

out ,Eϑout ,εout ,
out

)
is a block pair

for Φ̃loc = πout ◦Φloc for all εin > 0 and ε
1+ϑ̂

in < εout < 1. Furthermore, the
induced map h0(Φ̃loc) : h0(Ein)→ h0(Eout) maps non null-homotopic to non
null-homotopic classes (i.e. does not merge any path-connected components). This
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means the the images of the ±(xu−ξu) > 0 sides of Ein are contained in the
±xu > 0 sides of Eout .

Proof. We consider only the “tent” C. This is possible, since Nout ∪Eout ⊆C and
because of Proposition 3.12. Let T̂ be the first time when xi = xo, i.e.
T̂ = inf{t > 0 : xo(t) > xi(t)}. Let To denote the exit-time, i.e.
To = inf{t > 0 : xo(t) = 1}. Our first step will be to prove that the local map Φloc is
continuous in Nin∪Eout and Φloc(Nin∪Ein)⊆ domπout , when ε

1+ϑ̂

in < εout < 1.
This directly follows from the estimates in Section 3.2.2, if

0 < ϑ̂ <
λi−λo−3εg

λo +2εg
.

The main step is to prove that the induced map h0(πout ◦Φloc) : h0(Ein)→ h0(Eout)
does indeed map the ±(xu−ξu) > 0-components of Ein to the
±xu > 0-components of Eout . We need therefore to consider inital conditions in
Eϑ ,ε

in and fine-tune the constants ϑin and εout . We will now give sufficient
constraints on these constants; the required inequalities follow from the following
calculations. We assume that ϑin,ϑout ∈ (0, 1

2 ) and the following inequality holds:

ϑout +2ϑin <
λi +λu−λo− εg

2λi
(3.2.4.4)

For t < T̂ , i.e. xo < xi, we can estimate xix2
o ≤ d3/2. Assume that |xu−ξu| ≥ d1+ϑin .

Then we can estimate:

d
dt
|xu−ξu| ≥ (λu− εg)|xu−ξu|− |g̃ioo

u |∞d
3
2

≥
(

λu− εg− εgd
1
2−ϑin

)
|xu−ξu|

≥ (λu−2εg) |xu−ξu|.

(3.2.4.5)

By this estimate and the fact that d is monotonically decreasing, the inequality
|xu−ξu| ≥ d1+ϑ gets preserved for t < T̂ if d(0) < εin.
We can get lower bounds on T̂ by using d

dt log xo
xi
≤ λo +λi +3εg:

T̂ ≥− 1
λo +λi +3εg

logxo(0).

This allows us to get the following estimate for initial conditions in Eϑ ,ε
in :

log |xu(T̂ )−ξu(T̂ )| ≥ (1+ϑin−
λu−2εg

λo +λi +3εg
) logd(0)

sign(xu(T̂ )−ξu(T̂ )) = sign(xu(0)−ξu(0))
(3.2.4.6)

By plugging the lower bound on T̂ into (3.2.2.2), we can see that:
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logd(T̂ )≤
(

1−
λo−λi +3εg

λo +λi +3εg

)
logd(0).

Combining these two estimates yields

log |xu(T̂ )−ξu(T̂ )| ≥
λo +λi−λu + εg +ϑin(λo +λi +3εg)

2λi
d(t̂).

Therefore, we can archieve log |xu(T̂ )−ξu(T̂ )| ≥ (1−ϑout)d(T̂ ), when (3.2.4.4)
holds.
We now have to show that the estimates get preserved for T̂ < t < To. Since the
inequality xu(T̂ )≥ d(T̂ ) gets preserved for T̂ < t < To, we can estimate
ẋu/xu ≥ (λu− εg) > 0. Therefore, |xu| is monotonically increasing for T̂ < t < To
and d is monotonically decreasing. This yields

log |xu(To)| ≥ (1−ϑ
′) logd(To)

signxu(To) = sign(xu(0)−ξu(0)).
(3.2.4.7)

ut

3.2.5 Application of the Topological Method

We have now proven a local block Lemma 3.16. We will now modify the global
block Lemma 3.9 and then proceed analogously to the linear case in Section 3.1.3
to prove the main Theorem 3.2.

Lemma 3.17 (Block pair for the global map). Suppose that (Nout ,Eout) and
(Nin,Ein) have been constructed according to (3.2.4.1) and (3.2.4.2). Suppose

further that
(

DΦ
−1
glob(1,0,0) · (0,1,∂dξu(1,0))

)
i
> 0. Then it is possible to choose

εin > 0 small enough that for εout = ε ϑ̂
in a block pair for Φ

−1
glob is formed for(

Nϑin,εin
in ,Eϑin,εin

in ,Nϑout ,εout
out ,Eϑout ,εout

out

)
.

Proof. Since ξu ∈C1, the proof of Lemma 3.9 applies without modification.

We will now prove the following preliminary version of the main Theorem 3.2:

Theorem 3.18. Suppose we have a system fulfilling the Assumptions 3.1, which is
in the form given in Proposition 3.11. Suppose ξu has been constructed according
to Proposition 3.15. Suppose that(

DΦ
−1
glob(1,0,0) · (0,1,∂dξu)

)
i
> 0. (3.2.5.1)

Set Uε = {x ∈ Σin : 0 < xo < ε, |xu| ≤ ε} and
∂±Uε = {x ∈ Σin : 0 < xo < ε,xu =±ε}. Then there is ε > 0 such that Ws∩Uε is
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separating the boundaries ∂±Uε in Uε in codimension 1. Therefore, Ws is
especially nontrivial.

Proof. The Theorem follows directly by combining Lemma 3.17 and Lemma 3.16
and applying Theorem 2.19. ut

In order to prove the main Theorem 3.2, we will now massage the assumptions of
Theorem 3.18 in order to make them independent of our construction, similiar as in
the linear case in Section 3.1.3. We will at first proof the Remark 3.14 about an
alternative characterization of v = ∂xoξu(1,0):

Proposition 3.19. Let v0 = (0,1,∂xoξu(1,0)) and v(t) be the solution of the
linearized equation ẋ = F(x) around γ with γ(0) = (1,0,0):

v̇ = DF(γ(t))v(t) v(0) = v0. (3.2.5.2)

Then for t > 0, we have:

vu(t) = ∂xiξu · vi + xi∂dξu · vo

and especially

lim
t→∞

v(t)
|v(t)|

= eo.

Proof. We transform the approximate system (3.2.3.1) back in order to compare it
to the original system (3.2.1.1). Setting xo = d/xi we get for the approximate
system x′ = F̃ :

x′i =−λixi +gi
i(xi,0,xu)xi +∂xogi

i(xi,0,xu)xixo

x′o =λoxo +go
o(xi,0,xu)xo +(gu

o(xi,0,xu)+∂xo gu
o(xi,0,xu)xo)xu−∂xogi

i(xi,0,xu)x2
o

x′u =λuxu +gio
u (xi,0,xu)xixo.

(3.2.5.3)

We can see that F|γ = F̃|γ and DF|γ = DF̃|γ . By invariance of the manifold
{xu = ξu(xi,xixo)} under the approximate vectorfield F̃ , the vector v(t) is tangent
to it. The assertion about limt→∞ v(t)/|v(t)| follows easily. ut

This allows us to prove the main Theorem:

Proof (of the main Theorem 3.2). The Theorem follows by combining Theorem
3.18 and Proposition 3.19. ut
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3.2.6 The Center Case: λu = 0

The proofs and statements of this chapter can be modified for the case λu = 0. We
will now sketch all necessary modifications.
The change of coordinates needs to be slightly modified. We will need to replace
the unstable manifold by a C2,1 center-unstable manifold for this change of
coordinates. We can do this by changing the system outside of a small
neighborhood of 0 in order to achieve the necessary inequalities for the
pseudo-stable manifold theorem for the time one map φ 1 of the flow and since the
spectral gap −λi < 0 = min(λu,λo) near zero allows any finite regularity of
pseudo-stable manifolds. Similarly we need to replace the stable manifold by the
strong stable manifold.
Another difficulty arises with the Euler multiplier in Section 3.2.1.3: This change
of coordinates is simply not possible anymore, since µ is not bounded. Therefore
we will need to keep the gu

u-term and handle it later.
The approximation of the stable part therefore needs to be modified. We can
instead use

x′u = λuxu +gu
io(xi,0,xu)d +gu

u(xi,0,xu)xu

and will therefore get get an additional summand in (3.2.3.6):

d
dt

(xu−ξu) = (λu + g̃u · xi)(xu−ξu)+ g̃ioo
u xix2

o

+gu
u(xi,xo,xu)xu−gu

u(xi,0,ξu)ξu (3.2.6.1)

We can absorb part of this extra term (3.2.6.1) into xu−ξu and end up with a bad
additional term of the form g̃uo

u xoxu.
The construction of the local block in Lemma 3.16 and the local estimates
therefore need to be changed as well. We consider the time T̂ when x2

i = xo for the
first time. We can then estimate under the assumtions xo ≤ x2

i and |xu| ≤ xo:

d
dt
|xu−ξu| ≥ (λu− εg)|xu−ξu|− |g̃ioo

u |∞xix2
o−|g̃uo

u |∞xo|xu|

≥ (λu− εg)|xu−ξu|− εgd
5
3 − εgd

4
3

≥
(

λu− εg− εgd
2
3−ϑin − εgd

1
3−ϑin

)
|xu−ξu|

This crucial estimate allows us to proceed as in the case λu > 0 with only minor
modifications in the constants.



Chapter 4
Outlook and Discussion

In this work we gave an overview of the theory of stable manifolds and introduced
a topological generalization of the stable manifold theorem, which we related to
Conley Index theory. We demonstrated the usefulness of this topological
generalization in the analysis of heteroclinic sets by studying a three-dimensional
toy-model with a homoclinic orbit, where the standard theory of stable manifolds is
not applicable due to a lack of smoothness of the Poincaré map. We furthermore
showed that the topological technique is especially useful in conjunction with
direct calculations, since its application only requires C0-estimates.
There are currently two lines of future work planned:
Firstly, the procedure demonstrated in the third chapter can be genereralized. It is
possible to directly extend the result 3.2 to heteroclinic chains, i.e. sequences of
orbits γi(t) with limt→+∞ γi(t) = xi = limt→−∞ γi+1(t). In this case we will require a
geometric sign condition similiar to the one in Theorem 3.2 for every orbit γi of the
heteroclinic chain as well as a growth-condition on DF and on the spectral gaps at
xi.
Furthermore, it should be possible to generalize the analysis leading to result 3.2 to
heteroclinic chains in Rn. In this case geometric conditions similiar to the ones
used in Theorem 3.2 will require more subtle local analysis. This is due to the fact
that a direct application of the approach used in the 3-dimensional case yields a
block pair of the general form

Nin = cusp×Rns

Nout = halfspace×Rns

where ns +1 is the stable dimension of the equilibrium. Then any tilt of the
Rns -spaces introduced by Φglob will pose a serious problem for our analysis. Future
work will seek to overcome this geometric problem in order to formulate a general
theorem on separating basins of attraction of heteroclinic chains.
The second line of future work will apply the techniques developed in this work to
problems in mathematical cosmology, which actually were the prime motivation
for the development of said techniques. In the study of Bianchi IX cosmologies,
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there arises an attractor consisting of heteroclinic chains. Up to now only partial
progress has been made in determining which of these chains have a nonempty
basin of attraction and in understanding these basins of attractions (see e.g. the
excellent survey [HU09]). Since the geometry of the Bianchi system prevents any
tilt in the Rns-spaces, which will make a general theorem on heteroclinic chains so
difficult, we hope to use methods similar to the third chapter of this work, i.e. the
topological technique in conjunction with direct calculations, on the Bianchi
system. More specifically, we hope to prove existence of separating basins of
attraction for a large class of heteroclinic chains occuring in the Bianchi system,
thus proving a variant of the Kasner map convergence conjecture [HU09, p.26] for
a set of full measure on the Kasner circle.
A corollary of this would be a new proof for some of the conjectures in [HU09,
p.23f], which have been recently solved. These are the positive results for the
Mixmaster attractor conjecture as given in [HU09] and the ”attractor beliefs” (i)
and (ii) which have been recently proved in [LHWG10], as well as the negative
result to the attractor belief (iii), which has been recently disproved in [Beg10].
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