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在論文撰寫方面：
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擴散跟有向流在競爭物種演化下的效應

一個關於 Lotka-Volterra競爭模型的回顧1

戴佳原2

摘要

本論文完整地回顧了一個具有生態學意義的問題：兩個競爭物種在

資源異質分布的孤立環境中將如何演化？本研究透過再分布機制

由相互競爭、隨機擴散跟有向移動組成的假設建立一個特別的

Lotka-Volterra競爭模型，用以分析競爭物種的長期演化結果，亦

即決定該模型均衡解的穩定性。本研究以標準程序應用諸如最大值

原則（maximum principles）、變分法（calculus of variation）和單調

動力系統理論（the theory of monotone dynamical systems）等數學

方法。主要結論是隨機擴散和有向移動共同決定了演化結果，因此

不同擴散速率和有向流傾向的組合可能影響演化結果。據此，研究

者建立了一個初步的分歧圖以提供理論上可信賴的預測。

1
關鍵字：Lotka-Volterra競爭模型、隨機擴散、有向移動、均衡解、局部穩定性、全域穩定性

2
國立台灣大學數學研究所。電子信箱：R97221006@ntu.edu.tw



The Effects of Diffusion and Advection on the

Evolution of Competing Species: a Survey on the

Lotka-Volterra Competition Model ∗

Jia Yuan Dai †

Abstract

This thesis is a rather complete survey concerning an ecologically mean-

ingful problem: how would two competing species evolve in a given spatially

heterogeneous and isolated environment? A special kind of the Lotka-Volterra

competition model is derived by assuming that the mechanisms of redistribu-

tion consist of mutual competition, random diffusion, and advective motion.

The main task is to analyze the evolutionary results of the competing species

in the long run, or equivalently, to determine the stability of equilibria of the

model. The mathematical methods such as maximum principles, calculus of

variation, and the theory of monotone dynamical systems are utilized as the

standard procedure. The main conclusion is that both random diffusion and

advective motion decide the evolutionary results; thus different combinations

of diffusion rates and advective tendencies may influence the evolutionary re-

sults. Accordingly, a preliminary bifurcation diagram can be established to

provide certain theoretically reliable predictions.

∗Keywords: Lotka-Volterra competition model, random diffusion, advective motion, equilibria,

local stability, global stability
†Department of Mathematics, National Taiwan University. E-mail: R97221006@ntu.edu.tw
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The Effects of Diffusion and Advection on the

Evolution of Competing Species: a Survey on the

Lotka-Volterra Competition Model

Jia Yuan Dai ∗

1 Introduction

In 1910, Alfred J. Lotka proposed the article ”In the Theory of Autocatalytic

Chemical Reactions” which was effectively the logistic model. In 1920, Lotka ex-

tended the model to analyze predator-prey interaction in his book on biomathemat-

ics. In 1926, Vito Volterra derived the model independently for the purpose to make

a statistical analysis of fish catches in the Adriatic. Today, being a special kind of

reaction-diffusion-advection model which is proved to be mathematically meaning-

ful and challenging, the so-called Lotka-Volterra model has been widely and deeply

investigated both by ecologists and mathematicians, and indeed it can provide theo-

retically reliable predictions on the complicated interaction among different species

in an ecological system.

In this thesis, a rather detailed survey concerning a special kind of the Lotka-

Volterra competition model is presented. To state the problem more precisely, we

utilize the common-used approach based on fluxes to derive the model. Firstly, we

consider N species or N different pheotypes of a species which are mutually com-

peting in a given environment Ω ⊂ Rl with boundary ∂Ω (in reality, l=3) and each

has the density ui(x, t) at location x and time t. There are some factors concerning

∗Department of Mathematics, National Taiwan University. E-mail: R97221006@ntu.edu.tw
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the reasonable setting:

(a) Environment

In reality, the environment Ω is surely bounded, but for mathematical reasons

we require it to be a domain with smooth boundary. Since resources are not uni-

formly distributed, the heterogeneity of the environment can be reflected by the

intrinsic growth rate m(x, t). Nevertheless, we assume two rather particular con-

straints: (C1) All species or N different phenotypes of a species have the

same intrinsic growth rate. (C2) The environment is homogeneous in

time, that is, m(x, t) = m(x).

(b) Mechenisms of Redistribution

There are two basic mechanisms that make the densities vary in time: one is

the local process such as birth, death, competition etc.; the other mechanism is the

motion of individuals which can be understood as a combination of the random mo-

tion and the advective motion, that is, conditional dispersal. Now, we take ui(x, t)

for example and let u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t)), then the rate of change

of the total population of ui is given by

∂

∂t

∫
Ω

ui(x, t)dx = −
∫
∂Ω

Ji · nds+
∫
Ω

Fi(u(x, t))dx (1)

where Ji is the density flux of ui through the boundary, n is the unit outer normal

on ∂Ω. and Fi(u) = uifi(u) with fi(u) being the per-capita growth rate of the i-th

species.

How can we describe the density flux? Since the effects of the random motion

in the flux is usually assumed to be proportional to the density gradient ∇ui, and

it is reasonable to assume that all species move toward more favorable habitats, we

derive

Ji = −di∇ui + αiui∇m

where di > 0 is the diffusion rate of ui, and αi ≥ 0 is the advective tendency of ui

toward the resource gradient ∇m. To describe the per-capita growth rate, we need

to take into account not only the birth rate and death rate, but the interaction with

2



all other species; hence

fi(u(x, t)) = m(x) +
N∑
j=1

tijuj(x, t)

where tij measures the intensity of mutual interaction between ui and uj. Here for

mathematical simplicity we assume another constraint: (C3) All diffusion rates

and advective tendencies are constants. Since the divergence theorem implies∫
∂Ω

Ji · nds =
∫
Ω

∇ · Jidx

we obtain the equation:

∂ui
∂t

= ∇ · (di∇ui − αiui∇m) + ui(m+
N∑
j=1

tijuj)

Let T = [tij] be the N × N interaction matrix, tii should be negative for all i

because the living space and resources are limited, and concepts of cooperation and

competition are defined as:

Definition . Two species ui and uj (i ̸= j) are called cooperative if
∂fi
∂uj

> 0 and

∂fj
∂ui

> 0; competitive if
∂fi
∂uj

< 0 and
∂fj
∂ui

< 0.

In particular, our model is competitive if tij < 0 and tji < 0 for i ̸= j. However,

in this thesis we make a further constraint: (C4) tij = −1 for all i, j 1, in other

words, all species have the same competing ability. In ecological fields, the scenery

could occur if they were different phenotypes of the same species, or they were

different species but they had gained mutation from the same ancestral species, and

the result of mutation is not effective.

Finally, we assume that the ecological system is isolated; hence each equation

is equipped with the no-flux boundary condition. Owing to assumptions from (C1)

to (C4), we derive a special kind of the Lotka-Volterra competition system:
∂ui
∂t

= ∇ · (di∇ui − αiui∇m) + ui(m−
N∑
j=1

uj) in Ω× (0,∞)

B[ui] = Ji · n = di∂nui − αiui∂nm = 0 on ∂Ω× (0,∞)

(2)

1See Lemma 3.5 for the mathematical reason of the constraint.
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where ∂nui =
∂ui
∂n

is the normal derivative.

It is obvious that the diffusion rate and the advective tendency are two important

parameters of the full system (2). An interesting question is: How would com-

peting species evolve under a given combination of diffusion rates and

advective tendencies? Even though there are only two biological consequences

in the long run: only one species wins (or equivalently, all other species extinct) or

some species coexist, it is not easy to answer the above question by rough observa-

tions. For writing strategies, the ranges of diffusion rates and advective tendencies

are classified into three types:

Type A: general N , αi = 0 for all i, and 0 < d1 < d2 < ... < dN .

Type B: N = 2, α2 = 0, and Ω is convex.

Type C: N = 2, and αi ≥ 0 for i = 1, 2.

and we make a notational convention whenever there are only two competing species:

(Notation) (u1, α1, d1) = (u, α, µ) and (u2, α2, d2) = (v, β, ν) whenever N = 2.

At the first glance, the differences between the types may be slight, but the ap-

proaches to analyze the full system (2) become quite different as we will later see.

To study the full system (2), the first crucial task is to show that for any

non-negative continuous initial data u0(x) ≡ u(x, 0), there exists a unique classical

solution u(x, t) in Ω × (0, T (u0)) where T (u0) > 0 is the existing time for u0. This

task is achieved by [15], Corollary 4.1 which proved that the full system (2) generates

a continuous local semiflow (or local semi-dynamical system):

S : (0, T (u0))× [C(Ω)]N → [C(Ω)]N , S(t, u0)(·) = u(·, t)

where [C(Ω)]N = {u : u : Ω → RN is continuous}. However, the full system (2) is

biological meaningful only if the existing time T (u0) = ∞. For Type A, this require-

ment is fulfilled with some a priori L∞ estimates (ref.[1], Lemma 2.3). For Type B

and C, it is obvious that positive constantsK > max{∥u0∥L∞(Ω), ∥v0∥L∞(Ω), ∥m∥L∞(Ω)}

are supersolutions for each equation; hence by the Parabolic Comparison Principle

(see Appendix), the solution u(x, t) with initial data u0 exists for all t ≥ 0. That is,

T (u0) = ∞.
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Now that obtaining exact solutions of the full system (2) is unlikely, it is wise

to consider the scalar equation:
∂θ

∂t
= ∇ · (di∇θ − αiθ∇m) + θ(m− θ) in Ω× (0,∞)

B[θ] = di∂nθ − αiθ∂nm = 0 on ∂Ω× (0,∞)
(3)

Under some suitable assumptions on the intrinsic growth rate m(x), especially

(A1) m(x) ∈ C2+δ(Ω) is not a constant function and

∫
Ω

m(x)dx > 0

where 0 < δ < 1, we can prove that for any di > 0 and αi ≥ 0, there exists

a unique positive steady-state θ = θ(x;αi, di) of (3) (see Theorem 1.6) and the

solution (0, ..., 0, θ(x;αi, di), 0, ..., 0) to the full system (2) is often called a semi-trivial

equilibrium 2. Beside the semi-trivial equilibria, we call w(x) a positive equilibrium

if it is an equilibrium of the full system (2) and all components are positive. For

each equilibrium, we define several kinds of the stability as:

Definition . Let w(x) be an equilibrium of the full system (2), then

(1) w(x) is locally stable if for given ϵ > 0, there exists r > 0 such that for any

non-negative continuous initial data u0 with ∥u0 − w∥L∞(Ω) < r, the solution

u(x, t) satisfies ∥u(·, t) − w∥L∞(Ω) < ϵ for sufficiently large t. Furthermore,

such w(x) is locally asymptotically stable if lim
t→∞

∥u(·, t)− w∥L∞(Ω) = 0.

(2) w(x) is globally asymptotically stable if for any non-negative and not identically

zero continuous initial data u0 which is not an equilibrium, the solution u(x, t)

satisfies lim
t→∞

∥u(·, t)− w∥L∞(Ω) = 0.

It is known that the study on the local stability of semi-trivial equilibria can

obtain some rather strong implications on the dynamics of the full system (2). From

both mathematical and ecological points of view, a species will invade (or not invade)

even when it is rare if its corresponding semi-trivial equilibrium is unstable (or locally

stable). Mathematically, the local stability (and equivalently invasibility) of a semi-

trivial equilibrium is often determined by the sign of principal eigenvalues of the

2The terminology ”semi-trivial equilibrium” is in comparison with the ”trivial equilibrium” 0.
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linearized system around it; thus we need to deal with eigenvalue problems.

The most difficult part is perhaps to determine the global stability of semi-trivial

equilibria, but the result is quite decisive since a species will win in the long run if its

corresponding semi-trivial equilibrium is globally asymptotically stable. The main

difficulties are rooted in the lack of sufficiently powerful mathematical tools such

as the maximum principles if N > 2, whereas in the quite restrictive case N = 2,

the full system (2) which is competitive can be cooperative via a change of variables

(see the proof of Lemma 1.8). After performing this change of variables, most

mathematical tools, especially the theory of monotone dynamical systems becomes

applicable (see Theorem 1.9 and Theorem 4.9).

Main Results

In section 2, we deal with the main result of the Type A which comes from

Dockery, Hutson, Mischaikow, and Pernarowski [1]:

Theorem 1.1. (c.f.[1]) Suppose that (A1) holds. Let Ui(x) be the semi-trivial equi-

librium of the i-th species, then

(a) (local stability) U1(x) is locally asymptotically stable, whereas Ui(x) (i ≥ 2) is

unstable.

(b) (global stability) if N = 2, U1(x) is globally asymptotically stable.

When N competing species move randomly and compete mutually, Theorem 1.1

shows that the difference of the diffusion rates principally drives the dynamics of

the full system (2), and the slower-diffusing species will win if N = 2.

In section 3, the main result of the Type B comes from Cantrell, Cosner, and

Lou [3][4].

Theorem 1.2. (c.f.[3][4]) Suppose that N = 2 and (A1) holds. Let (θ(x;α, µ), 0)

and (0, θ(x; 0, ν)) be the semi-trivial equilibria of the 1st and 2nd species respectively.

If Ω is convex and µ ≈ ν, then (θ(x;α, µ), 0) is globally asymptotically stable provided

that α is sufficiently small but not too small relative to the difference µ− ν.
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Here µ ≈ ν means µ − ν = O(ϵ) for sufficiently small ϵ > 0. When two species

compete in a convex environment and the advective tendency of the 1st species is

sufficiently small, Theorem 1.2 generalizes the result of Theorem 1.1 in the case

µ < ν. The new implication is for the case µ > ν that the faster-diffusing species

can overcome the disadvantage caused by far rapider diffusion via directed move-

ment toward more favorable habitats.

In section 4, we deal with the main result of Type C which comes from Ham-

brock and Lou [6]. Before dealing with the main result, we need other technical

assumptions on m(x) to restrict the distribution of resources in the environment:

(A2) |∇m(x)| > 0 for almost x ∈ Ω. In other words, the set of critical points of

m(x) has Lebesgue measure zero.

(A3) ∂nm < 0 on ∂Ω, m(x) has only one critical point in Ω denoted by x0, and

x0 ∈ Ω satisfies D2m(x0) is negative-definite, where D
2m(x0) is the Hessian matrix

of m(x) at x = x0.

Theorem 1.3. (c.f.[6]) Suppose that N = 2 and (A1) holds. Let (θ(x;α, µ), 0) and

(0, θ(x; β, ν)) be the semi-trivial equilibria of the 1st and 2nd species respectively:

(a) if (A2) holds. then given any 0 ≤ β/ν ≤ 1/max
Ω

m, both semi-trivial equilibria

are unstable and the full system (2) has at least one locally stable positive

equilibrium provided that α is sufficiently large.

(b) if (A3) holds and m > 0 in Ω, given any β/ν ≥ 1/min
Ω
m, then (0, θ(x; β, ν))

is globally asymptotically stable provided that α is sufficiently large.

When both the diffusion rates and advective tendencies occur and the advective

tendency of the 1st species is sufficiently large, Theorem 1.3 shows that neither the

diffusion rate ν nor the advective tendency β, but the ratio of dispersal β/ν plays

an important role in the dynamics of the full system (2). It is in strong contrast

to Theorem 1.2 that as α increases, Theorem 1.3(a) shows that the 1st species

which is smarter may not win the competition and coexistence becomes possible.

Such coexistence is called an advection-induced coexistence. An explanation for such

phenomenon is that the smarter species concentrates on the most favorable habitats,
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leaving enough room for the other species to survive there. However, if every habitat

is favorable (m > 0 in Ω) and both species strongly pursue favorable habitats,

Theorem 1.3(b) shows that they will lead to overcrowd, causing an advection-induced

extinction of the 1st species which has the larger advective tendency.

In the last section, we establish a bifurcation diagram to organize the main

results and provide some further interesting problems.

Frequently-applied Theorems and the Main Scheme

In this subsection, three basic and frequently-applied theorems (see Theorem 1.6,

1.7, and 1.9) in our subsequent analysis are presented. The first theorem concerns

about the existence and the uniqueness of the semi-trivial equilibrium. Here we

denote µ = di and α = αi in (3) for notational convenience. To change the no-flux

boundary condition into the Neumann boundary condition, we set w = e−(α/µ)mθ to

obtain the equivalent form of (3):
∂w

∂t
= µ∆w + α∇m · ∇w + w(m− e(α/µ)mw) in Ω× (0,∞)

B[w] = ∂nw = 0 on ∂Ω× (0,∞)
(4)

Since 0 is a trivial equilibrium of (4), we linearize (4) around 0 and then consider

the eigenvalue problem: µ∆ϕ+ α∇m · ∇ϕ+ ϕm = λϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
(5)

Lemma 1.4. For each m ∈ C2+δ(Ω), α ≥ 0, and µ > 0, there exists a unique simple

principal eigenvalue λ(m,α, µ) such that the correpsonding principal eigenfunction

is strictly positive.

Proof. Since Ω is compact and m ∈ C2+δ(Ω), it is well-known (ref.[9], p.340, Theo-

rem 3) that the eigenvalue problem µ∆ϕ+ α∇m · ∇ϕ+ ϕ(m−max
Ω

m) = λ̃ϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
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has a unigue simple principal eigenvalue λ̃(m,α, µ) such that the corresponding

principal eigenfunction is strictly positive; hence the original eigenvalue problem

has λ(m,α, µ) = λ̃(m,α, µ) + maxΩm as the simple principal eigenvalue and the

corresponding principal eigenfunction is strictly positive.

In fact, owing to the assumption (A1), the following lemma shows that the

principal eigenvalue of (5) is positive; hence 0 is unstable.

Lemma 1.5. Suppose that (A1) holds, then

(a)

∫
Ω

me(α/µ)mdx > 0.

(b) λ(m,α, µ) ↓ m̂ ≡
∫
Ω
me(α/µ)mdx∫
Ω
e(α/µ)mdx

> 0 as µ→ ∞; hence 0 is unstable.

Proof. The mapping α ∈ R 7→
∫
Ω

me(α/µ)mdx is strictly increasing; hence (A1) im-

plies

∫
Ω

me(α/µ)mdx > 0 for all α ≥ 0.

To prove the part (b), the main idea is to analyze the variational characteri-

zation of the principal eigenvalue. We let σ(m,α, µ) = −λ(m,α, µ) for notational

convenience and it suffices to consider the case ϕ > 0 by Lemma 1.4. Multiplying

(5) by e(α/µ)mϕ, integrating over Ω, and utilizing the divergence theorem and the

Neumann boundary condition, we obtain

σ(m,α, µ) = inf
ϕ∈H1(Ω),ϕ ̸=0

µ
∫
Ω
e(α/µ)m|∇ϕ|2dx−

∫
Ω
me(α/µ)mϕ2dx∫

Ω
e(α/µ)mϕ2dx

(6)

Take ϕ ≡ 1, then σ(m,α, µ) ≤ −m̂. Now, given ϵ > 0, we want to show σ(m,α, µ) ≥

−m̂− ϵ if µ is large enough, but it is only required to obtain

µ

∫
Ω

e(α/µ)m|∇ϕ|2dx−
∫
Ω

(m− m̂)e(α/µ)mϕ2dx+ ϵ

∫
Ω

e(α/µ)mϕ2dx ≥ 0

for all ϕ ∈ H1(Ω) if µ is large enough.

Since σ(m,α, µ) is invariant under ϕ 7→ cϕ for any nonzero constant c, it suffices

to consider the case ϕ with

∫
Ω
ϕdx

|Ω|
= 1. Define ϕ(x) = 1 + ψ(x) and apply the

Poincaré inequality, then there exists a constant K > 0 which is independent of ϕ

such that

∥ψ∥L2(Ω) ≤ K∥∇ψ∥L2(Ω) = K∥∇ϕ∥L2(Ω)
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Applying the Hölder inequality, we obtain∣∣∣∣∫
Ω

(m− m̂)e(α/µ)mϕ2dx

∣∣∣∣ = ∣∣∣∣∫
Ω

(m− m̂)e(α/µ)m(1 + 2ψ + ψ2)dx

∣∣∣∣
≤ 2∥me(α/µ)m − m̂e(α/µ)m∥L2(Ω)∥ψ∥L2(Ω) +M∥ψ∥2

L2(Ω)

= 2M |Ω|
1
2K∥∇ϕ∥L2(Ω) +MK2∥∇ϕ∥2

L2(Ω)

where M = ∥me(α/µ)m − m̂e(α/µ)m∥L∞(Ω) <∞. This inequality implies

µ

∫
Ω

e(α/µ)m|∇ϕ|2dx−
∫
Ω

(m− m̂)e(α/µ)mϕ2dx+ ϵ

∫
Ω

e(α/µ)mϕ2dx

≥ (µmin
Ω
e(α/µ)m −Mk2)∥∇ϕ∥2

L2(Ω)
− 2M |Ω|

1
2K∥∇ϕ∥L2(Ω) + ϵ

∫
Ω

e(α/µ)mϕ2dx ≥ 0

if µ is large enough.

The unstability of 0 makes the single species invade even when it is rare. We

see that in the logistic model (αi = di = 0 in (3)), 0 is unstable, and there exists a

unique global attractor among all non-negative and not identically zero continuous

initial data. The following theorem shows that (3) shares this key feature of the

logistic model.

Theorem 1.6. (c.f.[8]) Suppose that (A1) holds, then for any α ≥ 0 and µ > 0,

there exists a unique positive steady-state θ = θ(x;α, µ) of (4), that is, θ is the

unique positive solution to the scalar equation ∇ · (µ∇θ − αθ∇m) + θ(m− θ) = 0 in Ω

B[θ] = µ∂nθ − αθ∂nm = 0 on ∂Ω

In addition, θ is the global attractor among all non-negative and not identically zero

continuous initial data.

Proof. It suffices to consider the equivalent form of the scalar equation: µ∆w + α∇m · ∇w + w(m− e(α/µ)mw) = 0 in Ω

B[w] = ∂nw = 0 on ∂Ω
(7)

By Lemma 1.4, we let ϕ1 > 0 be the principal eigenfunction of (5) with the corre-

sponding principal eigenvalue λ1 > 0, then we can choose sufficiently small ϵ > 0
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such that

µ∆(ϵϕ1) + α∇m · ∇(ϵϕ1) + ϵϕ1(m− e(α/µ)mϵϕ1)

= ϵ(µ∆ϕ1 + α∇m · ∇ϕ1 +mϕ1)− ϵ2e(α/µ)mϕ2
1

= ϵλ1ϕ1 − ϵ2e(α/µ)mϕ2
1 = ϵϕ1(λ1 − ϵe(α/µ)mϕ1) > 0

hence ϵϕ1 is a subsolution of (7). If u(x, t) is a solution of (4) with u(x, 0) = ϵϕ1,

then
∂u(x, 0)

∂t
= µ∆(ϵϕ1) + α∇m · ∇(ϵϕ1) + ϵϕ1(m− e(α/µ)mϵϕ1) > 0

and general properties of sub- and supersolutions imply that u(x, t) is increasing in t

(ref.[8], Proposition 3.2) 3. Since any constant K >
maxΩm

minΩ e
(α/µ)m

is a supersolution

of (4), we can conclude that there exists a minimal positive steady-state of (4),

denoted by u∗(x), such that u(x, t) ↑ u∗(x) as t→ ∞.

If u∗∗ is another positive steady-state of (4) with u∗∗ ̸= u∗, then since u∗ is

minimal, we have u∗∗ ≥ u∗ and u∗∗ > u∗ somewhere in Ω. Since u∗ is a positive

solution of  µ∆ψ + α∇m · ∇ψ + ψ(m− e(α/µ)mu∗) = λ∗ψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω

with λ∗ = 0, and in the above eigenvalue problem, eigenfunctions belonging to

distinct eigenvalues are orthogonal; hence the principal eigenvalue λ∗1 = 0. Similarly,

u∗∗ is a positive solution of µ∆ψ + α∇m · ∇ψ + ψ(m− e(α/µ)mu∗∗) = λ∗∗ψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω

with λ∗∗ = 0; hence the principal eigenvalue λ∗∗1 = 0. However, given h ∈ C2+δ(Ω),

the principal eigenvalue λ1 of the eigenvalue problem: µ∆ψ + α∇m · ∇ψ + ψ(m− h) = λψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω

has a variational characterization:

λ1 = sup
ψ∈H1(Ω),ψ ̸=0

−µ
∫
Ω
e(α/µ)m|∇ψ|2dx+

∫
Ω
e(α/µ)m(m− h)ψ2dx∫

Ω
e(α/µ)mψ2dx

(8)

3Honestly speaking, I have not found the way to prove such general properties.
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hencem−e(α/µ)mu∗∗ ≤ m−e(α/µ)mu∗ andm−e(α/µ)mu∗∗ < m−e(α/µ)mu∗ somewhere

in Ω imply λ∗∗1 < λ∗1, which is a contradiction.

If u(x, t) is a solution of (4) with non-negative and not identically zero continuous

initial data, then u(x, t) > 0 in Ω × (0,∞) by the Parabolic Strong Maximum

Principle (see Appendix). For any t0 > 0, we can choose sufficiently small ϵ > 0

such that u(x, 0) = ϵϕ1(x) < u(x, t0) for all x ∈ Ω, then u(x, t − t0) < u(x, t) for

all t > t0 by the Parabolic Comparison Principle (see Appendix). Thus, u(x, t) is

bounded from below by u(x, t − t0) and u(x, t − t0) ↑ u∗(x) as t → ∞. Since u∗ is

the unique positive steady-state of (4) and u(x, t) is bounded in Ω× [0,∞), we have

u(x, t) → u∗(x) as t→ ∞.

Even though the full system (2) is non-linear (indeed, semi-linear), the local

stability of semi-trivial equilibria can be determined by the spectrum of the linearized

system around them (ref.[15], Theorem 4.2). In paricular, if N = 2, the second

theorem provides a manipulable criterion for the local stability:

Theorem 1.7. (c.f.[6]) If N = 2, then the semi-trivial equilibrium (0, θ(x; β, ν)) is

locally stable/unstable if and only if the following eigenvalue problem for (λ, ϕ) ∈

R× C2+δ(Ω): ∇ · (µ∇ϕ− αϕ∇m) + ϕ[m− θ(·; β, ν)] = λϕ in Ω

B[ϕ] = µ∂nϕ− αϕ∂nm = 0 on ∂Ω, ϕ > 0 in Ω

has a negative/positive principal eigenvalue λ1. The criterion for the local stability

of (θ(x;α, µ), 0) is analogous.

Proof. If N = 2, then the linearization of the full system (2) around (0, θ(x; β, ν))

leads to the eigenvalue problem: L1[ϕ] ≡ ∇ · (µ∇ϕ− αϕ∇m) + ϕ[m− θ(·; β, ν)] = λϕ in Ω

L2[ψ] ≡ ∇ · (ν∇ψ − βϕ∇m) + ψ[m− 2θ(·; β, ν)] = λψ − θ(·; β, ν)ϕ in Ω
(9)

The main observation is that the principal eigenvalue of L2 is always negative.

To see this observation, we let (λ, ψ) be a solution pair of L2[ψ] = λψ with ψ > 0
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and θ ≡ θ(·; β, ν). Multiplying L2[ψ] = λψ by e−(β/ν)mθ, integrating over Ω, and

utilizing the equation of θ: ∇ · (ν∇θ − βθ∇m) + θ(m− θ) = 0 in Ω

B[θ] = ∂nθ = 0 on ∂Ω

we can derive

λ

∫
Ω

e−(β/ν)mθψdx =

∫
Ω

νe−(β/ν)mθ∇[e−(β/ν)m∇(e−(β/ν)mψ)] + (m− 2θ)e−(β/ν)mθψdx

=

∫
Ω

νe−(β/ν)mψ∇[e−(β/ν)m∇(e−(β/ν)mθ)] + (m− 2θ)e−(β/ν)mθψdx

= −
∫
Ω

e−(β/ν)mθ2ψdx < 0

Let λ1 be the principal eigenvalue of L1. Suppose that (0, θ(x; β, ν)) is stable,

and if (9) has a solution pair with λ1 ≥ 0. Since the principal eigenvalue of L2 is

negative, which implies that λ1 lies in the resolvent set of L2; hence there exists a

unique solution ψ of (L2 − λ1I)[ψ] = −θϕ. In other words, (9) has a non-trivial

solution with λ1 ≥ 0, which contradicts the local stability of (0, θ(x; β, ν)).

Suppose that (0, θ(x; β, ν)) is unstable, then there exists a non-trivial solution

pair (λ, ϕ, ψ) with Re(λ) > 0. If ϕ ≡ 0, then L2 has an eigenvalue with positive

real parts; hence its principal eigenvalue is positive, which is a contradiction. Con-

sequently, ϕ ̸= 0 implies that L1 has an eigenvalue with positive real parts; hence

its principal eigenvalue is positive.

To determine the global stability of semi-trivial equilibria, the first step is to

show that the full system (2) is a strongly monotone dynamical system if N = 2:

Lemma 1.8. Let (u1(x, t), v1(x, t)) and (u2(x, t), v2(x, t)) be two solutions of the

full system (2) with u1(x, 0) ≥ u2(x, 0) and v1(x, 0) ≤ v2(x, 0) for x ∈ Ω, then

u1(x, t) ≥ u2(x, t) and v1(x, t) ≤ v2(x, t) for x ∈ Ω and t > 0. Furthermore, if

u1(x, 0) ̸= u2(x, 0) and v1(x, 0) ̸= v2(x, 0) for some x ∈ Ω, then u1(x, t) > u2(x, t)

and v1(x, t) < v2(x, t) for x ∈ Ω and t > 0.
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Proof. We set (ui, vi) 7→ (e−(α/µ)mui, e
−(β/ν)mvi) to get the equivalent form:

∂ui
∂t

= µ∆ui + α∇m · ∇ui + ui(m− e(α/µ)mui − e(β/ν)mvi) in Ω× (0,∞)

∂vi
∂t

= ν∆vi + β∇m · ∇vi + vi(m− e(α/µ)mui − e(β/ν)mvi) in Ω× (0,∞)

B[ui] = ∂nui = 0, B[vi] = ∂nvi = 0 on ∂Ω× (0,∞)

(10)

Since vi(x, t) is bounded in Ω × [0,∞) for any given initial data vi(x, 0), we can

choose a constant K > 0 (which may be dependent on the initial data) such that

vi(x, t) < K for all (x, t) ∈ Ω × [0,∞). Consequently, (10) becomes cooperative

via the change of variables (ui, vi) 7→ (ui, K − vi). Since u1(x, 0) ≥ u2(x, 0) and

K − v1(x, 0) ≥ K − v2(x, 0) for all x ∈ Ω, by the Parabolic Comparison Principle

(see Appendix), we have u1(x, t) ≥ u2(x, t) and K − v1(x, t) ≥ K − v2(x, t) for

all x ∈ Ω and t > 0. The last part of the Lemma follows from the Parabolic Hopf

Boundary Lemma and the Parabolic Strong Maximum Principle (see Appendix).

Combining with Lemma 1.5(b), Theorem 1.6, and Lemma 1.8, we can apply the

following theorem which provides a criterion to determine the global stability.

Theorem 1.9. (c.f. [14], Theorem B) Suppose that N = 2 and (A1) holds. Let

(θ(x;α, µ), 0) and (0, θ(x; β, ν)) be the semi-trivial equilibria of the 1st and 2nd

species respectively. If (θ(x;α, µ), 0) is locally stable, (0, θ(x; β, ν)) is unstable, and

the full system (2) has no positive equilibria, then (θ(x;α, µ), 0) is globally asymp-

totically stable. The criterion for the global stability of (0, θ(x; β, ν)) is analogous.
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We establish the following scheme to close this subsection.

Problems Main Ideas Related Theorems

Local Stability eigenvalue problems determine the sign of Theorem 1.7

principal eigenvalues

No Coexistence argue by contradiction Lemma 3.5

Lemma 4.10

Global Stability Theorem 1.9

Briefly speaking, the first task is to determine the local stability via the sign of

principal eigenvalues. The second task is to rule out the possibility of positive

equilibria. This may be the most difficult part because we need to compare with

some integral identities which are not a priori known (see Lemma 3.5) or to control

the asymptotic behavior of principal eigenvalues with respect to some parameters

(see Theorem 4.5 and Lemma 4.10). As long as all the conditions in Theorem 1.9

are fulfilled, the global stability follows directly.
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2 The Main Result of Type A

In Type A, all advective tendencies are zero; hence the full system (2) becomes
∂ui
∂t

= di∆ui + ui(m−
N∑
j=1

uj) in Ω× (0,∞)

B[ui] = ∂nui = 0 on ∂Ω× (0,∞)

(11)

and the scalar equation (3) becomes
∂ui
∂t

= di∆ui + ui(m− ui) in Ω× (0,∞)

B[ui] = ∂nui = 0 on ∂Ω× (0,∞)

We note that Theorem 1.6 guarantees the existence and uniqueness of the positive

steady-state of (11) which is a global attractor among all non-negative and not iden-

tically zero continuous initial data. In this section, the i-th semi-trivial equilibrium

is denoted by Ui(x) = (0, ..., ũi(x), ..., 0) with ũi(x) > 0 in Ω. To understand the

local stability of Ui(x), we need to determine the sign of principal eigenvalues of the

linearization operator of the full system around Ui(x)
4:

∂vi
∂t

= L2[ũi; di]vi − ũi
∑
j ̸=i

vj

∂vk
∂t

= L1[ũi; dk]vk for k ̸= i

(12)

where L1,L2 : D = {u ∈ C2+δ(Ω) : B[u] = 0 on ∂Ω} → Cδ(Ω) are two linear

operators defined by L1[ũi; dk] = dk∆+ (m− ũi) for k ̸= i

L2[ũi; di] = di∆+ (m− 2ũi)

Even though (12) is a coupled system, we will show that it suffices to discuss the

sign of principal eigenvalues of L1[ũi; dk] (k ̸= i) and L2[ũi; di]. Since both m − ũi

and m− 2ũi lie in C2+δ(Ω), we investigate the eigenvalue problem: µ∆ϕ+ hϕ = λϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω

4We note that Theorem 1.7 deals with the case N = 2, not general N .
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for any given µ > 0 and h ∈ C2+δ(Ω).

By Lemma 1.4, we denote the principal eigenvalue of L1[ũi; dk] by λ(m− ũi, dk),

and the principal eigenvalue of L2[ũi; di] by λ(m − 2ũi, di). The following lemmas

provide more characterizations of the principal eigenvalues:

Lemma 2.1. (c.f.[9]) λ(h, µ) satisfies the following properties

(a) λ(h, µ) is continuous and non-increasing in µ, and strictly decreasing in µ if

h is not a constant function.

(b) If h1(x) ≥ h2(x) for all x ∈ Ω, then λ(h1, µ) ≥ λ(h2, µ). Strict inequality

occurs if h1(x) ̸= h2(x) for some x ∈ Ω.

Proof. Put α = 0 and m = h into (6), we have

σ(h, µ) = inf
ϕ∈H1(Ω),ϕ ̸=0

µ
∫
Ω
|∇ϕ|2dx−

∫
Ω
hϕ2dx∫

Ω
ϕ2dx

hence (a) and (b) follow immediately.

Lemma 2.2. (c.f.[1])

λ(m− ũi, dk)

 > 0 if i > k

< 0 if i < k

λ(m− 2ũi, di) < 0 for i = 1, 2, ...N

L1, L2 have bounded inverses whenever the corresponding principal eigenvalue is

less than zero, and (−L1)
−1, (−L2)

−1 are positive operators in the sense that v ≥ 0

implies (−L1)
−1v ≥ 0 and (−L2)

−1v ≥ 0, and the inequalities are strict if v ̸= 0

somewhere in Ω.

Proof. By definition, ũi is a positive function that satisfies

di∆ũi + ũi(m− ũi) = 0

hence ũi is the principal eigenfunction with the corresponding principal eigenvalue

λ(m − ũi, di) = 0. Since di > dk for i > k, Lemma 2.1(a) implies λ(m − ũi, dk) >

λ(m − ũi, di) = 0. The case i < k follows similarly. Also, Lemma 2.1(b) implies
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λ(m− 2ũi, di) < λ(m− ũi, di) = 0.

To prove the second assertion, we apply the Schauder interior estimates (ref.[10],

Theorem 6.2) to get a constant c > 0 which is independent of u such that

∥u∥C2+δ(Ω) ≤ c(∥Li∥Cδ(Ω) + ∥u∥Cδ(Ω)) (i=1,2)

Now that C2+δ compact↩→ Cδ and 0 is not an eigenvalue of Li whenever the corresponding

principal eigenvalue is less than zero, by the Fredholm alternative (ref.[10], Theorem

5.3), L−1
i exists and it is bounded. The positivity of (−L1)

−1 and (−L2)
−1 follows

from maximum principles (ref.[12], Lemma 14.3 and Theorem 16.6).

Theorem 2.3. (c.f.[1]) U1(x) is hyperbolic and locally asymptotically stable, whereas

Ui(x) for i ≥ 2 is unstable. Except the zero function, there are no other equlibria in

the biological feasible region K+ = {u ∈ C2+δ(Ω) : u ≥ 0}

Proof. For fixed i and 1 ≤ i ≤ N , it is biologically reasonable to consider the

linearized system of (11) around Ui(x) in K
+; thus we consider (12):

∂vi
∂t

= L2[ũi; di]vi − ũi
∑
j ̸=i

vj

∂vk
∂t

= L1[ũi; dk]vk for k ̸= i

with vk ≥ 0 for k ̸= i. It is known that the local stability can be determined by the

spectrum of the linearized system (ref. [15], Theorem 4.2). Since

L2[ũi; di]vi − ũi
∑
j ̸=i

vj ≤ L2[ũi; di]vi

we can conclude that the largest real parts of eigenvalues of the linearized system is

smaller than

max{λ(m− ũi, dk), λ(m− 2ũi, di) : k ̸= i}

If i = 1, then all eigenvalues have negative real parts by Lemma 2.2. Consequently,

U1(x) is hyperbolic and locally aymptotically stable. If i ≥ 2, then λ(m− ũi, di−1) >

0, which implies the unstability.

Suppose that the final assertion of the theorem is false; hence another nonzero

equilibrium exists in K+. By a rearrangement of indices if necessary, the equilibrium
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can be of the form (u′1, u
′
2, ..., u

′
i, 0, ..., 0), 2 ≤ i ≤ N and uj ≥ 0 is not identically

zero for all 1 ≤ j ≤ i. Put the equilibrium into the system (11), we get

dj∆u
′
j + u′j(m−

i∑
k=1

u′k) = 0

for all 1 ≤ j ≤ i; hence λ(m−
i∑

k=1

u′k, dj) = 0 for all 1 ≤ j ≤ i. But
i∑

k=1

u′k is not a

constant function; hence Lemma 2.1(b) implies

0 = λ(m−
i∑

k=1

u′k, di) < λ(m−
i∑

k=1

u′k, di−1) = 0

which is a contradiction.

Proof of Theorem 1.1

Proof. The part (a) follows from Theorem 2.3. The part (b) follows from Theorem

2.3 and Theorem 1.9.

An Interlude: Type A Under Effects of Mutation

In this subsection, the genetics of N species or N different phenotypes of the

same species are assumed to be haploid; hence their process of mutation is simple

enough that we can take the effects of mutation into account:
∂ui
∂t

= di∆ui + ui(m−
N∑
j=1

uj) + ϵ
∑
j=1

Mijuj in Ω× (0,∞)

B[ui] = ∂nui = 0 on ∂Ω× (0,∞)

(13)

where Mijuj is the density converted from uj into ui via mutation. The effects of

mutation is represented by the mutation matrix M = [Mij]N×N . Even though it

is believed that mutation happens randomly, but for mathematical simplicity, we

assume that M is a constant matrix satisfying:

Mij

 < 0 if i = j self-mutation is harmful

≥ 0 if i ̸= j
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and we focus on the case of small mutation rate 0 < ϵ≪ 1.

What are behaviors of semi-trivial equilibria under effects of mutation? A stan-

dard method is to utilize the implicit function theorem to describe the perturbation

of Ui(x), but the fairly interesting part is to show that after perturbation

U1(x) still lies in the biological feasible region K+, even in intK+.

For notational correctness, we consider u as column vectors. To utilize the

implicit function theorem, we define the operator F : DN × R → [Cδ(Ω)]N by

F (u, ϵ) = D(∆u) + u(m− 1 · u) + ϵMu

where D = diag[d1, d2, ..., dN ] and 1 = [1, 1, ..., 1]T . Equilibria of the perturbed

system (13) are solutions of F (u, ϵ) = 0, and we try to solve u in terms of ϵ such

that F (u(ϵ), ϵ) = 0 for all small ϵ > 0. The Frechét derivative of F at (U1(x), 0) is

the linear operator L : DN → [Cδ(Ω)]N given by

L[u] = D(∆u) + u(m− 1 · U1)− (1 · u)U1 (14)

The components of L are
(L[u])1 = L2[ũ1; d1]u1 −

N∑
j=2

ũ1uj

(L[u])i = L1[ũ1; di]ui for i ≥ 2

hence L can be written as

L =



L2[ũ1; d1] −ũ1 . . . −ũ1 −ũ1
0 L1[ũ1; d2] . . . 0 0
...

...

0 0 . . . L1[ũ1; dN−1] 0

0 0 . . . 0 L1[ũ1; dN ]


Similar arguments of Lemma 2.2 can prove that L has a bounded inverse, but the

structure of L−1 can be described explicitly:

−L−1 =



−L−1
2 −L−1

2 (ũ1L
−1
1 [ũ1; d2]) . . . −L−1

2 (ũ1L
−1
1 [ũ1; dN ])

0 −L−1
1 [ũ1; d2] . . . 0

...
...

0 0 . . . 0

0 0 . . . −L−1
1 [ũ1; dN ]


(15)
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where −L−1
2 = −L−1

2 [ũ1; d1]. By Lemma 2.2, each diagonal entry of −L−1 is a

positive operator and other nonzero off-diagonal entry is a bounded operator.

Theorem 2.4. (c.f.[1]) There exists ϵ0 > 0 such that the perturbed system (13) has

an equilibrium U1(x; ϵ) ∈ [C2+δ(Ω)]N for 0 < ϵ < ϵ0 with U1(x; 0) = U1(x), and

U1(x; ·) is real analytic, hyperbolic and locally asymptotically stable.

Proof. (c.f.[11], p.15) F is linear in ϵ, quadratic in u, and it has partial Frechét

derivatives up to infinitely many order of which power series converges in some

neighborhood of (U1, 0); hence F is analytic. We define G : DN ×R → [Cδ(Ω)]N by

G(u, ϵ) = u− L−1F (u, ϵ)

then G is analytic and G(U1, 0) = U1. Let DuG(u, ϵ) be the partial Frechét deriva-

tive of G at (u, ϵ), then DuG(U1, 0) = 0; thus there exists 0 < κ < 1 such that

∥DuG(u, ϵ)∥ ≤ κ in some neighborhood of (U1, 0). By the Contraction Mapping

Theorem, some ϵ0 > 0 exists such that there exists f : (0, ϵ0) → [C2+δ(Ω)]N which

is analytic and satisfies f(0) = U1, and F (f(ϵ), ϵ) = 0. Denote f(ϵ) = U1(·; ϵ), and

from Theorem 2.3 we can choose smaller ϵ0 > 0 to maintain the local stability and

hyperbolicity.

To ensure U1(ϵ) (≡ U1(x; ϵ)) has any biological meaning, we must show that it lies

in K+. Since ũ1(x) > 0 in Ω, it suffices to prove the other i-th (i ≥ 2) components

of U1(ϵ) remain non-negative under the perturbation. Define Û(ϵ) = U1(ϵ)−U1 and

fix i with 2 ≤ i ≤ N . To investigate the Taylor series of Û(ϵ), we put Û(ϵ) into (14)

to get

LÛ(ϵ) = D∆[U1(ϵ)− U1] + [m− 1 · U1][U1(ϵ)− U1]− {1 · [U1(ϵ)− U1]}U1

= D∆U1(ϵ) + [m− 1 · U1(ϵ)]U1(ϵ) + ϵMU1(ϵ)− ϵMU1(ϵ) + [1 · Û(ϵ)]Û(ϵ)

= −ϵM [U1 + Û(ϵ)] + [1 · Û(ϵ)]Û(ϵ)

Denote ∂kϵ Û(0) =
∂kÛ(ϵ)

∂ϵk
|ϵ=0. A direct computation and induction show

L∂1ϵ Û(0) = −MU1

L∂kϵ Û(0) =
k−1∑
j=1

[1 · ∂k−jϵ Û(0)]∂jϵ Û(0)− kM∂k−1
ϵ Û(0) for k ≥ 2
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Since L−1 exists, we substitute backward to obtain ∂1ϵ Û(0) = (−L−1M)U1 and

∂kϵ Û(0) = k!(−L−1M)kU1 + lower order term in (−L−1M)

If the principal term is of order k, then [∂jϵ Û(0)]i = 0 for j = 1, ..., k − 1. From the

special form of −L−1 (see (15)) and U1(x) = (ũ1(x), 0, ..., 0), we observe

[∂kϵ Û(0)]i ̸= 0 if and only if [M∂k−1
ϵ Û(0)]i ̸= 0 if and only if [MkU1]i ̸= 0

hence the sign of the principal term is determined by the (i, 1)-entry ofMk, denoted

by [Mk]i1, which is characterized by the following lemma:

Lemma 2.5. (c.f.[1]) For each i with 2 ≤ i ≤ N , there are two possibilities:

either [Mk]i1 = 0 for all k ≥ 1 or there exists p = p(i) with 1 ≤ p(i) ≤ N − 1 such

that

[Mk]i1

 = 0 if 1 ≤ k < p

> 0 if k = p

Proof. 5 Suppose that [M j]i1 ̸= 0 for some j, then we can always choose p = p(i)

such that [Mk]i1 = 0 for 1 ≤ k < p and [Mp]i1 ̸= 0. If p ≥ N , then by the

Cayley-Hamilton theorem, [Mk]i1 = 0 for all k ≥ 1, which is a contradiction. If

1 ≤ p ≤ N − 1, then we must utilize the structure of M to guarantee [Mp]i1 > 0.

Define an oriented-graph on the vertices {1, 2, ..., N} as following: Two vertices

i and j are connected by an oriented-path pi,j started from i into j if Mij ̸= 0, and

we define Mij to be the weight on pi,j. An example is given by

1 2 3

-1 -1-1

11

2 2

and its corresponding matrix is 
−1 0 2

1 −1 1

2 0 −1


5The fairly simple and beautiful proof comes from Y. J. Cheng: R97221014@ntu.edu.tw
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Let Pj0,jk : pj0,j1 → pj1,j2 → ...→ pjk−1,jk be a total oriented-path of length |Pj0,jk | =

k connecting j0 and jk. Define the weight of Pj0,jk as ω(Pj0,jk) =Mj0j1Mj1j2 ...Mjk−1jk ,

then an inductive argument shows that

[Mk]i1 =
∑

|Pi,1|=k

ω(Pi,1)

Let p = p(i) be the least length of total oriented-paths connecting i and 1, then

[Mk]i1 = 0 for all 1 ≤ k < p, but each of them has no cycles pr,r (r = 1, ..., N) of

which weight is negative. Consequently, [Mp]i1 > 0.

Lemma 2.5 implies that either [∂kϵ Û(0)]i = 0 for all k ≥ 1 or [∂jϵ Û(0)]i = 0 for

1 ≤ j < p and [∂pϵ Û(0)]i = p![(−L−1M)pU1]i > 0 which is independent of ϵ. Thus,

we have proved the following theorem which concludes that U1(x; ϵ) lies in K
+, even

in intK+ under the effects of small mutation.

Theorem 2.6. (c.f.[1]) Let Û(ϵ) = U1(ϵ) − U1, and fix i with 2 ≤ i ≤ N , then for

0 < ϵ < ϵ0, either Û(ϵ)i = 0 in Ω or

Û(ϵ)i = ϵp(i)vi(x) +O(ϵp(i)+1)

where vi(x) > 0 for all x ∈ Ω.
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3 The Main Result of Type B

In Type B, there are two competing species and only the 1st species pursues

more favorable habitats; hence the full system (2) becomes
∂u

∂t
= ∇ · (µ∇u− αu∇m) + u(m− u− v) in Ω× (0,∞)

∂v

∂t
= ν∆v + v(m− u− v) in Ω× (0,∞)

B[u] = µ∂nu− αu∂nm = 0, B[v] = ∂nv = 0 on ∂Ω× (0,∞)

(16)

and the scalar equation (3) becomes
∂u

∂t
= ∇ · (µ∇u− αu∇m) + u(m− u) in Ω× (0,∞)

B[u] = µ∂nu− αu∂nm = 0 on ∂Ω× (0,∞)
(17)


∂v

∂t
= ν∆v + v(m− v) in Ω× (0,∞)

B[v] = ∂nv = 0 on ∂Ω× (0,∞)
(18)

We note that for each α ≥ 0 and µ, ν > 0, Theorem 1.6 guarantees the existence

and uniqueness of the positive steady-state ũ ≡ ũ(α, µ) ≡ θ(·;α, µ) of (17), ṽ ≡

ṽ(ν) ≡ θ(·; 0, ν) of (18) respectively, and each of them is a global attractor among

all non-negative and not identically zero continuous initial data.

To determine the local stability, we know from Theorem 1.7 that the semi-trivial

equilibrium (ũ, 0) is locally stable/unstable if and only if the principal eigenvalue of

the problem  ν∆ψ + ψ(m− ũ) = σψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω
(19)

is negative/positive. Similarly, (0, ṽ) is locally stable/unstable if and only if the

principal eigenvalue of the problem ∇ · (µ∇ϕ− αϕ∇m) + ϕ(m− ṽ) = τϕ in Ω

B[ϕ] = µ∂nϕ− αϕ∂nm = 0 on ∂Ω

or the equivalent form by taking ϕ 7→ e−(α/µ)mϕ µ∆ϕ+ α∇ϕ · ∇m+ ϕ(m− ṽ) = τϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
(20)
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is negative/positive. In the subsequent analysis, we always consider the equivalent

form because it is equipped with the Neumann boundary condition.

How can we investigate the effects of diffusion and small advective tendency

on the evolution of competition? The main idea is to examine the results by the

perturbation analysis of parameters (α, µ, ν) in (16) from (0, µ0, µ0) for some µ0 > 0.

For readers’ convenience, we collect a version of the implicit function theorem (ref.

[8], Theorem 3.5) :

Theorem 3.1. (c.f.[8]) Let X, Y and Z be Banach spaces and F : U ⊂ X×Y → Z

where U is an open subset. Suppose F (x, y) and Fy(x, y) are continuous in U and

F (x0, y0) = 0 for some (x0, y0) ∈ U . If the linear map Fy(x0, y0) : Y → Z has a

continuous inverse, then some neighborhood V of x0 exists such that for each x ∈ V ,

there exists a unique y(x) ∈ Y satisfying F (x, y(x)) = 0 and the mapping x 7→ y(x)

is differentiable.

Lemma 3.2. (c.f.[3]) Suppose that α0 ≥ 0 and µ0, ν0 > 0. The map from R2 to

C2+δ(Ω) given by (α, µ) 7→ ũ(α, µ) is differentiable in some neighborhood of (α0, µ0).

The map from R to C2+δ(Ω) given by ν 7→ ṽ(ν) is differentiable in some neigh-

borhood of ν0. Let σ0(α, µ, ν) and τ0(α, µ, ν) be the principal eigenvalues of (19)

and (20) respectively, then σ0(α, µ, ν), τ0(α, µ, ν) and their corresponding normal-

ized eigenfunctions depend differentiably on α, µ, and ν in some neighborhood of

(α0, µ0, ν0).

Proof. The main idea is to utilize Theorem 3.1 via comparison of principal eigen-

values. To show that ũ depends differentiably on α and µ, we set w̃ = e−(α/µ)mũ in

(17) and multiply e(α/µ)m, then µ∇ · (e(α/µ)m∇w̃) + e(α/µ)mw̃(m− e(α/µ)mw̃) = 0 in Ω

B[w̃] = ∂nw̃ = 0 on ∂Ω

Define Y = {w ∈ C2+δ(Ω) : ∂nw = 0 on ∂Ω} and F : R× R× Y → Cδ(Ω) by

F (α, µ, w) = µ∇ · (e(α/µ)m∇w) + e(α/µ)mw(m− e(α/µ)mw)

For any v ∈ Y , we calculate

DwF (α, µ, w)v =
d

dϵ
F (α, µ, w+ϵv)|ϵ=0 = µ∇·(e(α/µ)m∇v)+e(α/µ)mv(m−2e(α/µ)mw)
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To show that DwF (α0, µ0, w̃) is invertible, we must prove that for any h(x) ∈ Cδ(Ω),

the equation for v ∈ Y

µ0∇ · (e(α0/µ0)m∇v) + e(α0/µ0)mv(m− 2e(α0/µ0)mw̃) = h(x) in Ω

has a unique solution. Since F (α0, µ0, w̃) = 0 implies that ψ = w̃ is the positive

solution of the eigenvalue problem µ0∇ · (e(α0/µ0)m∇ψ) + e(α0/µ0)mψ(m− e(α0/µ0)m) = λψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω

with λ = 0; hence the principal eigenvalue λ1 = 0. By the variational characteriza-

tion of principal eigenvalues (8), the fact m− 2e(α0/µ0)mw̃ < m− e(α0/µ0)mw̃ implies

that the eigenvalue problem µ0∇ · (e(α0/µ0)m∇ψ) + e(α0/µ0)mψ(m− 2e(α0/µ0)m) = λ∗ψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω

has the principal eigenvalue λ∗1 < λ1 = 0; hence all other eigenvalues have negative

real parts. Now that 0 lies in the resolvent set of DwF (α0, µ0, w̃), we can conclude

that DwF (α0, µ0, w̃) has a continuous inverse; hence the differentiable dependence of

ũ on α and µ follows from Theorem 3.1. The proof for the differentiable dependence

of ṽ on µ is an analogy.

However, the proof for the differentiable dependences of σ0 and τ0 on α, µ and

ν need some modification. Multiplying (20) by e(α/µ)m yields µ∇ · (e(α/µ)m∇ϕ) + e(α/µ)mϕ(m− ṽ) = τe(α/µ)mϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω

Define G : (R2 × Y )× (Y × R) → Cδ(Ω)× R by

G(α, µ, ṽ, ϕ, τ) = (µ∇·(e(α/µ)m∇ϕ)+e(α/µ)mϕ(m−ṽ)−τe(α/µ)mϕ,
∫
Ω

e(α/µ)mϕ2dx−1)

The linearization of G with respect to ϕ and τ is D(ϕ,τ)G(α, µ, ṽ, ϕ, τ)(v, ρ) =

(µ∇ · (e(α/µ)m∇v) + e(α/µ)mv(m− ṽ)− τe(α/µ)mv − ρe(α/µ)mϕ, 2

∫
Ω

e(α/µ)mϕvdx)
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where (v, ρ) ∈ Y × R. Let τ ∗0 = τ0(α0, µ0, ν0) and ṽ = ṽ(ν0). To show that

D(ϕ,τ)G(α0, µ0, ṽ, ϕ0, τ
∗
0 ) is invertible, we should prove that for any (g, r) ∈ Cδ(Ω)×R,

the equations
µ0∇ · (e(α0/µ0)m∇v) + e(α0/µ0)mv(m− ṽ)− τ ∗0 e

(α0/µ0)mv − ρe(α0/µ0)mϕ0 = g(x)

2

∫
Ω

e(α0/µ0)mϕ0vdx = r
(21)

in Ω have a unique solution (v, ρ) ∈ Y × R. By a special version of the Fredholm

alternative (ref.[8], Theorem 1.10), v ∈ Y can be solved for given g ∈ Cδ(Ω) if∫
Ω

(ρe(α0/µ0)mϕ0 + g)ϕ0dx = 0

We normalize ϕ0 as

∫
Ω

e(α0/µ0)mϕ2
0dx = 1, then ρ is uniquely determined by ρ =

−
∫
Ω

ϕ0gdx. To show that v is uniquely determined, we observe that v has the form

v = v0 + sϕ0 where v0 is a given particular solution of the first equation of (21) and

s ∈ R. Substituting this form into the second equation of (21) and utilizing the

normalization of ϕ0 yield

2

∫
Ω

e(α0/µ0)mϕ0v0dx+ 2s = r

hence s is uniquely determined by s = r/2 −
∫
Ω

e(α0/µ0)mϕ0v0dx. By the Schauder

interior estimates (ref.[10], Theorem 6.2) the solution mapping from (g, r) to (v, ρ)

is continuous; thus the differentiable dependence of τ0 on α, µ and ν follows from

Theorem 3.1. The proof for the differentiable dependence of σ0 on α, µ and ν is an

analogy.

When (α, µ, ν) = (0, µ0, µ0), we know ũ = ṽ = θ where θ is the unique positive

steady-state of  µ0∆θ + θ(m− θ) = 0 in Ω

B[θ] = ∂nθ = 0 on ∂Ω
(22)

By Lemma 3.2, we let (α, µ, ν) = (α(s), µ(s), ν(s)) where α(s), µ(s), and ν(s) are

differentiable functions in a neighborhool of 0 with (α(0), µ(0), ν(0)) = (0, µ0, µ0).

When s = 0, ψ = p0θ is a positive solution of (19) with σ = 0 and ψ = p0θ is a
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positive solution of the equivalent form (20) with τ = 0 where p0 is any positive con-

stant; hence σ0(0, µ0, µ0) = τ0(0, µ0, µ0) = 0. To be consistent with Lemma 3.2, we

choose p0 = 1/

∫
Ω

θ2dx and require that the eigenfunctions ψ0 and ϕ0 corresponding

to σ0 and τ0 respectively satisfy∫
Ω

ψ2
0dx = 1,

∫
Ω

e(α/µ)mϕ2
0dx = 1

We express the parameters (α, µ, ν), the positive steady-state ũ and ṽ, the principal

eigenvalues σ0 and τ0, and the normalized eigenfunctions ψ0 and ϕ0 as

α = 0 + α1s+ o(s), µ = µ0 + µ1s+ o(s), ν = µ0 + ν1s+ o(s)

ũ = θ + u1s+ o(s), ṽ = θ + v1s+ o(s)

σ0 = 0 + σ1s+ o(s), τ0 = 0 + τ1s+ o(s)

ψ0 = p0θ + ψ1s+ o(s), ϕ0 = p0θ + ϕ1s+ o(s)

Substituting the above expressions into (17), (18), (19) and (20), dividing by s and

letting s→ 0, we obtain the following relations:

µ1∆θ + µ0∆u1 −∇ · (α1θ∇m) + u1(m− 2θ) = 0 in Ω (23)

ν1∆θ + µ0∆v1v1 + (m− 2θ) = 0 in Ω (24)

p0ν1∆θ + µ0∆ψ1 + ψ1(m− θ)− p0u1θ = σ1p0θ in Ω (25)

p0µ1∆θ + µ0∆ϕ1 + α1p0∇θ · ∇m+ ϕ1(m− θ)− p0v1θ = τ1p0θ in Ω (26)

where θ, u1, v1, ψ1 and ϕ1 satisfy the boundary conditions:

∂nθ = ∂nv1 = ∂nψ1 = ∂nϕ1 = 0, µ0∂nu1 − α1θ∂nm = 0 in ∂Ω

Since the sign of the principal eigenvalue σ0 (resp. τ0) is determined

by the sign of σ1 (resp. τ1), our next goal is to express σ1 and τ1 in terms

of α1, µ1, and ν1.

Multiplying (25) by θ, integrating over Ω, and utilizing the divergence theorem,

we have∫
Ω

ψ1[µ0∆θ + θ(m− θ)]dx− p0ν1

∫
Ω

|∇θ|2dx− p0

∫
Ω

u1θ
2dx = p0σ1

∫
Ω

θ2dx
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The first term vanishes according to (22). Dividing by p0 yields

−ν1
∫
Ω

|∇θ|2dx−
∫
Ω

u1θ
2dx = σ1

∫
Ω

θ2dx (27)

To evaluate the second integral in (27), we multiply (23) by θ, integrate over Ω and

utilize the divergence theorem and (23), then∫
∂Ω

θ(µ0∂nu1 − α1θ∂nm)ds− µ1

∫
Ω

|∇θ|2dx+ α1

∫
Ω

θ∇θ · ∇mdx =

∫
Ω

u1θ
2dx

By the boundary condition of u1, we have

−µ1

∫
Ω

|∇θ|2dx+ α1

∫
Ω

θ∇θ · ∇mdx =

∫
Ω

u1θ
2dx (28)

Substituting (28) into (27), we can express σ1 as

σ1 =
(µ1 − ν1)

∫
Ω
|∇θ|2dx− α1

∫
Ω
θ∇θ · ∇mdx∫

Ω
θ2dx

The process to obtain the expression of τ0 is roughly analogous. Multiplying

(26) by θ, integrating over Ω, utilizing the divergence theorem and (22), and dividing

by p0 yield

−µ1

∫
Ω

|∇θ|2dx+ α1

∫
Ω

θ∇θ · ∇mdx−
∫
Ω

v1θ
2dx = τ1

∫
Ω

θ2dx

Multiplying (24) by θ, integrating over Ω, and utilizing (22) yield

−ν1
∫
Ω

|∇θ|2dx+ α1

∫
Ω

θ∇θ · ∇mdx =

∫
Ω

v1θ
2dx

Substitution yields

τ1 = −σ1 =
(ν1 − µ1)

∫
Ω
|∇θ|2dx+ α1

∫
Ω
θ∇θ · ∇mdx∫

Ω
θ2dx

(29)

We note that ∇θ is not identically zero since m(x) is not a constant function.

The signs of σ1 and τ1 can be determined and independent of θ if we can guarantee

that

∫
Ω

θ∇θ ·∇mdx is always of the same sign. This is not obvious, but the following

lemma which may be surprising proves that

∫
Ω

θ∇θ · ∇mdx is always positive if the

shape of the environment is convex.
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Lemma 3.3. (c.f.[3]) Suppose that Ω ⊂ Rl is convex, then

∫
Ω

θ∇θ · ∇mdx > 0.

Proof. Differentiating the equation 6 ∆θ + θ(m− θ) = 0 in Ω

B[θ] = ∂nθ = 0 on ∂Ω
(30)

and taking dot product with ∇θ, we have

∇θ · ∇(∆θ) + |∇θ|2(m− 2θ) + θ∇θ · ∇m = 0 in Ω

A straightforward computation yields the identity

∇θ · ∇(∆θ) + |D2θ|2 = 1

2
∆(|∇θ|2)

hence we have

1

2
∆(|∇θ|2)− |D2θ|2 + |∇θ|2(m− 2θ) + θ∇θ · ∇m = 0 in Ω (31)

Integrating (31) over Ω and utilizing the divergence theorem, we have∫
Ω

θ∇θ · ∇mdx =

∫
Ω

|D2θ|2 − |∇θ|2(m− 2θ)dx− 1

2

∫
∂Ω

∂n(|∇θ|2)ds (32)

Since θ is a positive solution of (30); hence the eigenvalue problem ∆ϕ+ ϕ(m− θ) = λϕ in Ω

B[θ] = ∂nϕ = 0 on ∂Ω

has the principal eigenvalue λ1 = 0. However, by the variational characterization of

the principal eigenvalue, we know

λ1 = sup
ϕ∈H1(Ω),ϕ ̸=0

∫
Ω
[−|∇ϕ|2 + ϕ2(m− θ)]dx∫

Ω
ϕ2dx

hence ∫
Ω

[−|∇ϕ|2 + ϕ2(m− θ)]dx ≤ λ1

∫
Ω

ϕ2dx = 0

for any ϕ ∈ H1(Ω) and ϕ ̸= 0. Since θ ∈ C2+δ(Ω), we have θxi ∈ H1(Ω) for each i

and ∫
Ω

[−|∇θxi|2 + θ2xi(m− θ)]dx ≤ 0

6θ may not be three-times differentiable, but (32) still holds.
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Summing over i yields ∫
Ω

[−|D2θ|2 + |∇θ|2(m− θ)]dx ≤ 0

Thus, (32) can be rewritten as∫
Ω

θ∇θ · ∇mdx =

∫
Ω

θ|∇θ|2dx− 1

2

∫
∂Ω

∂n(|∇θ|2)ds

+

∫
Ω

|D2θ|2 − |∇θ|2(m− θ)dx

≥
∫
Ω

θ|∇θ|2dx− 1

2

∫
∂Ω

∂n(|∇θ|2)ds

which is positive if ∫
∂Ω

∂n(|∇θ|2)ds ≤ 0

To prove the above inequality, it suffices to show that ∂n(|∇θ|2) ≤ 0 on ∂Ω. Fix

x∗ ∈ ∂Ω, and let x∗ = 0 without any loss of generality. Since Ω is convex, we can

choose a local coordinate system, still denoted by x, such that Ω can be expressed

by xl = f(x1, ..., xl−1) where f(x1, ..., xl−1) is a concave function with f(0) = 0,

∇f(0) = 0, and D2f(0) is non-positive definite. Near x∗ = 0, the unit outer normal

is given by n =
(−∇f, 1)√
1 + |∇f |2

; hence ∂nθ = 0 implies θxl =
l−1∑
j=1

θxjfxj . Differentiating

the equation with respect to xk (k = 1, ..., l − 1) and putting x1 = ... = xl−1 = 0

yield θxlxk =
l−1∑
j=1

θxj(0)fxjxk(0). Since (0, ..., 0, 1) is the unit outer normal at x∗ = 0,

we have θxl(0) = 0 and

∂n(|∇θ|2)(0) = (|∇θ|2)xl(0) = 2
l∑

j=1

θxj(0)θxjxl(0) = 2
l∑

j=1

θxj(0)θxlxj(0)

= 2
l−1∑
j=1

θxj(0)
l−1∑
k=1

θxk(0)fxkxj(0) + 2θxl(0)θxlxl(0)

= 2
l−1∑
j,k=1

θxk(0)fxkxj(0)θxj(0) ≤ 0

By (29) and Lemma 3.3, we can derive the following theorem which concludes

that (ũ, 0) is locally stable if α is sufficiently small, but not too small relative to the

difference µ− ν.
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Theorem 3.4. (c.f.[3]) Suppose that Ω ⊂ Rl is convex. Let

(α, µ, ν) = (α1s+ o(s), µ0 + µ1s+ o(s), µ0 + ν1s+ o(s))

then for sufficiently small s > 0, we have

σ0(α, µ, ν) < 0 < τ0(α, µ, ν)

provided that

α1 > (µ1 − ν1)

∫
Ω
|∇θ|2dx∫

Ω
θ∇θ · ∇mdx

Theorem 3.4 shows that the quantity

∫
Ω
|∇θ|2dx∫

Ω
θ∇θ · ∇mdx

may play an important

role in studying the dynamics of the full system (16). Hence, for µ > 0, since ∇θ is

not identically zero, its reciprocal

α∗(µ) =

∫
Ω
θ(x;µ)∇θ(x;µ) · ∇m(x)dx∫

Ω
|∇θ(x;µ)|2dx

is always well-defined, and α∗(µ) > 0 if Ω is convex by Lemma 3.3. To determine

the global stability of (ũ, 0), we need to rule out the possibility of positive equilibria.

Lemma 3.5. (c.f.[4]) Suppose that m(x) is not a constant function. Let (α, µ, ν) =

(α1s+o(s), µ0+µ1s+o(s), µ0+ν1s+o(s)). If α
∗(µ0) ̸= 0 and α1 ̸= (µ1−ν1)/α∗(µ0),

then the full system (16) has no positive equilibria for sufficiently small s > 0.

Remark . In Lemma 3.5, Ω is not necessarily convex.

Proof. Suppose that (16) has a family of positive equilibria {(us, vs)} where s > 0

is sufficiently small. By elliptic regularity, that is, a process consists of an a priori

global Schauder estimate (ref.[10], Theorem 6.30), the uniform boundedness of the

family in [C2+δ(Ω)]2, and the precompactness result (ref.[10], Lemma 6.36), then

passing to a subsequence if necessary, we have (us, vs) → (u∗, v∗) in [C2(Ω)]2 as

s→ 0 and u∗, v∗ ≥ 0 in Ω satisfy
µ0∆u

∗ + u∗(m− u∗ − v∗) = 0 in Ω

µ0∆v
∗ + v∗(m− u∗ − v∗) = 0 in Ω

B[u∗] = ∂nu
∗, B[v∗] = ∂nv

∗ = 0 on ∂Ω

(33)
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hence u∗ + v∗ satisfies µ0∆(u∗ + v∗) + (u∗ + v∗)[m− (u∗ + v∗)] = 0 in Ω

B[u∗ + v∗] = ∂n(u
∗ + v∗) = 0 on ∂Ω

(This is the crucial mathematical reason to assume (C4)). 7 By the

uniqueness of (22), either u∗ + v∗ ≡ 0 or u∗ + v∗ ≡ θ(·;µ0). If u∗ + v∗ ≡ 0, then

(us, vs) → (0, 0) uniformly in x as s → 0. Setting v̂s = vs/∥vs∥L∞(Ω), by elliptic

regularity, v̂s → v̂ in C2(Ω) as s→ 0 where v̂ ≥ 0 is not identically zero and satisfies µ0∆v̂ +mv̂ = 0 in Ω

B[v̂] = ∂nv̂ = 0 on ∂Ω

Multiplying the above equation by θ(·;µ0), integrating over Ω, and utilizing (22)

yield

∫
Ω

θ2(x;µ0)v̂(x)dx = 0, which is a contradiction. Hence u∗ + v∗ ≡ θ(·;µ0).

If u∗ ≡ 0 and v∗ ≡ θ(·;µ0), we set ûs = us/∥us∥L∞(Ω), then ûs satisfies ∇ · (µ∇ûs − αûs∇m) + ûs(m− us − vs) = 0 in Ω

B[ûs] = µ∂nûs − αûs∂nm = 0 on ∂Ω

By elliptic regularity, ûs → û in C2(Ω) as s → 0 where û ≥ 0 satisfies max
Ω

û = 1

and  µ0∆û+ û[m− θ(·;µ0)] = 0 in Ω

B[û] = ∂nû = 0 on ∂Ω

Therefore, û ≡ θ(·;µ0)/∥θ(·;µ0)∥L∞(Ω) by the uniqueness of (22).

Since us and vs satisfy
∇ · (µ∇us − αus∇m) + us(m− us − vs) = 0 in Ω

ν∆vs + vs(m− us − vs) = 0 in Ω

B[us] = µ∂nus − αus∂nm = 0, B[vs] = ∂nvs = 0 on ∂Ω

Multiplying the equation of us by vs, the equation of vs by us, subtracting and

integrating over Ω yield

α

∫
Ω

us∇vs · ∇mdx = (µ− ν)

∫
Ω

∇us · ∇vsdx (34)

7Here, we see that the full system (2) has a rather special ”2 in 1” structure, that is, two

equations with the same parameters can be added into one equation.
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Dividing both sides by s and ∥us∥L∞(Ω), we have

(α1 + o(1))

∫
Ω

ûs∇vs · ∇mdx = (µ1 − ν1 + o(1))

∫
Ω

∇ûs · ∇vsdx

Letting s→ 0, we obtain

α1

∫
Ω

θ(x;µ0)∇θ(x;µ0) · ∇m(x)dx = (µ1 − ν1)

∫
Ω

|∇θ(x;µ0)|2dx

Hence, α1 = (µ1 − ν1)/α
∗(µ0) which is a contradiction. The case for v∗ ≡ 0 and

u∗ ≡ θ(·;µ0) is analogous.

If u∗, v∗ ≥ 0 are not identically zero and satisfy u∗ + v∗ ≡ θ(·;µ0), then from

(33), (u∗, v∗) = (κθ(·;µ0), (1−κ)θ(·;µ0)) for some κ ∈ (0, 1). Dividing (34) by s and

letting s→ 0, then again α1 = (µ1 − ν1)/α
∗(µ0) which is a contradiction.

Proof of Theorem 1.2

Proof. By Theorem 3.4, (ũ, 0) is locally stable, whereas (0, ṽ) is unstable. Lemma 3.5

rules out the possibility of positive equilibria; hence (ũ, 0) is globally aymptotically

stable by Theorem 1.9.

Remark . We note that the assumption on the convexity in Theorem 1.2 is neces-

sary. In other words, for any µ > 0, we can construct a non-convex domain Ω ⊂ R2

and smooth function m(x) such that α∗(µ) < 0; hence by Theorem 3.4, Lemma 3.5

and Theorem 1.9, (0, ṽ) is globally asymptotically stable. See the section 3 of [3] and

the section 2.2 of [4].
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4 The Main Result of Type C

In Type C, both competing species move toward more favorable habitats; hence

the full system (2) becomes
∂u

∂t
= ∇ · (µ∇u− αu∇m) + u(m− u− v) in Ω× (0,∞)

∂v

∂t
= ∇ · (ν∇v − βv∇m) + v(m− u− v) in Ω× (0,∞)

B[u] = µ∂nu− αu∂nm = 0, B[v] = ν∂nv − βv∂nm = 0 on ∂Ω× (0,∞)

(35)

and the scalar equation (3) becomes
∂u

∂t
= ∇ · (µ∇u− αu∇m) + u(m− u) in Ω× (0,∞)

B[u] = µ∂nu− αu∂nm = 0 on ∂Ω× (0,∞)
(36)


∂v

∂t
= ∇ · (ν∇v − βv∇m) + v(m− v) in Ω× (0,∞)

B[v] = ν∂nv − βv∂nm = 0 on ∂Ω× (0,∞)
(37)

We note that for each α, β ≥ 0 and µ, ν > 0, Theorem 1.6 guarantees the existence

and uniqueness of the positive steady-state θ(·;α, µ) of (36), θ(·; β, ν) of (37) re-

spectively, and each of them is a global attractor among all non-negative and not

identically zero continuous initial data.

To determine the local stability, we know from Theorem 1.7 that the semi-trivial

equilibrium (θ(x;α, µ), 0) is locally stable/unstable if and only if the principal eigen-

value σ1 of the problem ∇ · (ν∇ψ − βψ∇m) + ψ[m− θ(·;α, µ)] = σψ in Ω

B[ψ] = ν∂nψ − βψ∂nm = 0 on ∂Ω
(38)

is negative/positive. Similarly, (0, θ(x; β, ν)) is locally stable/unstable if and only if

the principal eigenvalue τ1 of the problem ∇ · (µ∇ϕ− αϕ∇m) + ϕ[m− θ(·; β, ν)] = τϕ in Ω

B[ϕ] = µ∂nϕ− αϕ∂nm = 0 on ∂Ω
(39)

is negative/positive.

In Type B, the assumptions of similar diffustion (µ ≈ ν), small advective ten-

dency, and the convexity of the environment determine the sign of principal eigenval-

ues (see Theorem 3.4). In Type C, the situation becomes more complicated because
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the convexity assumption is dropped out and each species may have quite different

conditional dispersal. To deal with the situation, the main idea is to search

suitable ranges of parameters (α, β, µ, ν) where some important inequal-

ities are applicable.

Local Stability of (0, θ(x; β, ν))

To take the sign of τ1 for example. Let ϕ > 0 be the principal eigenfunction

with the corresponding principal eigenvalue τ1. We set ϕ 7→ e−(α/µ)mϕ to change

(39) into the equivalent form: µ∇ · (e(α/µ)m∇ϕ) + e(α/µ)mϕ[m− θ(·; β, ν)] = τ1e
(α/µ)mϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω

Dividing the above equation by ϕ and integrating over Ω, we obtain

µ

∫
Ω

e(α/µ)m|∇ϕ|2

ϕ2
dx+

∫
Ω

e(α/µ)m[m− θ(·; β, ν)]dx = τ1

∫
Ω

e(α/µ)mdx (40)

Since the first integral in left-hand side of (40) is positive, it is natural to expect

that the inequality ∫
Ω

e(α/µ)m[m− θ(·; β, ν)]dx > 0 (41)

holds, then we can conclude that (0, θ(x; β, ν)) is unstable. To prove (41), it suffices

to show ∫
Ω

e(α/µ)(m−∥θ2∥∞)[m− θ(·; β, ν)]dx > 0

where ∥θ2∥∞ = ∥θ(·; β, ν)∥L∞(Ω). Define

Ω+ = {x ∈ Ω : m(x) ≤ ∥θ2∥∞}, Ω− = {x ∈ Ω : m(x) > ∥θ2∥∞}

m∗ = max
Ω

m
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The main observation is that if ∥θ2∥∞ < m∗ holds 8 provided that β/ν lies

in some compact interval R, then∣∣∣∣∫
Ω+

e(α/µ)(m−∥θ2∥∞)[m− θ(·; β, ν)]dx
∣∣∣∣ ≤ ∫

Ω+

e(α/µ)(m−∥θ2|∥∞)|m− θ(·; β, ν)|dx

≤
∫
Ω+

|m− θ(·; β, ν)|dx ≤ 2∥m∥∞|Ω| <∞

holds whenever β/ν lies in R. Since θ(·; β, ν) depends continuously on β (see Lemma

3.2), we can define

ϵ ≡ 1

2
min
β/ν∈R

(m∗ − ∥θ2∥∞) > 0

and there exists r > 0 which is independent of β such that

m(x)− ∥θ2∥∞ ≥ 1

2
(m∗ − ∥θ2∥∞) ≥ ϵ, if x ∈ B(x0; r) ∩ Ω ⊂ Ω−

where m(x0) = m∗. Hence∫
Ω−

e(α/µ)(m−∥θ2∥∞)[m− θ(·; β, ν)]dx ≥
∫
B(x0;r)∩Ω

e(α/µ)(m−∥θ2∥∞)[m− θ(·; β, ν)]dx

≥
∫
B(x0;r)∩Ω

e(α/µ)ϵϵ→ ∞

as α→ ∞. As a result, we find that there exists a constant C1 = C1(µ, ν,m,Ω) > 0

which is independent of α and β such that (41) holds. Consequently, (0, θ(x; β, ν))

is unstable provided that α ≥ C1 and β/ν ∈ R.

What is the compact interval R? Before answering the question, we shall utilize

the maximum principles to gain some useful information.

Lemma 4.1. (c.f.[6]) Suppose that m is not a constant function, then the inequal-

ities

min
Ω

(me−(β/ν)m) < e−(β/ν)mθ(·; β, ν) < max
Ω

(me−(β/ν)m)) (42)

hold in Ω.

8We note that the inequality ∥θ2∥∞ < m∗ is a direct consequence of the Hopf Boundary Lemma

and the Strong Maximum Principle if α = 0; hence this inequality is not beyond our experience.

37



Proof. Setting w = e−(β/ν)mθ(·; β, ν), then w satisfies ν∆w + β∇w · ∇m+ w(m− e(β/ν)mw) = 0 in Ω

B[w] = ∂nw = 0 on ∂Ω
(43)

Let w(x0) = max
Ω

w > 0. If x0 ∈ Ω, then ∇w(x0) = 0 and ∆w(x0) ≤ 0; hence we

have m(x0) − e(β/ν)m(x0)w(x0) ≥ 0. If x0 ∈ ∂Ω and suppose m − e(β/ν)mw ≤ 0 near

x0, then the Hopf Boundary Lemma (ref.[10], Lemma 3.4) implies ∂nw > 0 which is

a contradiction. Consequently, from (43) and w > 0, we obtain

w(x0) ≤ m(x0)e
−(β/ν)m(x0) ≤ max

Ω
(me−(β/ν)m)

To show that the second inequality is strict, we let M1 = max
Ω

(me−(β/ν)m) and

w1(x) =M1 − w(x), then w1 satisfies

ν∆w1 + β∇w1 · ∇m− e(β/ν)m(M1 − w1)[me
−(β/ν)m −M1 + w1] = 0 in Ω

Multiplying the above identity out and utilizing the definition of M1, we obtain

ν∆w1+β∇w1 ·∇m+e(β/ν)mw1(w1−2M1+me
−(β/ν)m) = e(β/ν)m(me−(β/ν)m−M1) ≤ 0

where the last inequality is not identically zero since m is not a constant function.

Since w1 ≥ 0 in Ω, ∂nw1 = 0 on ∂Ω, and w1 − 2M1 + me−(β/ν)m ≤ 0, by the

Hopf Boundary Lemma (ref.[10], Lemma 3.4) and the Strong Maximum Principle

(ref.[10], Theorem 3.5) we have w1 = M1 − w(x) > 0 in Ω. The proof for the first

inequality is an analogy.

From Lemma 4.1, we may suspect that the mapping y 7→ ye−(β/ν)y plays an

important role. Since

d

dy
(ye−(β/ν)y) = e−(β/ν)y(1− β

ν
y)

we know that ye−(β/ν)y is increasing for y ≤ ν/β. If we consider m∗ ≤ ν/β, then

max
Ω

(me−(β/ν)m) ≤ m∗e−(β/ν)m∗

Combining with (42), we derive

θ(x; β, ν) < m∗e(β/ν)[m(x)−m∗] ≤ m∗
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for all x ∈ Ω if β/ν ≤ 1/m∗; hence the suitable compact interval R = [0, 1/max
Ω

m].

In addtion, we know that ye−(β/ν)y is decreasing for y ≥ ν/β. If we consider

min
Ω
m ≥ ν/β

(here we see the reason to assume m > 0 in Ω), then

min
Ω

(me−(β/ν)m) ≥ m∗e−(β/ν)m∗

and by (42) we obtain

θ(x; β, ν) > m∗e(β/ν)[m(x)−m∗]

for all x ∈ Ω if β/ν ≥ 1/min
Ω
m.

As a consequence, we have proved the following lemmas:

Lemma 4.2. (c.f.[6])

(a) If β/ν ≤ 1/max
Ω

m, then

θ(x; β, ν) < m∗e(β/ν)[m(x)−m∗] ≤ m∗

for all x ∈ Ω.

(b) If m > 0 in Ω and β/ν ≥ 1/min
Ω
m, then

θ(x; β, ν) > m∗e(β/ν)[m(x)−m∗]

for all x ∈ Ω. In particular, θ(x0; β, ν) > m∗ if m(x0) = m∗ for some x0 ∈ Ω.

Lemma 4.3. (c.f.[6]) Suppose that (A1) holds. If β/ν ≤ 1/max
Ω

m, then some

constant C1 = C1(µ, ν,m,Ω) > 0 exists such that (0, θ(x; β, ν)) is unstable provided

that α ≥ C1.

We note that in Lemma 4.2, the inequality θ(·; β, ν) < m∗ may not hold for all

β, but under the assumption (A3), we can establish an upper bound for θ(·; β, ν)

which is uniform in β.
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Lemma 4.4. (c.f.[6]) Suppose that (A3) holds, then there exists a constant K > 0

which is independent of β such that

θ(x; β, ν) ≤ Ke(β/ν)[m(x)−m∗] ≤ K (44)

for all x ∈ Ω.

Proof. We assume ν = 1 without any loss of generality. From the proof of Lemma

4.1, (44) holds uniformly for β ∈ [0, 2] by choosingK ≥ eβm
∗
max
Ω

me−βm. For β ≥ 2,

we set w(x; β) = e(β−1)m(x)θ(x; β) with θ(x; β) = θ(x; β, 1), then w satisfies

∆w + (β − 2)∇m · ∇w − w[(β − 1]|∇w|2 +∆m+ θ(·; β)−m] = 0 in Ω

Define z = z(β) ∈ Ω with w(z) = max
Ω

w. By the no-flux boundary condition and

(A3), we have ∂nw = w∂nm < 0 on ∂Ω; hence the Hopf Boundary Lemma (ref.[10],

Lemma 3.4) implies ∇w(z) = 0 and ∆w(z) ≤ 0. Consequently,

(β − 1)|∇w(z)|2 +∆m(z) + θ(z; β) ≤ m(z)

Hence, we have

(β − 1)|∇w(z)|2 ≤ m∗ −∆m(z) ≤ ∥m∥C2(Ω) (45)

and

θ(z; β) ≤ m∗ −∆m(z) ≤ ∥m∥C2(Ω)

Since x0 ∈ Ω is the unique point such that m∗ = m(x0), there exist κ1, κ2, and κ3

satisfying

|∇m(x)| ≥ κ1|x− x0|, κ2|x− x0|2 ≥ m∗ −m(x) ≥ κ3|x− x0|2 (46)

for all x ∈ Ω. By (45) and (46), we can derive

(β − 1)[m∗ −m(z)] ≤ κ2(β − 1)

κ21
|∇m(z)|2 ≤

κ2∥m∥C2(Ω)

κ21

Since w(x) ≤ w(z) implies θ(x; β) ≤ θ(z; β)e(β−1)[m(x)−m(z)], we have

e−β[m(x)−m∗]θ(x; β) ≤ e−β[m(x)−m∗]θ(z; β)e(β−1)[m(x)−m(z)]

= θ(z; β)e[m
∗−m(x)]+(β−1)[m∗−m(z)]

≤ ∥m∥C2(Ω)e
2m∗+(κ2/κ21)∥m∥C2(Ω) ≡ K

for all x ∈ Ω.
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We set ϕ 7→ e−(α/µ)mϕ to change (39) into the equivalent form: µ∆ϕ+ α∇ϕ · ∇m+ ϕ[m− θ(·; β, ν)] = τϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
(47)

hence it is natural to investigate the principal eigenvalue λ1(α) of the eigenvalue

problem:  µ∆ϕ+ α∇ϕ · ∇m+ ϕc = λ(α)ϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
(48)

where m ∈ C2(Ω), c ∈ C(Ω), and ϕ > 0 on Ω. The following theorem characterizes

the asymptotic behavior of principal eigenvalues of which proof is given in the next

subsection.

Theorem 4.5. (c.f.[5]) Suppose that all critical points of m are non-degenerate.

Let M be the set of points of local maximum of m, then

lim
α→∞

λ1(α) = max
x∈M

c(x)

Since x0 ∈ Ω is the unique point of global maximum of m(x) (see the assumption

(A3)); hence by Lemma 4.2(b), we have θ(x0; β, ν) > m∗ where m(x0) = m∗. By

Theorem 4.5, we observe that the principal eigenvalue τ1 = τ1(α) of (47) satisfies:

lim
α→∞

τ1(α) = max
x∈M

[m(x)− θ(x; β, ν)] = m∗ − θ(x0; β, ν) < 0

for any given β/ν with β/ν ≥ 1/min
Ω
m. We should notice that the above inequality

may be false for some range of β/ν. However, this inequality provides a clue to

expect that (0, θ(x; β, ν)) is locally stable.

Lemma 4.6. (c.f.[6]) Suppose that (A3) holds and m > 0 in Ω. For any η >

1/min
Ω
m, if β/ν ∈ [1/min

Ω
m, η], then some constant C2 = C2(µ, ν,m,Ω, η) > 0

exists such that (0, θ(x; β, ν)) is locally stable provided that α ≥ C2.

Remark . C2 depends on η which determines the range of β/ν; hence how large α

should be depends on β/ν.
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Proof. Suppose the statement is false, then there exist some η > 1/min
Ω
m, sequences

{αi, βi}∞i=1 with αi → ∞ and βi/ν ∈ [1/min
Ω
m] such that the eigenvalue problem ∇ · (µ∇ϕ− αiϕ∇m) + ϕ[m− θ(·; βi, ν)] = τϕ in Ω

B[ϕ] = µ∂nϕ− αiϕ∂nm = 0 on ∂Ω

has the principal eigenvalue τi ≥ 0 with the corresponding principal eigenfunction

ϕi > 0. Set ϕi 7→ e−(αi/µ)mϕi to change the above eigenvalue problem into the

equivalent form: µ∆ϕi + αi∇ϕi · ∇m+ ϕi[m− θ(·; βi, ν)] = τiϕi in Ω

B[ϕi] = ∂nϕi = 0 on ∂Ω

Passing to a subsequence if necessary, we let βi → β for some β/ν ≥ 1/min
Ω
m.

By the assumption (A3) and Lemma 4.2(b), we have θ(x0; β, ν)−m(x0) > 0 where

m(x0) = m∗. Set ϵ =
1

2
[θ(x0; β, ν) − m(x0)] > 0, and let τi(ϵ) be the principal

eigenvalue of the eigenvalue problem: µ∆ϕ+ αi∇ϕ · ∇m+ ϕ[m− θ(·; β, ν) + ϵ] = τϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω

Since β is a fixed number, we can apply Theorem 4.5 to obtain

lim
i→∞

τi(ϵ) = max
x∈M

[m(x)− θ(·; β, ν) + ϵ] = m(x0)− θ(x0; β, ν) + ϵ < 0

However, since θ(·; βi, ν) → θ(·; β, ν) uniformly as βi → β (see Lemma 3.2), we have

θ(·; βi, ν) > θ(·; β, ν) − ϵ in Ω for sufficiently large i. By the variational characteri-

zation of principal eigenvalues (8), we have τi(ϵ) ≥ τi for sufficiently large i; hence

τi ≥ 0 implies τi(ϵ) ≥ 0 for sufficiently large i, which is a contradiction.

Local Stability of (θ(x;α, µ), 0)

Let ψ > 0 be the principal eigenfunction with the corresponding principal

eigenvalue σ1, and we set ψ 7→ e−(β/ν)mψ to change (38) into the equivalent form: ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)] + ψ[m− θ(·;α, µ)] = σ1ψ in Ω

B[ψ] = ∂nψ = 0 on ∂Ω
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Dividing the above equation by e−(β/ν)mψ and integrating over Ω, we obtain∫
Ω

ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)]

e(β/ν)mψ
dx+

∫
Ω

e(β/ν)m[m− θ(·;α, µ)]dx = σ1

∫
Ω

e(β/ν)mdx

By the divergence theorem and the Neumann boundary condition, we have∫
Ω

ν∇ · [e(β/ν)m∇(e−(β/ν)mψ)]

e(β/ν)mψ
dx =

∫
Ω

νe(β/ν)m

(e−(β/ν)mψ)2
· |∇(e(β/ν)mψ)|2dx ≥ 0

hence given η > 0 and if β/ν ∈ [0, η], we have

σ1

∫
Ω

e(β/ν)mdx ≥
∫
Ω

e(β/ν)m[m− θ(·;α, µ)]dx =

∫
Ω

e(β/ν)mmdx−
∫
Ω

e(β/ν)mθ(·;α, µ)dx

≥
∫
Ω

e(β/ν)mmdx− e(β/ν)m
∗
∫
Ω

θ(·;α, µ)dx

≥
∫
Ω

mdx− eηm
∗
∫
Ω

θ(·;α, µ)dx

where we have utilized Lemma 1.5(a) for the last inequality. Since

∫
Ω

mdx > 0, we

find that if we can show

lim
α→∞

∫
Ω

θ(x;α, µ)dx = 0

then σ1 > 0 provided that α is sufficiently large, and thus (θ(x;α, µ), 0) is unstable.

Lemma 4.7. (c.f.[4]) Suppose that (A2) holds, then

lim
α→∞

∫
Ω

θ(x;α, µ)dx = 0

Proof. Multiplying the equation of θ1 ≡ θ(·;α, µ) ∇ · (µ∇θ1 − αθ1∇m) + θ1(m− θ1) = 0 in Ω

B[θ1] = µ∂nθ1 − αθ1∂nm = 0 on ∂Ω
(49)

by g ∈ S ≡ {g ∈ C2(Ω) : ∂ng = 0 on ∂Ω}, integrating over Ω, and utilizing the

boundary condition of g, we have

µ

∫
Ω

θ1∆gdx+ α

∫
Ω

θ1∇m · ∇gdx+
∫
Ω

θ1g(m− θ1)dx = 0 (50)

Integrating (49) over Ω and utilizing the boundary condition, we have∫
Ω

θ21dx =

∫
Ω

mθ1dx ≤ ∥m∥L2(Ω)∥θ1∥L2(Ω)
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hence ∥θ1∥L2(Ω) is uniformly bounded by ∥m∥L2(Ω). Therefore, passing to a subse-

quence if necessary, we assume θ1 → θ∗ weakly in L2(Ω) as α → ∞ and θ1 ≥ 0

almost everywhere in Ω. Dividing (50) by α and letting α→ ∞, then∫
Ω

θ∗∇m · ∇gdx = 0

holds for all g ∈ S. Since S is dense in H1(Ω), we have

∫
Ω

θ∗∇m · ∇gdx = 0

for all g ∈ H1(Ω). In particular, we put g = m to derive

∫
Ω

θ∗|∇m|2dx = 0;

hence θ∗|∇m|2 = 0 almost everywhere in Ω. Since the set of critical points of m has

Lebesgue measure zero (see the assumption (A2)), we have θ∗ = 0 almost everywhere

in Ω. Thus, θ1 → 0 weakly in L2(Ω) as α → ∞, which implies

lim
α→∞

∫
Ω

θ1χ(Ω)dx = lim
α→∞

∫
Ω

θ1dx = 0

where χ(Ω) is the characteristic function of Ω.

As a consequence, we have proved the following lemma:

Lemma 4.8. (c.f.[6]) Suppose that (A1) and (A2) hold. For any η > 0, if β/ν ∈

[0, η], then some constant C3 = C3(η) > 0 exists such that (θ(x;α, µ), 0) is unstable

provided that α ≥ C3.

Remark . C3 depends on η which determines the range of β/ν; hence how large α

should be depends on β/ν.

Advection-induced Coexistence

Combining with Lemma 1.5(b), Theorem 1.6, and Lemma 1.8, we can apply the

following theorem from the theory of monotone dynamical systems:

Theorem 4.9. (c.f.[13], Theorem 4) The full system (35) has at least one locally

stable equilibrium.
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Proof of Theorem 1.3(a)

Proof. By Lemma 4.3 and Lemma 4.8, both semi-trivial equilibria are unstable

provided that α ≥ max{C1, C3}. But Theorem 4.9 guarantees at least one locally

stable equilibrium. Consequently, such equilibrium must be a positive equilibrium.

Advection-induced Extinction

To determine the global stability, we need to rule out the possibility of positive

equilibria.

Lemma 4.10. (c.f.[6]) Suppose that (A3) holds and m > 0 in Ω. For any η >

1/min
Ω
m, if β/ν ∈ [1/min

Ω
m, η], then some constant C4 = C4(µ, ν,m,Ω, η) > 0

exists such that (35) has no positive equilibria provided that α ≥ C4.

Remark . C4 depends on η which determines the range of β/ν; hence how large α

should be depends on β/ν.

Proof. Suppose the statement is false, then there exist some η > 1/min
Ω
m, sequences

{αi, βi}∞i=1 with αi → ∞ and βi/ν ∈ [1/min
Ω
m] → β/ν ∈ [1/min

Ω
m] such that the

full system (35) has positive equilibria (Ui, Vi) with respect to (αi, βi). We set

Wi = e−(αi/µ)mUi to obtain the equivalent form: µ∇ · (e(αi/µ)m∇Wi) + e(αi/µ)mWi(m− Ui − Vi) = 0 in Ω

B[Wi] = ∂nWi = 0 on ∂Ω
(51)

For any 0 < ϵ < 1, we let λi(ϵ) be the principal eigenvalue of the eigenvalue problem µ∇ · (e(αi/µ)m∇ϕi) + e(αi/µ)mϕi[m− (1− ϵ)θ(·; β, ν)] = λi(ϵ)e
(αi/µ)mϕi in Ω

B[ϕi] = ∂nϕi = 0 on ∂Ω
(52)

where ϕi > 0 is the corresponding principal eigenfunction. Multiplying (51) by ϕi

and (52) by Wi, subtracting, and integrating over Ω yield∫
Ω

e(αi/µ)mWiϕi[Ui + Vi − (1− ϵ)θ(·; β, ν)]dx = λi(ϵ)

∫
Ω

e(αi/µ)mWiϕidx
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We observe that for fixed 0 < ϵ < 1, if Vi − (1− ϵ)θ(·; β, ν) > 0 in Ω for sufficiently

large i, then λi(ϵ) > 0 for sufficiently large i. Thus, from Theorem 4.5, we have

lim
i→∞

λi(ϵ) = max
x∈M

[m(x)− (1− ϵ)θ(x; β, ν)] = m∗ − (1− ϵ)θ(x0; β, ν) > 0

Letting ϵ→ 0, we derive m∗ ≥ θ(x0; β, ν), which contradicts to Lemma 4.2(b).

To justify the observation, it suffices to show Vi → θ(·; β, ν) uniformly in Ω as

i→ ∞. Since Vi and θ ≡ θ(·; β, ν) satisfy ∇ · (ν∇Vi − βVi∇m) + Vi(m− Ui − Vi) = 0 in Ω

B[Vi] = ν∂nVi − βVi∂nm = 0 on ∂Ω ∇ · (ν∇θ − βθ∇m) + θ(m− θ) = 0 in Ω

B[θ] = ν∂nθ − βθ∂nm = 0 on ∂Ω

respectively, we may expect that Ui → 0 in some norm as i → ∞. By the Com-

parison Principle, we know Ui ≤ θ(·;α, µ) for all i. Furthermore, Lemma 4.4, the

inequality (46), and the Dominated Convergence Theorem imply Ui → 0 in Lp(Ω)

as i → ∞ for all p > 1. By the elliptic regularity (see the proof of Lemma 3.5), we

have Vi → θ(·; β, ν) inW 2,p(Ω) as i→ ∞ for all p > 1; hence the Morray’s inequality

implies W 2,p(Ω) ↩→ C1(Ω) for p sufficiently large, which proves the observation.

Proof of Theorem 1.3(b)

Proof. For α ≥ max{C2, C3, C4}, (0, θ(x; β, ν)) is locally stable by Lemma 4.6,

whereas (θ(x;α, µ), 0) is unstable by Lemma 4.8. Lemma 4.10 rules out the possi-

bility of positive equilibria. Consequently, (0, θ(x; β, ν)) is globally asymptotically

stable by Theorem 1.9.
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The Asymptotic Behavior of Principal Eigenvalues

We devote this subsection to proving Theorem 4.5 which characterizes the

asymptotic behavior of principal eigenvalues λ1(α) that satisfy:
9 −∆ϕ− 2α∇ϕ · ∇m+ ϕc = λ1(α)ϕ in Ω

B[ϕ] = ∂nϕ = 0 on ∂Ω
(53)

where m ∈ C2(Ω), c ∈ C(Ω), and ϕ > 0 in Ω is the eigenfunction normalized by∫
Ω

e2αmϕ2dx = 1. It is clear that Theorem 4.5 is equivalent to

lim
α→∞

λ1(α) = min
x∈M

c(x)

Setting w = eαmϕ, since {w2(·;α)} is weakly compact and

∫
Ω

w2dx = 1, there exist

a subsequence {αj}∞j=1 with αj → ∞ as j → ∞ and a probability measure P such

that

lim
j→∞

∫
Ω

w2(x;αj)η(x)dx =

∫
Ω

η(x)dP, for all η ∈ C(Ω) (54)

The principal eiganvalues can be characterized by the variational characterization:

λ1(α) = inf∫
Ω e

2αmψ2dx=1

∫
Ω

e2αm(|∇ψ|2 + cψ)dx = inf∫
Ω v

2dx=1

∫
Ω

|∇v − αv∇m|2 + cv2dx(55)

where v = eαmψ. Since the limit of λ1(α) is not a priori known, we define

λ∗ = lim sup
α→∞

λ1(α), λ∗ = lim inf
α→∞

λ1(α)

The following lemma provides an upper bound of λ∗.

Lemma 4.11. (c.f.[6]) Suppose that all critical points of m are non-degenerate. Let

M be the set of points of local maximum of m, then

λ∗ ≤ min
x∈M

c(x)

9Notational convenience is the only reason to consider (53) rather than (48).
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Proof. Let x ∈ M, since m ∈ C2(Ω) and all critical points are non-degenerate, there

exists some sequence {βi}∞i=1 with βi → 0 as i→ ∞ such that

m(x) > max
∂B(x,βi)∩Ω

m

for all i. For each βi, define ri and di with 0 < di < ri < βi such that

min
B̄(x,di)∩Ω

m ≡ mi > Mi ≡ max
B(x,βi)\B(x,ri)∩Ω

m

Define

ui(x) =


1 if x ∈ B(x, ri)

βi − |x|
βi − ri

if x ∈ B(x, βi) \B(x, ri)

0 if x ∈ Rl \B(x, βi)

then the principal eigenvalues satisfy

λ1(α) ≤
∫
Ω
e2αmcu2i + e2αm|∇ui|2dx∫

Ω
e2αmu2i dx

≤ max
B̄(x,βi)

c+
e2αMiβli

|βi − ri|2dlie2αmi

Letting α→ ∞ first, and then i→ ∞, we derive λ∗ ≤ c(x) for all x ∈ M.

The proof in Lemma 4.11 explains the reason why we focus on the set M. To

show that λ∗ = λ∗, we select a subsequence {αj}∞j=1 with αj → ∞ as j → ∞ such

that lim
j→∞

λ1(αj) = λ∗. From (55), we obtain

λ∗ ≥ lim
j→∞

∫
Ω

c(x)w2(x;αj)dx =

∫
Ω

c(x)dP (56)

The main observation is that if the support of P is contained M, then

combining with Lemma 4.11, we can derive∫
Ω

c(x)dP ≥ min
x∈M

c(x)

∫
Ω

dP = min
x∈M

c(x) ≥ λ∗ (57)

Thus, lim
α→∞

λ1(α) = min
x∈M

c(x), and Theorem 4.5 follows from (56) and (57).

How can we measure the support of P? According to the main observation, it

is natural to classify points in Ω \M firstly:

1. Non-critical interior points:

Ω1 ≡ {x ∈ Ω : |∇m(x)| > 0}
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2. Non-degenerate critical interior points which are not points of local maxima:

Ω2 ≡ {x ∈ Ω : ∇m(x) = 0, ∃e ∈ Sl−1 ∋ (e · ∇)2m(x) > 0}

where Sl−1 is the unit sphere in Rl and the term (e·∇)2m(x) > 0 means that D2m(x)

is positive-definite along the direction e.

To classify the boundary points, we define the operator ∇∂Ω ≡ ∇−n∂n which is

the gradient restricted to ∂Ω, and the boundary critical points x are defined as x ∈ ∂Ω

satisfying ∇∂Ωm(x) = 0. We note that the condition ∇∂Ωm(x) = 0 is equivalent

to |∇m(x)| = |∂nm(x)|. The boundary Hessian of m, denoted by D2
∂Ωm, is defined

as follows: Let x ∈ ∂Ω, we make a rotation such that n(x) = −el ≡ (0, ..., 0,−1).

Locally ∂Ω can be written as a graph xl = f(x′) where x = (x′, xl) and fxi(x
′) = 0

for i = 1, ..., l − 1, then m(x) = m(x′, f(x′)) and

∇∂Ωm(x) = ∇m(x)− n∂nm(x) = (mx1(x), ...,mxl−1
(x), 0)

D2
∂Ωm(x) ≡ [mxixj(x) +mxl(x)fxixj(x

′)](l−1)×(l−1)

Non-degenerate boundary critical points x ∈ ∂Ω can be classified as follows:

Points of boundary local minima:

{x : |∇m(x)| = −∂nm(x) > 0 ∧D2
∂Ωm(x) > 0} ∪ {x : |∇m(x)| = 0 ∧D2m(x) > 0}

Points of boundary local maxima:

{x : |∇m(x)| = ∂nm(x) > 0 ∧D2
∂Ωm(x) < 0} ∪ {x : |∇m(x)| = 0 ∧D2m(x) < 0}

Boundary saddle points:

{x : |∇m(x)| = −∂nm(x) > 0 ∧ ∃e ∈ Sl−1, e ⊥ n(x) ∋ (e · ∇)2m(x) < 0}

{x : |∇m(x)| = ∂nm(x) > 0 ∧ ∃e ∈ Sl−1, e ⊥ n(x) ∋ (e · ∇)2m(x) > 0}

{x : |∇m(x)| = 0 ∧ ∃e1, e2 ∈ Sl−1, (e1 · ∇)2m(x) > 0 > (e2 · ∇)2m(x)}

We continue classifying points in Ω \M:

3. Non-critical boundary points:

Ω3 ≡ {x ∈ ∂Ω : |∇m(x)| > |∂nm(x)| ∨ |∇m(x)| < |∂nm(x)|}

4. Non-degenerate boundary critical points which are not points of local maxima:

Ω4 ≡ {x ∈ ∂Ω : |∇m(x)| = ∂nm(x) > 0∧∃e ∈ Sl−1, e ⊥ n(x) ∋ (e ·∇)2m(x) > 0}

Ω5 ≡ {x ∈ ∂Ω : |∇m(x)| = −∂nm(x) > 0}

Ω6 ≡ {x ∈ ∂Ω : |∇m(x)| = 0 ∧ ∃e ∈ Sl−1 ∋ (e · ∇)2m(x) > 0}
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A direct observation shows that

Ω \M ⊂
6∪
i=1

Ωi

As a result, the support of P is contained in M if we can show P (Ωi) = 0

for i = 1, ..., 6. How can we compute P (Ωi)? A surprising guideline follows from

the simple inequality:

c∗ − c∗ ≥
∫
Ω

|∇w(x;α)− αw(x;α)∇m(x)|2dx (58)

where c∗ = min
Ω
c and c∗ = max

Ω
c because (55) implies c∗ ≥ λ1(α) by taking v =

eαm/∥eαm∥L2(Ω) and thus the inequality

c∗ −
∫
Ω

|∇w(x;α)− αw(x;α)∇m(x)|2dx

≥ λ1(α)−
∫
Ω

|∇w(x;α)− αw(x;α)∇m(x)|2dx =

∫
Ω

c(x)w2(x;α)dx ≥ c∗

holds for all α ∈ R.

Lemma 4.12. (c.f.[5]) P (Ω1) = 0 and P (Ω2) = 0.

Proof. Fix x̃ ∈ Ω1, there exist K > 0 and R > 0 such that |∇m| > K in B(x̃, 2R) ⊂

Ω. Let ρ be a smooth cut-off function satisfying

ρ = 1 in B(0, 1), ρ = 0 in Rl \B(0, 2), 0 ≤ ρ ≤ 1, |∇ρ| ≤ 2 in B(0, 2)

Setting ξ(x) = ρ(
x− x̃

R
), then

ξ = 1 in B(x̃, R), ξ = 0 in Rl \B(x̃, 2R), 0 ≤ ξ ≤ 1, |∇ξ| ≤ 2

R
in B(x̃, 2R)

From (54), we have

P (B(x̃, R)) = lim
αj→∞

∫
B(x̃,R)

w2(x;αj)dx ≤ lim
α→∞

∫
Ω

ξ2(x)w2(x;α)dx

hence if we can show lim
α→∞

∫
Ω

ξ2(x)w2(x;α)dx = 0, then P (B(x̃, R)) = 0, and thus

P (Ω1) = 0.
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From (58), a careful calculation gives

c∗ − c∗ ≥
∫
Ω

ξ2(x)|∇w(x;α)− αw(x;α)∇m(x)|2dx

=

∫
Ω

ξ2(|∇w|2 + α2w2|∇m|2)− αξ2∇(w2) · ∇mdx

=

∫
Ω

ξ2|∇w|2 + ξ2w2(α2|∇m|2 + α∆m) + 2αw2ξ∇ξ · ∇mdx

≥
∫
Ω

ξ2w2(
1

2
α2|∇m|2 + α∆m)− 2w2|∇ξ|2dx

≥
∫
Ω

ξ2w2(
1

2
α2|∇m|2 + α∆m)dx− 8

R2

where the second equality follows from integration by parts, and the second inequal-

ity follows from

ξ2α2|∇m|2 + 2αξ∇ξ · ∇m ≥ 1

2
ξ2α2|∇m|2 − 2α|ξ∇ξ · ∇m| ≥ −2|∇ξ|2

Since |∇m| > K in B(x̃, 2R), some constant C > 0 exists such that
1

2
|∇m|+∆m

α
>

C in B(x̃, 2R) for sufficiently large α. Thus, for sufficiently large α, we obtain

c∗ − c∗ +
8
R

α2
=

∫
Ω

(
1

2
|∇m|2 + ∆m

α
)ξ2w2dx ≥ C

∫
Ω

ξ2w2dx

That is, lim
α→∞

∫
Ω

ξ2(x)w2(x;α)dx = 0.

The proof of P (Ω2) = 0 is almost similar. Fix x̃ ∈ Ω2 and let (e·∇)2m(x̃) > 0 for

some e ∈ Sl−1. By rotation, we assume e = e1 = (1, 0, ..., 0), then there exist K > 0

and R > 0 such that (e ·∇)2m = mx1x1 > K in B(x̃, 2R) ⊂ Ω. Let ξ(x) = ρ(
x− x̃

R
),

then a similar calculation gives

c∗ − c∗ ≥
∫
Ω

ξ2(x)|∇w(x;α)− αw(x;α)∇m(x)|2dx ≥
∫
Ω

ξ2|wx1 − αwmx1 |2dx

=

∫
Ω

ξ2w2
x1

+ ξ2w2(α2m2
x1

+ αmx1x1) + 2αw2ξξx1mx1dx

≥
∫
Ω

αξ2w2mx1x1 − 2w2ξ2x1dx

≥ αK

∫
Ω

ξ2w2dx− 8

R2

hence

∫
Ω

ξ2w2dx ≤ 1

αK
(c∗ − c∗ +

8

R2
), and we can conclude

P (B(x̃, R)) = lim
αj→∞

∫
B(x̃,R)

w2(x;αj)dx ≤ lim
α→∞

∫
Ω

ξ2(x)w2(x;α)dx = 0
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That is, P (B(x̃, R)) = 0, and thus P (Ω2) = 0.

Lemma 4.13. (c.f.[5]) P (Ω3) = 0 and P (Ω4) = 0.

Proof. The main idea is to flatten the boundary via some change of variables. Let

x̃ ∈ Ω3. By translation and rotation, we can assume x̃ = 0, n(0) = −el, and

∇m(0) = Ke1 + [−∂nm(0)]el where K =
1

2

√
||∇m(0)|2 − |∂nm(0)|2| > 0.

We flatten ∂Ω near x̃ = 0 as follows: locally ∂Ω can be written as a graph

xl = f(x′) where x = (x′, xl), f(0
′) = 0, and fxi(0

′) = 0 for i = 1, ..., l − 1. ∂Ω is

flattened by

y = Y (x) ≡ (x′, xl − f(x′)) ⇔ x = X(y) ≡ (y′, yl + f(y′))

Since DyX(0) is the identity matrix, there exists R > 0 such that

∥DyX(y)∥ ≤ 2, |detDyX(y)| ≥ 1

2
, and my1(X(y)) > K

in B+(0, 2R) = Y (Ω ∩ B(0, 2R)) = {y ∈ B(0, 2R) : yl > 0}. Let ξ(y) = ρ(
y

R
), then

a careful calculation gives

c∗ − c∗ ≥
∫
Ω

ξ2(Y (x))|∇w(x;α)− αw(x;α)∇m(x)|2dx =

∫
Ω

ξ2w2|∇x(lnw − αm)|2dx

≥ 1

4

∫
B+(0,2R)

ξ2w2|∇y(lnw − αm)|2|det(DyX(y))|dy

≥ 1

8

∫
B+(0,2R)

ξ2|wy1 − αwmy1 |2dy

≥ 1

8

∫
B+(0,2R)

ξ2w2
y1
+ ξ2w2(α2m2

y1
+ αmy1y1) + 2αw2ξξy1my1dy

≥ 1

8

∫
B+(0,2R)

ξ2w2(
1

2
α2m2

y1
+ αmy1y1)− 2w2|∇ξ|2dy

≥ 1

8

∫
B+(0,2R)

ξ2w2(
1

2
α2m2

y1
+ αmy1y1)dy −

1

R2

Since my1(X(y)) > K in B+(0, 2R), some constant C > 0 exists such that
1

2
α2m2

y1
+

my1y1

α
> C in B+(0, 2R) for sufficiently large α. Thus, for sufficiently large α, we

obtain
c∗ − c∗ +

1
R

α2
=

∫
Ω

(
1

2
m2
y1y1

+
my1y1

α
)ξ2w2dy ≥ C

∫
Ω

ξ2w2dy
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which implies

P (B(0, R) ∩ Ω) = lim
αj→∞

∫
B(0,R)∩Ω

w2(x;αj)dx ≤ lim
α→∞

∫
B+(0,2R)

ξ2(x)w2(x;α)dy = 0.

The case of the proof of P (Ω4) = 0 is almost the same since the differences are

K = 0 and my1y1 > 0 by choosing e = e1 in the case of Ω4.

Lemma 4.14. (c.f.[5]) P (Ω5) = 0.

Proof. Fix x̃ ∈ Ω5, there exist K > 0 and R > 0 such that |∇m| > K and ∂nm < 0

in B(x̃, 2R) ∩ Ω. Setting ξ(x) = ρ(
x− x̃

R
), then a similar calculation gives

c∗ − c∗ ≥
∫
Ω

ξ2(x)|∇w(x;α)− αw(x;α)∇m(x)|2dx

=

∫
Ω

ξ2(|∇w|2 + α2w2|∇m|2)− αξ2∇(w2) · ∇mdx

= −α
∫
∂Ω

ξ2w2∂nmds+

∫
Ω

ξ2|∇w|2 + ξ2w2(α2|∇m|2 + α∆m) + 2αw2ξ∇ξ · ∇mdx

≥
∫
Ω

ξ2|∇w|2 + ξ2w2(α2|∇m|2 + α∆m) + 2αw2ξ∇ξ · ∇mdx

where the last inequality follows from ∂nm < 0. The remaining proof is the same as

the proof in Lemma 4.12.

Lemma 4.15. (c.f.[5]) P (Ω6) = 0.

Proof. The difficulty of our proof comes from the condtions |∇m(x)| = 0 and arbi-

trary direction e. The way to deal with such situation is to flatten ∂Ω and change

the Hessian of m into a diagonal matrix via some change of variables.

Let x̃ be a non-degenerate boundary critical point, a1, ..., al−1 be the eigenvalues

of D2
∂Ωm(x̃) and a1, ..., al−1, al be of D2m(x̃). By rotation, we assume n(x̃) = −el

and [D2
∂Ωm(x̃)]ij = aiδij for i, j = 1, ..., l − 1. Let y = Y (x) be a change of vari-

ables that flattens ∂Ω ∩ B(x̃, 4R) where R > 0 is sufficiently small, then Y (x̃) = 0,

DxY (x̃) is the identity matrix, and Y (∂Ω∩B(x̃, 4R)) ⊂ {y : yl = 0}. Let x = X(y)

be the inverse of y = Y (x), then the conditions that ∇m(x̃) = 0 and DxY (x̃) is the
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identity matrix imply

m(X(y)) = m(x̃) +
1

2

l−1∑
i=1

(aiy
2
i + 2ailyiyl) +

1

2
ally

2
l +O(|y|3)

=
1

2

l−1∑
i=1

ai(yi +
ail
ai
yl)

2 +
1

2
y2l (all −

l−1∑
i=1

a2il
ai

) +O(|y|3)

Thus, there exists a change of variables z = Z(y) defined by

zi = yi +
ailyl
ai

+O(|y|2) for i = 1, ..., l − 1 and zl = yl[1 +O(y)]

such that

m(X(y)) = m(x̃) +
1

2

l∑
i=1

aiz
2
i

That is, the Hessian of m is a diagonal matrix with variables z. We note that the

definition of zl implies Z ◦ Y (∂Ω ∩B(0, 4R)) ⊂ {z : zl = 0}.

The above discussion holds for all points of Ω6. Let x̃ ∈ Ω6, then there exists

ai > 0 for some i ∈ {1, ..., l}. Setting B+ = B+(0, 2R) = {z ∈ B(0, 2R) : zl > 0}

and ξ(z) = ρ(
z

R
), a careful calculation gives

c∗ − c∗

≥
∫
Ω

ξ2|∇xw − αw∇xm(x)|2dx =

∫
Ω

ξ2w2|∇x(lnw − αm)|2dx

≥
∫
B+

ξ2w2|∇z(lnw − αm)DxZ|2|det(DzX)|dz

≥ C

∫
B+

ξ2w2|∇z(lnw − αm)|2dz = C

∫
B+

ξ2|∇zw − αw∇zm)|2dz

≥
∫
B+

ξ2|wzi − αwmzi)|2dz

= −Cα
∫
∂B+

ξ2w2∂nmds+ C

∫
B+

ξ2w2
zi
+ ξ2w2(α2m2

zi
+ αmzizi) + 2αw2ξξzimzidz

= C

∫
B+

ξ2w2
zi
+ ξ2w2(α2m2

zi
+ αmzizi) + 2αw2ξξzimzidz

≥ C

∫
B+

αξ2w2mzizi − 2w2ξ2zidz

≥ Caiα

∫
B+(0,R)

ξ2w2dz − C
4

R2

∫
B+

w2dz

where 0 < C < |DxZ|2|detDzX| in B+ and the fourth equation follows from∫
∂B+

ξ2w2∂nmds = 0
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because el is a normal vector of {z : zl = 0} and mzl = 0 on {z : zl = 0} in case

i = l. Let R′ > 0 satisfy B(x̃, R′) ∩ Ω ⊂ X(Z−1(B+(0, R)), then

P (B(x̃, R′)∩Ω) = lim
αj→∞

∫
B+(x̃,R′)∩Ω

w2(x;αj)dx ≤ lim
α→∞

∫
B+(0,R)

ξ2(z)w2(z;α)dz = 0.

Proof of Theorem 4.5

Proof. It suffices to show that (56) and (57) hold. (56) follows from (55). (57)

follows from Lemma 4.12, 4.13, 4.14, and 4.15.
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5 Discussions

Conclusions: a Bifurcation Diagram

To organize our main results, we focus on the case N = 2, and establish a

bifurcation diagram with α as the bifurcation parameter.

Case: β/ν ∈ [0, 1/max
Ω

m].

We fix Ω, m, µ, ν, and consider the case µ < ν. Let θ1 ≡ (θ(·;α, µ), 0) and θ2 ≡

(0; θ(·, β, ν)). When α = 0 and β/ν = 0, then θ1 is globally asymptotically stable (or

the slower-diffusing species wins), whereas θ2 is globally asymptotically stable (or

the faster-diffusing species wins) if the diffusion rates are similar, β/ν > 0 is small,

and the shape of the environment is convex (see Theorem 1.1(b) and Theorem 1.2).

By some perturbation argument, the results still hold in the range 0 ≤ α < ϵ1 for

some ϵ1 > 0 sufficiently small.

When α ≥ max{C1, C3} where C1 and C3 come from Lemma 4.3 and Lemma

4.8 respectively, then coexistence is a stable state.

In fact, all we have dealed with are the limiting cases: the advective tendency α

is sufficiently small or large. The reason is that the limiting behaviors of the positive

steady-state and the principal eigenvalues are easier to control (see Lemma 4.7 and

Theorem 4.5). In the intermediate cases ϵ1 ≤ α ≤ max{C1, C3}, the stable states,

even the dynamics of the full system are unknown. As a consequence, the following

table organizes our main results:

Parameter Range Stable States Related Theorems Remarkable Conditions

0 ≤ α < ϵ1, µ < ν θ1 Theorem 1.1(b), 1.2 β/ν = 0

θ2 Theorem 1.2 µ ≈ ν, β/ν > 0 small

Ω is convex

ϵ1 ≤ α < max{C1, C3} unknown

α ≥ max{C1, C3} coexistence Theorem 1.3(a) (A2)
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Remark . The case µ > ν is almost analogous. In the singular case µ = ν, if

α = β = 0, then a continuum of positive equilibria of the form {(κθ(x; 0, µ), (1 −

κ)θ(x; 0, µ)) : 0 ≤ κ ≤ 1} is globally asymptotically stable. If α > 0 is small and

β = 0, then θ1 is still globally asymptotically stable. (see Theorem 3.4).

Case: β/ν ∈ [1/min
Ω
m,∞).

We fix Ω, m, µ, and ν. When 0 ≤ α ≤ µ/max
Ω

m and β ≥ max{C1, C3}, then co-

existence is a stable state (see Theorem 1.3(a)). 10 When α ≥ C̃ ≡ max{C2, C3, C4}

where C2, C3, and C4 come from Lemma 4.3, Lemma 4.6, and Lemma 4.8 respec-

tively, then θ2 is globally asymptotically stable (or the species with less advective

tendency wins) provided that (A3) holds and m > 0 in Ω (see Theorem 1.3(b)). In

the intermediate cases µ/max
Ω

m < α < C̃, the stable states, even the dynamics of

the full system are unknown. As a consequence, the following table organizes our

main results:

Parameter Range Stable States Related Theorems Remarkable Conditions

0 ≤ α ≤ µ/max
Ω

m coexistence Theorem 1.3(a) β ≥ max{C1, C3}

µ/max
Ω

m < α < C̃ unknown

α ≥ C̃ θ2 Theorem 1.3(b) (A3), m > 0 in Ω

Further Problems

The following are some interesting problems which may be worth further re-

searching:

1. Problems concerning the bifurcation diagram

To completely establish the bifurcation diagram, a challenging task is to control

the behaviors of the positive steady-state and the principal eigenvalues when α lies

in intermediate ranges. Another problem arises when β/ν ∈ (1/max
Ω

m, 1/min
Ω
m),

a challenging task is to construct some useful estimates alike to Lemma 4.2 and

Lemma 4.4.

10Here, α and β, µ and ν are switched mutually in order to apply Theorem 1.3(a).
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2. Problems concerning the assumptions on the intrinsic growth rate m

We see that (A1) is not removable (see Lemma 1.5 and Theorem 1.6) and (A2)

is not too biologically restrictive. The problem is that (A3) is not realistic. It is

very challenging to weakend (A3) since if there are many points of local maxima of

m, Theorem 4.5 may provide no useful information (see Lemma 4.2, the proof of

Lemma 4.6 and 4.10).

3. Problems concerning the suitable modifications on the full system

We assume that the species move toward along the resource gradient ∇m, but

neglect other crucial effects such as population densities. A more realistic term is

∇(m − g(u, v)) rather than ∇m, then the first problem is to choose some suitable

g(u, v). For mathematical analysis, sometimes we need to guarantee the ”2 in 1”

structure, that is, two equations with the same parameters can be added into one

equation (see the proof of Lemma 3.5 and ref.[7], Lemma 5.4). A suitable choice is

g(u, v) = κ(u + v) for some constant κ > 0. To study the modified full system is

a challenging task. Indeed, our main results may provide some useful information

for the modified full system since our full system (2) is an approximation if κ is

sufficiently small.
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Appendix: a Manual for Maximum Principles

This appendix is contributed to be a collection of (parabolic) maximum prin-

ciples for weakly-coupled parabolic linear systems 11. The main ideas to prove such

maximum principles can be found in [16], Chapter 3, Section 8.

Let Ω ⊂ Rl be a bounded domain with smooth boundary ∂Ω. For given T > 0,

let u(x, t) = (u1(x, t), u2(x, t), ..., uN(x, t)) be continuous in Ω × [0, T ], and Dxu,

D2
xu, and ut are continuous in Ω × (0, T ]. Suppose that for each k = 1, 2, ..., N ,

uk(x, t) satisfies the differential inequality:

∂uk
∂t

≤
l∑

i,j=1

a
(k)
ij (x, t)

∂2uk
∂xi∂xj

+
l∑

j=1

b
(k)
j (x, t)

∂uk
∂xj

+
N∑
j=1

c
(k)
j (x, t)uj in Ω× (0, T ]

where [a
(k)
ij (x, t)]l×l is non-negative definite and uniformly elliptic in Ω × (0, T ),

a
(k)
ij (x, t), b

(k)
j (x, t), and c

(k)
j (x, t) lie in L∞(Ω× [0, T ]). Suppose c

(k)
j ≥ 0 in Ω× (0, T ]

for k ̸= j, then the following maximum principles hold.

The Parabolic Strong Maximum Principle

If max
j

max
Ω×[0,T ]

uj(x, t) = uk(x0, t0) for some (x0, t0) ∈ Ω × (0, T ], then uk(x, t) =

uk(x0, t0) in Ω× (0, t0).

The Parabolic Hopf Boundary Lemma

If max
j

max
Ω×[0,T ]

uj(x, t) = uk(x0, t0) ≥ 0 for some (x0, t0) ∈ (Ω×{0})∪(∂Ω×(0, T )), and

(x0, t0) satisfies the interior sphere condition in Ω× (0, T ), then either uk restricted

in some neighborhood in Ω× (0, t0) is a constant function or ∂nuk(x0, t0) > 0.

The Parabolic Comparison Principle

Let D ⊂ RN be a nonempty closed convex set, and f : Ω × D → RN given by

f = f(x, u) is C1 and cooperative in u. Let u and u be continuous in Ω× [0, T ], and

Dxu, Dxu, D
2
xu, D

2
xu, ut, and ut are continuous in Ω× (0, T ]. Suppose that for each

k = 1, 2, ...N , the following differential conditions hold:
∂uk

∂t
≤

l∑
i,j=1

a
(k)
ij (x, t)

∂2uk

∂xi∂xj
+

l∑
j=1

b
(k)
j (x, t)

∂uk

∂xj
+ fk(x, u) in Ω× (0, T )

B[uk] = ∂nuk ≤ 0 on ∂Ω× (0, T )

11A parabolic linear system is weakly-coupled if it is coupled only in the reaction terms.

59




∂uk
∂t

≥
l∑

i,j=1

a
(k)
ij (x, t)

∂2uk
∂xi∂xj

+
l∑

j=1

b
(k)
j (x, t)

∂uk
∂xj

+ fk(x, u) in Ω× (0, T )

B[uk] = ∂nuk ≥ 0 on ∂Ω× (0, T )

If uk(x, 0) ≤ uk(x, 0) in Ω for all k, then uk(x, t) ≤ uk(x, t) in Ω× [0, T ] for all k.

Some Remarks

1. A direct consequence from the maximum principles is the uniqueness of the

classical solution of the weakly-coupled parabolic linear system:
∂uk
∂t

=
l∑

i,j=1

a
(k)
ij (x, t)

∂2uk
∂xi∂xj

+
l∑

j=1

b
(k)
j (x, t)

∂uk
∂xj

+
N∑
j=1

c
(k)
j (x, t)uj in Ω× (0, T )

B[uk] = ∂nuk = 0 on ∂Ω× (0, T )

For any given T > 0, the maximum principles are applicable whenever the solution

of the above linear system for the domain Ω× (0,∞) is restricted on Ω× (0, T ); thus

by the uniqueness, the maximum principles hold for the domain Ω× (0,∞).

2. In the full system (2):

[a
(k)
ij (x, t)]l×l = dkIl

b
(k)
j (x, t) = −αkmxj(x)

c
(k)
j (x, t) =


[m(x)−

N∑
i=1

ui(x, t)− αk∆m(x)] if j = k

0 if j ̸= k

D = K+ = {u ∈ C2+δ(Ω) : u ≥ 0}

fk(x, u) = fk(x, u1, ..., uN) = uk(x, t)[m(x)−
N∑
i=1

ui(x, t)]

Hence, except that fk may not be cooperative, all the required conditions are obvi-

ously satisfied.

3. If N = 1, then fk(x, u) is cooperative in u vacuously by definition; hence The

Parabolic Comparison Principle is applicable.
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後記：研究歷程

見山是山、見山不是山、見山又是山。

一、 前言

本論文的研究歷程分為三個階段：探索、研讀和撰寫。探索階段開始於碩一

上 2009年 1月，夏俊雄老師要求寒假期間精讀參考文獻〔7〕（簡稱文獻〔7〕），

結束於碩二上 2010年 2月寒假結束，約歷時一年。接著，研讀階段開始於 2010

年 2月，當時已備齊所有必須回顧的文獻〔1〕～〔7〕，之後陸續精讀，5月讀

完文獻〔6〕而結束。撰寫階段開始於 2010年 4月，初稿完成於 5月，完稿則於

7月完成，約歷時三個月。

二、 探索階段

我很幸運，發表於 2008年的文獻〔7〕是一篇既新穎又極具啟發性的好文章。

前兩節翔實闡釋了本文主要方程組（見論文式子（2），簡稱主方程組）的生態學

意義、建構方法以及四個已知結果：由文獻〔1〕而來的 Theorem 2.1、文獻〔3〕

〔4〕而來的 Theorem 2.2和文獻〔6〕而來的 Theorem 2.3與 2.4。事實上，將上

述四個結果的論證過程寫清楚是本論文的主要目的。

文獻〔7〕在第四節給出局部穩定性（local stability）的判準以及主特徵值

（principal eigenvalues）所滿足的積分方程，第五節給出排除共存（coexistence）

的數學條件，第六節引進單調動力系統理論（the theory of monotone dynamical

systems）來決定全域穩定性（global stability）。讀者可以發現：

局部穩定性 － 排除共存狀態 － 全域穩定性

這樣的思考及論證過程不只是文獻〔1〕〔3〕〔6〕〔7〕，也是本論文的共同特色。

另外，文獻〔7〕主要使用的數學工具只有散度定理（divergence theorem）以及

二階橢圓偏微分方程的基本知識，這些工具在研究所微分方程課程中都能學到。

質言之，因為主方程組具有豐富的生態學意義，對於碩士研究生而言，先備知識

門檻適中，又可以練習不少數學工具，所以引起我進一步研究的興趣。

碩一上的寒假，很感謝林紹雄老師撥空開設反應擴散方程（reaction-diffusion

equations）的研討會。每週四上午三小時由老師講授基本知識：包含最大值原則

（maximum principles）、半群理論（semi-group theory）、特徵值問題和中央流型

理論（center manifold theory），這些知識奠定本論文研究的基礎；下午三小時由

學生講解相關主題，我負責講解 Lotka-Volterra模型1。那兩次講解雖然生澀，經

常需要老師提示，但從反應擴散方程的一般性觀點探討 Lotka-Volterra模型的存

1. 跟主方程不同之處是：內蘊生長率（intrinsic growth rate）是常數，而反應矩陣（interaction
matrix）為耗散（dissipative）形式。



在性與穩定性問題，對我而言是一個極為寶貴的經驗。

讀完文獻〔7〕後，我已從引用文獻中按圖索驥找出所有相關文獻。然而，

由於碩二時我花許多時間在學習林紹雄老師開設的偏微分方程課程上，直到

2010年 2月寒假結束時，我才下定決心研讀所有相關文獻。

三、 研讀階段

我研讀的文獻依序是：〔5〕〔1〕〔3〕〔4〕〔2〕〔6〕。

文獻〔5〕的前四節重構為本論文第四節第三小節。先讀文獻〔5〕是因為一

開始我很好奇如何控制主特徵值的漸近行為（asymptotic behaviors）。相較於文獻

〔7〕，文獻〔5〕展示頗多細膩的估計，值得研讀。

文獻〔1〕重構為本論文第二節，亦即 Type A的主要結果。讀完文獻〔5〕

之後，我認為依照「發表年代」研讀較能掌握脈絡，因此從文獻〔1〕讀起。我

從文獻〔1〕學習如何處理各種特徵值問題（eigenvalue problem）。令我困惑許久

的是文獻〔1〕沒附證明的 Lemma 2.2，它涉及半均衡解（semi-trivial equilibrium）

的存在性，至關緊要。我依照引用文獻找到出處2，但出處提供的證明不能適用

於 Type B與 Type C等一般情形，幸運的是 2010年 5月找到了文獻〔8〕既精簡

又具有一般性的證明（見論文 Theorem 1.6）。另外，請讀者注意，有兩種假設可

適用文獻〔1〕的結果：內蘊生長率在某點為正值且擴散速率（diffusion rate）夠

小，或內蘊生長率的平均值為正。唯有文獻〔1〕採取前者，其他文獻及本論文

則採取後者。在超過兩種競爭物種的全域穩定性方面，不同於單調動力系統理論，

文獻〔1〕採取Morse分解，但必須預設 Conjecture 1為真才能加以證明。然而，

因為無法確證 Conjecture 1，本論文也就沒有回顧Morse分解法及其相關結果。

文獻〔3〕重構成本論文第三節前半部分，亦即 Type B中局部穩定性的結果

（見論文 Theorem 3.4）。我從文獻〔3〕學習到擾動分析（perturbation analysis）

方法，以及如何嚴謹地檢驗隱函數定理（implicit function theorem）的條件（見

論文 Lemma 3.2），另一方面，在思維與論證方法上，文獻〔3〕可視為文獻〔7〕

的原型，從中我再一次學習如何透過已知參數來表示主特徵值的正負號，關鍵是

從線性化後的相關方程組中推導出有用的積分方程。

文獻〔4〕重構成本論文第三節後半部分，亦即 Type B中全域穩定性的結果

（見論文 Lemma 3.4）。文獻〔4〕的內容十分豐富，事實上文獻〔6〕的許多結

果是文獻〔4〕結果的一般化，雖然本論文只回顧 Lemma 3.4，但建議在閱讀文

獻〔6〕前先研讀文獻〔4〕。我從文獻〔4〕學習到如何應用橢圓正則性（elliptic

regularity）來控制參數趨近於 0時，主方程組及其均衡解的行為。其中，我深刻

體會到主方程組的特殊結構所扮演的角色及其在推廣上可能無法克服的侷限。

2. R. S. Cantrell, C. Cosner, and V. Hutson: Ecological models, permanence, and spatial
heterogeneity. Rocky Mountain Journal of Mathematics. Vol.26, Number 1, 1-35. (1996)



文獻〔2〕的主要結果之一是假若環境形狀非凸（convex），則可以建構本論

文 Theorem 1.2的反例，因此產生一個十分有趣且值得討論的現象：環境幾何形

狀的差異會影響競爭物種的演化結果。然而，讀完文獻〔2〕後，我認為完整回

顧該反例的建構過程要花費許多篇幅，而且我逐漸確知論文的主軸是建立主方程

組之長期演化結果的分歧圖（bifurcation diagram），因此仔細衡量後，我決定只

簡要提及（見論文第二節最後的 Remark）3。

文獻〔6〕重構成本論文第四節，亦即 Type C的主要結果。由於 Type C是

主方程組在兩種競爭物種上最具一般性的情形，又兩個競爭物種所代表的方程在

參數方面具有對稱性，所以數學上要先固定某一方程的參數區間，然後調整另一

方程的特定參數，例如有向傾向（advective tendency），來考察競爭物種長期演

化結果的變化，及決定是否有分歧現象。據此，相較於文獻〔1〕〔3〕〔4〕，文獻

〔6〕面臨頗為不同的問題，也需要更進一步的分析工具。首先，我從文獻〔6〕

中學習到如何透過最大值原則找到適當的參數區間（見論文 Lemma 4.1和 4.2）。

然後，進行主特徵值比較時終於了解文獻〔5〕研究主特徵值之漸近行為的原因

（見論文 Lemma 4.6和 4.10），以及主方程組必須配備不具生態一般性之（A3）

假設的原因，而這個假設也構成推廣本論文 Theorem 1.3最難克服的阻礙。

四、 撰寫階段

讀完必須回顧的文獻〔1〕～〔7〕後，2010年 4月我開始撰寫論文4。我從

一開始就定位本論文為一篇豐富、完整且具有「故事性」的回顧。

為了讓「故事」有好的開始，我在第一章簡要提及 Lotka-Volterra模型的歷

史5、利用常見的通量法（flux method）推導出主方程組，然後仔細說明（C1）

～（C4）等數學限制（constraints）可能的生態學意義。在描述主要結果時，特

別強調（A1）～（A3）等關於內蘊生長率之假設（assumptions）與定理之間的

關係，以及每個定理可能的生態學意義與相關現象的詮釋。

值得說明的是第一章第二小節〈Frequently-applied Theorems and the Main

Scheme〉的誕生是本論文結構的變革。區分出三種 Type後，我發覺它們有共同

的基本問題及需要的常用定理6（見論文 Theorem 1.6、1.7和 1.9）。如果按照每

個 Type依序寫下來，那同樣型式的定理要證明三次。由於 Type C最具一般性，

所以我決定在第一章就提供 Type C的主方程組所需要的常用定理。然而，過程

3. 由於文獻〔3〕的第三節以及文獻〔4〕第二節第二小節重新回顧了文獻〔2〕，所以在 Remark
中我提供較晚發表的文章來源，若要完整了解建構過程，建議研讀文獻〔2〕。

4. 撰寫論文時，我花了不少時間學習 LaTex與 TeXworks。許多朋友建議使用 LyX，因為可以「邊
打邊看」，但我已經學會 LyX，且 LaTex是所有相關書寫軟體的始祖，所以我選擇使用 LaTex。

5. 由於 Lotka-Volterra模型具有八十年歷史，數學上可分為常微分方程組或偏微分方程組，類
型上可分為合作（cooperative）、競爭（competitive）或掠捕（prey-predator），設定上擴散
速率、有向傾向、內蘊生長率和反應矩陣可以與時間或空間有關，因此對於一篇碩士論文

而言，要完整回顧幾乎是不可能的任務。

6. 三個共通的基本問題是：半均衡解的存在性、局部穩定性的判準以及全域穩定性的判準。



並不輕鬆。Theorem 1.6的證明並不簡單。Theorem 1.7的證明雖然直接，但預設

了「線性化判準」（linearity criterion）7，我花了不少時間檢驗文獻〔15〕中該判

準得以適用的條件。Theorem 1.9處理均衡解的漸近行為，需要大量單調動力系

統的知識，所以我只檢驗文獻〔14〕適用 Theorem B所需的條件8，而該定理幫

助我萃取出決定全域穩定性的主要綱領（main scheme）。

我該如何「說故事」呢？這個問題不但涉及論文的行文風格，也關係到篇章

結構的認知。眾所周知，大部分的數學文章都遵照「邏輯脈絡」將內容組織為「定

義 － 引理 － 定理」的結構，優點是節省篇幅，缺點是讀完後仍會覺得許多內

容是「天外飛來一筆」。「探索脈絡」則強調探索與發現的過程，要求作者從思索

問題的過程中「脈絡化」乍看抽象的定義與引理，因此結構通常是「問題 － 定

理 － 定義 － 引理」，優點是讀完後對於內容不會產生「疏離感」，缺點則是作

者要花費更多心思與篇幅。既然本論文的定位是回顧，我當然不能照本宣科，於

是我選擇「探索脈絡」，盡量嘗試「重建」文獻原作者們探索的過程9。

要說出哪些「故事」呢？這個問題涉及讀者知識背景的預設。我的標準是：

如果是研究所微分方程必修課的內容，則我提供來源但不予以證明10；除此之外，

我都努力在完全理解的前提下提供證明11。

Type A是 Type B和 C的原型，主要處理特徵值問題，使用的數學方法十分

標準。不過，我起初寫得頗為複雜，原因是我對於主方程組的本質與相關的數學

方法還不是很熟悉，於是在撰寫其他 Type的內容時一直回頭加以簡化12。另外，

讀者或許注意到：為何 Type A第二小節名稱為「插曲」（interlude）？原因是該

小節內容與主要結果（見論文 Theorem 1.1）無關。那為何加以回顧？當然，一

個原因是該小節處理一個非常特別的問題：擾動後半均衡解是否仍落在生物合理

區域（biological feasible region）？但最重要的理由是「友情」，是為了紀念我的

朋友硯仁當初用圖論方法在五分鐘內就證明 Lemma 2.5給我的震撼與感動。

Type B也處理特徵值問題，但我花了不少時間檢驗適用隱函數定理的條件

和研讀文獻〔10〕第六章關於橢圓正則性的內容。當然，令人最感興趣的是環境

7. 亦即考慮主方程組針對均衡解線性化後的特徵值問題，其主特徵值的正負號能決定均衡解

的局部穩定性。

8. 要完整地回顧 Theorem B，至少需要十頁篇幅，而這將偏離本論文的主軸。
9. 我認為本論文第四節最符合「探索脈絡」的要求，參見論文 Lemma 4.1、4.2、4.7和 4.8的

論證過程。

10. 主要是橢圓型的最大值原則、基本的特徵值問題、Sobolev不等式和橢圓正則性等研究所偏
微分方程式相關課程都會學習到的內容。更具體的標準是文獻〔9〕〔10〕的內容。

11. 遵照這個標準的結果是本論文篇幅為 62頁，大約是一般數學研究所碩士論文的二到三倍。
不過本論文回顧了主方程組十一年來（從1998年發表的文獻〔1〕到 2008年發表的文獻〔7〕）
的重要發展，必須回顧的文章篇幅超過兩百頁，又我相信本論文每個論證與定理都環環相

扣，所以應該無法在不影響主要內容的前提下大幅減少篇幅。

12. 第二節原本有十頁，後來刪減為七頁。簡化的當下會心疼時間精力付諸流水，但隨即感覺

簡化後邏輯與結構上的清爽。



的幾何形狀與長期演化結果的關係（見論文 Lemma 3.3），我盡量在數學方面重

建探索的過程，不過直到如今還是想不到生態學上的詮釋。另外，直到寫完

Lemma 3.5後，才決定不回顧文獻〔2〕的結果。

撰寫 Type C時，首先面臨的挑戰是如何說清楚 Theorem 1.3中參數區間的由

來。為了符合「探索脈絡」的要求，我發覺從判定主特徵值正負號的問題出發，

過程中適當地引入最大值定理（見論文 Lemma 4.1）能加以充分說明。接著，我

發現主特徵值之漸近行為的分析（見論文 Theorem 4.5）可以解釋提出 Lemma 4.6

和 4.10等結果的原因，因此下一個挑戰是重建 Theorem 4.5的探索過程。雖然

Theorem 4.5使用的數學方法十分標準，但需要極細膩的觀察與分析，所以花了

將近八頁的篇幅。另外，我也仔細檢驗了適用文獻〔13〕Theorem 4的條件。

第五節的結論是研讀文獻〔6〕〔7〕後改寫而成。事實上，文獻〔6〕提供了

比本論文更加完備的分歧圖，不過該分歧圖的基礎是文獻〔6〕中未附證明且尚

未發表的 Theorem 5，我思索後，覺得在期限內無法證明，所以決定只就本論文

的主要結果建立初步的分歧圖。在〈Further Problems〉的討論中，除了第二點外，

都可以在文獻〔7〕找到更加完善的討論。

寫完 Type C的主要結果後，我還有兩個煩惱許久而未解決的基本問題：

（1） 主方程組之解的存在性與有界性（見第一節第五頁的討論）。文獻〔15〕

Corollary 4.1確證了存在性，而拋物型最大值原則保證了有界性13。

（2） 如何嚴謹地適用最大值原則。為此，我決定在附錄（appendix）提供拋物

型最大值原則的敘述與相關注意事項14。

約莫 6月底，論文本體幾乎完成。中間經歷 6月 10日的論文口試，我製作

了 27張投影片在半小時內介紹本論文第一章15，感謝夏俊雄老師、J. Bona教授、

陳虹秋教授跟林紹雄老師給我許多啟發與建議，讓我的論文更加完善16。

13. 因為有界性，亦即物種在有限時間內其密度不會達到無限大，是生態上很自然的結果，在

數學上則與本論文 Theorem 1.6有關，所以我花了好幾天思索證明。某天下午我想累了，
在床上看書，突然就得到證明的線索，只需要一行就能說明。這樣戲劇性的結果是一個非

常難忘的經驗。

14. 最大值原則分為橢圓型跟拋物型。橢圓型最大值原則參照文獻〔9〕〔10〕即可，但有時候
應用上需要一些調整，郭一鴻在這方面給我不少提示（見論文 Lemma 4.1）。拋物型最大值
原則可參照文獻〔16〕，但我主要參照林紹雄老師的講義〈Lectures on Reaction-Diffusion
Systems〉。由於該講義尚未出版，林老師也說主要的證明思維來自文獻〔16〕，因此本論文
參考文獻只列出文獻〔16〕。

15. 歡迎讀者索取投影片，請來信聯絡：R97221006@ntu.edu.tw或 ntutiws@hotmail.com。
16. 我在當時的論文和投影片中都沒有說明參數之間是否相關（見論文 Theorem 1.3），四位口

試委員都提點出這個至關緊要的問題。另外，Bona教授提醒我數值模擬在微分方程研究中
的重要性。

mailto:R97221006@ntu.edu.tw��ntutiws
mailto:@hotmail.com


五、 心路歷程

我曾在 5月 12日提交初稿兩天後，寫出醞釀已久的心情，其中一段是：

從前一陣子到現在，我都有個「心理障礙」：不知如何定位自己的「論

文」。加引號是因為我做的是「回顧」，是「研究」的前置階段，還不算

是「做研究」。我知道，我很希望自己能做研究，因為在數學這個領域，

能夠想出專屬於自己的定理，或雖然是別人的定理，但有自己獨創的證

明，都是人生中很特殊，印象很深刻的經驗。

雖然我深知在發展成熟的微分方程領域，要做「新問題」或只是證明「新

定理」都真的很不容易，但如果沒有「創新」成份，又怎麼能稱為論文？說

得更直接，就是「回顧」與「抄襲」有何不同17？不過：

回想當初剛接觸這個研究主題，閱讀相關文獻，有多少定理是「硬啃硬

證」，有多少定理是原作者說 standard、obvious或 trivial，而我約莫一

年後才真的弄清楚，才發現那些所謂 standard、obvious和 trivial的定理，

可能是好幾頁的證明，甚至是一篇文章的主要結果。

所以，我認為如果能理解所有內容，釐清或論證那些不 standard、obvious

或 trivial的內容，並重建它們的「探索脈絡」，然後組織貫串為一個故事，

這樣應該就不是抄襲，而是一篇回顧。然而，我仍然煩惱這樣的回顧會有什

麼知識上的「貢獻」，直到：

那天陳其誠老師關心我的論文進度，我有點慚愧地說在做 survey。他看

著我說：很好阿！好好組合，可以造福學弟妹。對阿，我怎麼沒想到能

有這個貢獻？

雖然讀者可遇不可求，但陳老師這句話讓我豁然開朗，因為至少「造福了我

自己」。回想整個研究歷程，不但讓我學習到有用的數學方法，也深刻體會「讀

數學」與「做數學」的本質差異，更重要的，讓我更認識自己。

記得七年前，我第一次走在椰林大道上，要趕去共同教室上憲法課，那時的

我絕對想不到七年後，我仍然選擇數學之路，還寫了一篇十分煩惱自己的論文。

進入研究所之前總覺得人生很簡單，不外乎 all or nothing，如今，卻在該離開的

時候才開始思索。

17. 據我所知，可能因為當代數學研究的本質，大部分碩士論文都屬於回顧，或所謂的「讀書

報告」。能研究「新問題」或提供「新結果」的主題通常與圖論、組合學、計算數學或統計

學有關，這些領域的特色是還有許多適合碩士階段研究的問題，且不需太長的養成教育就

可以開始研究。當然，就算是發展成熟的學科，也有碩士論文研究「新問題」或提供「新

結果」，但關鍵或許在於如何判斷以及如何評價「創新」。
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