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Abstract

The behavior of a periodically forced, linearly damped mass sus-
pended by a linear spring is well-known. In this paper we study the
nature of periodic solutions to two nonlinear spring-mass equations;
our nonlinear terms are similar to earlier models of motion in suspen-
sion bridges. We contrast the multiplicity, bifurcation, and stability of
periodic solutions for a piecewise linear and smooth nonlinear restor-
ing force. We find that while many of the qualitative properties are
the same for the two models, the nature of the secondary bifurcations
(period-doubling and quadrupling) differs significantly.
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1 Introduction

In [9], Lazer and McKenna proposed a nonlinear beam equation as a model
for vertical oscillations in suspension bridges. They modeled the restoring
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force from the cable as a piecewise linear function of the displacement in
order to capture the fact that the suspension cables resist elongation, but do
not resist compression.

Later investigations of the qualitative and quantitative properties of so-
lutions to this type of asymmetric system suggest that this is a convinc-
ing model for nonlinearly suspended structures. The results on existence,
uniqueness, multiplicity, bifurcation, and stability of periodic solutions are
consistent with the nonlinear behavior of some suspension bridges; see [2],
[4], [6], [8], and [13], for example.

In [10] and [14], McKenna and Moore extended the models of Lazer and
McKenna to the coupled vertical and torsional motions of suspension bridges.
Though they were able to replicate the phenomena observed on the Tacoma
Narrows Bridge on the day of its famous collapse [15], the model had several
shortcomings. First, the treatment of the restoring force from the cables was
oversimplified; the nonlinear terms in the model describe cables that behave
perfectly linearly when in tension (regardless of the size of the oscillation) and
that can lose tension completely. Moreover, the parameter values for which
they could induce the desired phenomena were physically unreasonable.

In [11], McKenna and O’Tuama proposed a modified nonlinearity that
addressed the shortcomings described above. In [11] and [12], McKenna,
O’Tuama, and Moore found that smoothing the nonlinearity yields a signif-
icant qualitative change in the structure of the set of periodic solutions to
the nonlinearly coupled vertical-torsional system.

In this paper, we explore and isolate the impact of smoothing the nonlin-
earity by studying a simper mechanical system. We consider a periodically
forced, linearly damped mass suspended by a cable. Of course, if the cable
were a linear spring, the resulting behavior would be well known, [1]. We
consider two nonlinear models for the restoring force from the cable: a piece-
wise linear and a smooth nonlinear force. We describe both models in Section
2. In Section 3, we employ a numerical continuation algorithm and stabil-
ity analysis to examine the bifurcation and stability properties of periodic
solutions to the piecewise linear model and we contrast these results with
the well known behavior of the linear system. In Section 4, we repeat this
analysis for the smoothed model and contrast the results for the piecewise
linear and smooth nonlinear systems.

In Section 5, we present results on secondary bifurcations; we find so-
lutions whose period is twice or four times the period of the forcing term.
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Figure 1: A mass suspended from a cable

Moreover, we find that there are significant qualitative differences in the
nature of the secondary bifurcations for the two models.

Finally, in Section 6, we describe open questions and future work.

2 The Models

We begin by considering a mass m suspended by a cable, see Figure 1.
Let y be the downward displacement of the mass from the cable’s natural

equilibrium state. Let z be the downward displacement of the mass from
the weighted equilibrium point. The two displacements are related by the
equation y = z + L, where L = mg

K
, with g being the acceleration of gravity
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and K the spring constant. This relation was derived simply from Hooke’s
Law. In each model we consider the forces provided by the cable suspending
the mass, damping, gravity, and external forcing. We consider three different
models: the linear, piecewise linear, and smoothed nonlinear cable forces.

2.1 Linear cable force

In the linear model, we take the cable force to be represented by the simple
linear Hooke’s Law equation F = −Ky, or in our second coordinate system,
F = −Kz − mg.

This leads to the differential equations

my′′ = −Ky − δy′ + mg + λ sin(µ t) (1)

mz′′ = −Kz − δy′ + λ sin(µ t) (2)

where the first term represents the cable force, the second term is damping,
the mg term represents the force of gravity and is subsumed into the first
term in equation (2), while the final term is the periodic external forcing.
δ > 0 is the damping coefficient, λ is the amplitude of forcing, while µ is the
forcing frequency.

Since both equations are second order linear ordinary differential equa-
tions, we know everything there is to know about them, including their so-
lution:

z = c1e
−

δt
2m cos(

√
4Km − δ2

2m
t) + c2e

−
δt
2m sin(

√
4Km − δ2

2m
t)

︸ ︷︷ ︸

Homogeneous solution zh(t)

+ (
−λδµ

(µ2m − K)2 + (δµ)2
) cos(µt) + (

λ(K − µ2m)

(µ2m − K)2 + (δµ)2
sin(µt))

︸ ︷︷ ︸

Particular solution zp(t)

(3)

The constants c1 and c2 are determined by the initial position and velocity
of the mass. Because of the damping (i.e., because of the e−

δt
2m term), we

have that zh(t) → 0 as t → ∞, therefore the long term response of the linear
system is independent of the initial conditions and is driven entirely by the
external forcing.
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Of course, bridges are not suspended by linear springs. Moreover, the
phenomena observed at Tacoma Narrows suggest a long-term dependence on
initial conditions that is not consistent with the linear model [15]. Therefore,
in the next two subsections, we describe nonlinear models for the cable force.

2.2 Piecewise linear cable force

In this section, motivated by the original Lazer-McKenna model [9], we con-
sider a more realistic cable force by assuming that the cables resist elongation
according to Hooke’s Law, as we did in the previous model, but do not resist
compression. In other words, F = 0 when the mass goes above the unloaded
state (y ≤ 0 or z ≤ −L).

Thus, the force exerted by the cable is

F =

{

−Ky y > 0
0 y ≤ 0

= −Ky+ (4)

F =

{

−K(z + L) z > −L

0 z ≤ −L
= −K(z + L)+ (5)

and the differential equation becomes

my′′ = −Ky+ − δy′ + mg + λ sin(µ t) (6)

mz′′ = −K(z + L)+ − δz′ + mg + λ sin(µ t) (7)

We will see in Section 3 that solutions to this model exhibit behavior that
is consistent with the nonlinear oscillations observed in suspension bridges.
In particular, we find multiple periodic solutions for fixed forcing amplitude
and we see that the effect of the initial conditions does not decay over time
as in the linear model.

2.3 Smoothed nonlinear cable force

There are some inherent flaws in the piecewise model. For one, the nondif-
ferentiability of this cable force makes it an unlikely candidate to describe a
physical system. Physical intuition says that the transition of an object from
no exertion to the exertion of a noticeable force is not instantaneous, but
must be smooth. In addition, we know that cables do exert some resistance
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to compression and that they exert superlinear force when stretched very
far. Therefore, we must again change our model to one that addresses these
inadequacies.

In this model, motivated by [11] and [12], we construct a smoothed version
of the system. We take the following things into account in this construction.
First, we want the cable force to be zero when the system is in equilibrium,
at z = 0. Second, for z = −∞ the cable force must only be supplied by
gravity. And finally, the slope of the smooth nonlinear force should match
the slope of the linear force, i.e. F ′ = −K. The cable force satisfies each of
these requirements.

F = mg(e
Kz
mg − 1) (8)

Our differential equation is now

z′′ = −g(e
Kz
mg − 1) − (

δ

m
) + (

λ

m
) sin(µ t) (9)

Figure 2 depicts all three cable forces together. We can clearly see that the
slopes are the same for z = 0 and that all cable forces are at zero for z = 0.
In Sections 4 and 5 we will examine bifurcations and stability properties of
periodic solutions to this equation and contrast them with the results for the
piecewise linear model.

3 Results for the Piecewise Linear Model

Let us first consider the qualitative properties of periodic solutions to the
piecewise nonlinear model. We will study the bifurcation and stability prop-
erties of periodic solutions by examining the bifurcation curves generated by
numerical continuation on the forcing amplitude λ. We employed the numer-
ical continuation method as in [7], [5] to generate the bifurcation curves. We
also examined the stability of our computed periodic solutions via the usual
method: we linearized the system (7) about the computed periodic solution
and examined the magnitude of the eigenvalues of the fundamental solution
to the linearized system, [3].

Figure 3 shows the amplitude of the periodic solutions to the piecewise
linear model for fixed m, δ, K, and µ, as we vary λ. In this experiment we
chose m = 1, δ = .01, K =

√
2, and µ = 0.9514, which is 80 percent of the
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Figure 2: Three different models of the cable force
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Figure 3: The bifurcation curve of periodic solutions for the piecewise linear
model

resonant frequency of the linear system. We see that when λ < λl ≈ 0.1667,
there is only one small-amplitude periodic solution. When λ > λu ≈ 3.7750,
there is only one large-amplitude solution. When λ ∈ (0.1667, 3.7750), there
are three distinct periodic solutions. And for λ = λl ≈ 0.1667 or λ = λu ≈
3.7750, i.e. for λ at the bifurcation points, there are two distinct periodic
solutions. Thus, there is a bifurcation from one to three periodic solutions at
λ ≈ 0.1667 and then back to a single periodic solution at λ ≈ 3.7750. Those
points on the curve at a particular value of λ represent different possible
solutions, each with different initial conditions leading to them.

In Figure 3 we see that there is a small periodic solution to the nonlinear
equation whose amplitude matches the linear steady state. This is because
the amplitude is smaller than L; i.e. the mass has not oscillated above the
unloaded state and the nonlinearity of the cable force has not come into play.
More succinctly, for amplitudes smaller than L, when the cable has not be-
come unloaded, the cable behaves exactly like a linear spring; therefore the
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Figure 4: The same forcing (λ ≈ 1.00) may induce small or large amplitude
oscillations, depending on the initial conditions

periodic solution matches the periodic linear steady state. As we pointed
out above, for fixed λ ∈ (0.1667, 3.7750), there are two large amplitude so-
lutions in addition to the small amplitude oscillation. For fixed λ, whether
a small, medium, or large amplitude solution results depends only on the
initial condition. In Figure 4 we show the stable periodic solutions indicated
with an asterisk in Figure 3. We see that for λ ≈ 1.00, the initial condi-
tions z(0) = 18.2484, z′(0) = −9.7461 yield the large oscillation indicated by
the dashed line, while the initial conditions z(0) = −0.03666, z′(0) = 1.8695
yield the small oscillation indicated by the solid line. Because both of these
solutions are stable, they will maintain this oscillation indefinitely.

Of course, this behavior could not happen for the linear model. As we
pointed out in Section 2.1, in the linear model the effect of the initial condi-
tions decays over time. As we have shown in the experiment above, this is
not the case for the nonlinear model; the effect of the initial conditions can
persist over large time.
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We remark that the solutions pictured are those that we found via nu-
merical continuation; other periodic solutions may exist. Moreover, the bi-
furcation curve in Figure 3 shows stable and unstable solutions; the unstable
solutions are indicated with a dot. The unstable solutions settle down over
time to solutions of different amplitude or period. For example, in Figure 5
we show the superposition of periods 1 through 10 and 791 through 800 of
the unstable solution indicated with a square on the middle branch of the
bifurcation curve in Figure 3.

As you can see, given sufficient time to stabilize, the solution maintains
its period, but experiences an approximately 80 percent drop in amplitude,
settling to a solution which rests on the lower branch of the bifurcation curve.
On the other hand, in Figure 6 we show the same superposition of periods,
but this time for the unstable solution indicated with a square on the top
branch of the bifurcation curve in Figure 3. In this case, the curve undergoes
a doubling of its period, with an alternating 34.9 percent increase and 39.6
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Figure 6: A top branch unstable solution undergoes period doubling with
amplitude change

percent reduction in amplitude.

In Section 5, we show that there are secondary bifurcations to branches
of solutions with twice or four times the period of the forcing term.

4 The smoothed model vs. the piecewise lin-

ear model: Qualitative differences

Now that we have examined the bifurcation and stability properties of peri-
odic solutions to the piecewise linear model, the next step is to investigate the
qualitative differences between solutions to the smooth nonlinear model and
the piecewise linear model. In the experiments that follow, we examine the
impact of increasing the forcing frequency toward resonance and of chang-
ing the cable tension K. More specifically we compute µres, the resonant
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frequency for the linear model and examine forcing frequencies µ = ηµres

for η = 0.80, 0.90, and 0.95. Also, we fix m = 1 and vary the Hooke’s Law
constant K. When we increase K, we are amplifying the asymmetry in the
piecewise linear force and changing the curvature in the smoothed force; see
Figure 2 in Section 2.3.

4.1 Impact of varying η

There are many qualitative differences that occur when the forcing frequency
is increased towards resonance. Figure 7 shows the impact of varying η :=

µ

µres
, with m = 1, δ = .01, and K =

√
2. Figure 8 shows a close-up of Figure 7

near the bifurcation points.
As we increase η to 1, i.e. increase the forcing frequency towards reso-

nance, the piecewise bifurcation curve moves above the smooth curve. As
you can see in Figure 8, for η = 0.8 the smooth curve is higher than the piece-
wise for all values of λ, indicating that for the same value of λ the smooth
nonlinear solutions are larger than the piecewise solutions. For η = 0.9 the
piecewise curve rises above the smooth curve in the middle branch and then
crosses below the smooth again. This implies that, for a small range of λ, the
mid-size piecewise solutions are larger than the mid-size smooth solutions.
For η = 0.95 the piecewise curve stays above the smooth curve until further
into the top branch, and always crosses under after the second bifurcation
point. This held for all values of K that we tested. Therefore, for all values
of λ at which there are three solutions, the mid-size and large solutions of
the piecewise model are larger than those of the smooth model.

In addition, as η goes to 1, the values of λ at which the curve bifurcates
get closer to zero, thus, the bifurcation from single to multiple periodic so-
lutions (and back) occurs for smaller forcing when the frequency is closer to
resonance. This occurs for both bifurcation points but the change is much
larger for the second bifurcation point. For example, when η = 0.80, we
see that for the piecewise curve λl ≈ 0.1667 and λu ≈ 3.775, and for the
smoothed nonlinear curve λl ≈ .2031 and λu ≈ 3.414. But when η = 0.95,
for the piecewise curve λl ≈ 0.1084 and λu ≈ 0.9658, and for the smoothed
nonlinear curve λl ≈ 0.0925 and λu ≈ 0.4200.

One effect that occurs in both the smooth and piecewise curves is that the
top and middle branches get lower, or in physical terms, as we get closer to
resonance the amplitudes of oscillation get smaller for all periodic solutions.
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Figure 7: Piecewise and smooth bifurcation curves for varying η values
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Another aspect which is affected by changes in η is the location of the
right-hand bifurcation point for the smoothed force. As we saw in Section
3, for the piecewise linear model, the turning point from the lower to middle
branch occurs when the amplitude reached L; i.e., when the cable became
unloaded. This happens regardless of the forcing frequency µ. In Figure 8, for
all η, we see that the smooth curve diverges from the linear steady state and
piecewise curves at a smaller amplitude than L and that when η = 0.8, the
turn from the lower branch to the middle branch occurs at higher amplitude
than L. In fact, the smooth curve turns just before it crosses the piecewise
curve. This was true for all values of K that we tested.

When η = 0.9, the smooth curve turns exactly when it hits an amplitude
of L, and for η = 0.95 it turns before the amplitude L. The piecewise curve’s
behavior is notably different. The piecewise curve always turns into the
middle branch at or slightly above amplitude L.

In addition, for µ significantly far from resonance (smaller η), the linear
steady state is smaller than both the piecewise and smooth solutions. This
is evidenced in Figure 8 for η = 0.8. As we increase η towards 1, we see that
eventually the linear steady state can become larger than both the piecewise
and smooth curves, and that as we get increasingly close to resonance, the
λ necessary for the linear steady state to exceed the piecewise and smooth
curves becomes smaller. This is because the amplitude of the linear steady
state increases more rapidly with λ (i.e., the slope of the dotted line in
Figure 8 is greater) when µ is closer to µres.

Finally, as η approaches 1, the range of λ for which we have three periodic
solutions decreases, and is always smaller for the smooth bifurcation curve.

4.2 Impact of varying K

While there are multiple notable implications of varying η, the results of
varying K are less pronounced. In Figure 9, we fix m = 1, δ = .01, η =
0.9, µ = 1.0703 and examine the impact of varying K. The most notable
difference is that the amplitude of the oscillations decreases as K increases.
This is logical, as it means that a more rigid cable has a smaller range of
motion. For larger K (i.e., for a more rigid cable), the bifurcation from one
to three periodic solutions occurs for smaller forcing amplitude λl, as does
the bifurcation from three to one periodic solutions λu. The change in value
for λl is more noticeable than the change for λu though.
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5 Secondary bifurcations: Period doubling,

quadrupling, and chaos

In previous sections we addressed only periodic solutions whose period matched
that of the forcing term, τ = 2π

µ
; all the bifurcation curves consisted of only

those solutions with period 2π
µ

. In this section we investigate those unstable
solutions that settle down to periods that are double or quadruple the period
of the forcing term, and those that do not settle at all, but instead descend
into chaos. We will investigate the Poincare’ return map of one such solution
to illustrate its chaotic nature.

We will examine these secondary bifurcations for η = 0.90, m = 1, K =√
2, δ = .01, and µ = 1.0703. To do so, we choose an unstable solution on the

top branch of the 1τ -periodic curve, identify its long term behavior, which is a
2τ -periodic solution, and then use numerical continuation to find the path of
2τ -periodic solutions. We generate the path of 4τ -periodic solutions the same
way. The 2τ -periodic curves obtained by the piecewise linear and smoothed
nonlinear models are similar, as you can see in Figure 10 and Figure 11. The
curves have approximately the same shape, but the smoothed curve extends
noticeably higher and further than the piecewise curve, providing us with
solutions at higher λ values which the piecewise curve does not.

Much more apparent are the stark differences between the bifurcation
curves of period 4τ . As you can see in Figure 10 and Figure 11, the shapes of
the curves are dramatically different. Most notably, the range of λ for which
we found three 4τ periodic solutions is considerably larger for the smoothed
system than for the piecewise system. In addition, the smoothed 4τ -periodic
bifurcation curve joins the smoothed 2τ -periodic curve at the site of our
chosen starting solution. In stark contrast, the piecewise 4τ -periodic curve
appears to extend from the 2τ -periodic piecewise curve, i.e. the 4τ -periodic
curve starts where the 2τ -periodic curve ends. Also, the 4τ -periodic piecewise
curve quickly reaches amplitudes more than twice as high as those seen in the
2τ -periodic piecewise curve, while the smoothed 4τ -periodic curve is actually
smaller in many places than its 2τ -periodic counterpart. In addition, the
piecewise curve extends to significantly higher values of λ than the smoothed
curve achieves, the reverse of what was seen in the 2τ -periodic curves.

Another notable difference is the shape of the solutions found in the
bifurcation curves of the respective models. The piecewise and smoothed
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Ben-Gal and Moore 19

0 10 20 30 40 50 60 70
0

20

40

60

80

100

120

140

A
m

pl
itu

de
 o

f P
er

io
di

c 
S

ol
ut

io
n

λ = Amplitude of Periodic Forcing

Piecewise Force
Unstable Solution

4τ periodic 

2τ periodic 

1τ periodic 

Figure 11: Secondary bifurcations for the piecewise system
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Figure 12: Unstable solutions on smoothed bifurcation curve transitioning
form periods 1τ to 2τ above, and 2τ to 4τ below

models show a similar transformation from the unstable 1τ -periodic to the
stable 2τ -periodic curves, as can be seen in the top graphs of Figure 12
and Figure 13. The only apparent difference in this transition is that the
piecewise period doubling provides an amplitude change of slightly higher
magnitude.

The change in the smooth solution from the unstable 2τ -periodic to the
stable 4τ -periodic is slight and the new solution retains the approximate
shape of the 2τ -periodic solutions. The piecewise 4τ -periodic solution, on
the other hand, is vastly different from the piecewise 2τ -periodic solution, as
shown in the second graph in Figure 13. The amplitude nearly doubles and
the shape of the curve is dramatically different.

In Figure 14, we examine the Poincare’ return map for a chaotic solution
to the piecewise model. We begin with an unstable solution that is close to
the 2τ -periodic unstable solution that we examined in Figure 13; however,
this solution does not settle down to periodic motion as the one in Figure 13
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Figure 13: Unstable solutions on piecewise bifurcation curve transitioning
form periods 1τ to 2τ above, and 2τ to 4τ below
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Figure 14: Poincare map for unstable 2τ -periodic solution on the piecewise
bifurcation curve

did. We solved the initial value problem for 1000 periods of the forcing term.
Figure 14 shows (z(tn), z′(tn)) for tn = 2nτ , n = 0, 1, 2.... As Figure 14
shows, there is no clear pattern and the solution is chaotic.

6 Concluding Remarks and Open Questions

In this paper, we identified several phenomena that are consistent with our
physical and mathematical intuition; see Section 4.2, for example. But we
also identified phenomena for which the mathematical and physical intuition
are unclear. For example, in Section 4.1, we saw that when η = 0.8, the first
turn in the smooth bifurcation curve occurs exactly as this curve crosses the
piecewise curve. When η = 0.9, the first turn in the smooth curve occurs as
this curve crosses the height L. When η = 0.95, the first turn is at a height
lower than L. This pattern appeared for every value of K that we tested. Is
there a mathematical or physical explanation for this apparent relationship
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between the forcing frequency and the amplitude of the bifurcation points
for the two systems?

In Section 5 we examined the nature of the secondary bifurcations for the
two systems. We observed that the shape of the 2τ and 4τ periodic branches
differs significantly. Moreover, though both systems had period doubling
and quadrupling, the change in the nature of the solutions was subtle for the
smoothed problem and pronounced for the piecewise system. (See Figures
12 and 13.) What is the mathematical underpinning for these phenomena?
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