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Abstract. In this paper, we study the existence of steadily rotating spiral waves in the
kinematic theory of excitable media. The spiral wave is assumed to be a family of curves.
It rotates along a circle with a constant speed such that the tip of the curve neither grows
nor retracts in the tangential direction. Using an analytical approach, we are able to derive
the existence and non-existence of spiral waves with different speeds. Moreover, there is a
monotone decreasing positive sequence tending to zero such that the number of spiral waves
for each given speed can be computed exactly and the number can be any positive integers.

1. Introduction

In this paper, we are interested in the following equation:

(1.1) κt + vyy + (κ

∫ y

0

κvdξ)y + Gκy = 0,

where y denotes the arc length, κ := κ(y, t) is the curvature of a family of curves in R2,

v := v(y, t) is the normal velocity, and G := G(t) is the tangential velocity at the tip. The

equation (1.1) can be dervied from the definitions of the normal and tangent vectors, normal

and tangential velocities, and the Frenet-Serret Theorem in the plane.

In the study of steadily rotating spiral wave in the kinematic theory of excitable media (cf.

[1, 4, 5]), we assume that the family of curves (keeping the same shape for all t) rotates along

a circle with a constant speed such that the tip of the curve neither grows nor retracts in the

tangential direction (i.e., G ≡ 0) and the normal velocity v satisfies the relation v = c−Dκ.

Then (1.1) reduces to

(1.2) −Dκ′′(y) +

(
κ(y)

∫ y

0

κ(ξ)[c − Dκ(ξ)]dξ

)′
= 0, y > 0,

By integrating (1.2) once, we obtain that κ satisfies the equation

(1.3) −Dκ′(y) + κ(y)

∫ y

0

κ(ξ)[c − Dκ(ξ)]dξ = ω,

where ω is the constant angular frequency of the wave. We also assume that κ satisfies the

following condition

(1.4) κ(0) = κ0, κ(∞) = 0,

where κ0 is the curvature at the tip.
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Following [3], by differentiating (1.3) with respect to y once, we obtain that κ satisfies the

equation

(1.5) −Dκ′′ + κ2(c − Dκ) +
κ′

κ
(ω + Dκ′) = 0.

We are interested in finding a spiral wave with positive curvature. Setting w := ln(κ) and

noting that

(1.6) −Dκ′(0) = ω,

we end up with the following initial value problem (Pη):

w′′ + g(w) = ηe−ww′, y > 0,(1.7)

w(0) = ln(b), w′(0) = −η/b,(1.8)

where g(w) = e2w − aew, a, b are positive constants, and η is a real constant. Indeed

a :=
c

D
, b := κ0, η :=

ω

D
.

The local existence and uniqueness of solutions of (Pη) is trivial.

We are interested in the existence of global solution w of (Pη) satisfying the property

(1.9) lim
y→∞

w(y) = −∞.

In [2], we studied a simplified equation of (1.3), namely,

−Dκ′(y) + κ(y)

∫ y

0

cκ(ξ)dξ = ω

and obtained a family of steadily rotating spiral waves. In [3], they studied the equation

(1.7) with the initial condition

w(0) = w0, w′(0) = 0.

They obtained many interesting results. In particular, for η = 0 the solution is periodic

if b ∈ (0, 2a) \ {a}; a constant if b = a; and is monotone decreasing with w(y) → −∞ as

y → ∞ if b ≥ 2a. There are many interesting questions left for the equation (1.7), especially

for any arbitrary η > 0. We shall study the case when η �= 0 in this paper. Using a different

method from [3], we are able to classify the structure of solutions of (Pη).

This paper is organized as follows. In §2, we first give some preliminary results. In §3, we

prove that there is no global solution of (Pη) satisfying (1.9) when η < 0. See also Theorem

1 in [3]. The case η > 0 is treated in §4. We prove that there is a critical value η̃ > 0 such

that a spiral wave exists if and only if η ∈ (0, η̃]. Moreover, we are able to count the exact

number of spiral waves for any given η ∈ (0, η̃].
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2. Preliminary

For a local solution w of (1.7), we define the energy function by

(2.1) E(y) :=
1

2
[w′(y)]2 + G(w(y)), G(w) :=

1

2
e2w − aew.

It follows from

(2.2) E ′(y) = ηe−w(y)[w′(y)]2

that E is monotone increasing (decreasing) if η > 0 (η < 0, respectively).

Recall the following result from [3].

Lemma 2.1. Let η ∈ R. If E(y) is bounded above, then w exists globally for all y > 0.

Note that from (1.7) it is easy to see that a critical point y of w is a maximum point

(minimum point) if w(y) > ln(a) (w(y) < ln(a), respectively).

Lemma 2.2. Let η ∈ R. Suppose that w is a global solution of (1.7) such that l :=

limy→∞ w(y) exists and l > −∞ (l may be +∞). Then l = ln(a).

Proof. Suppose that l = +∞. Then there is a y0 > 0 such that w > 2ln(a) and w′ > 0 in

[y0,∞). By integrating (1.7) from y0 to y > y0, we obtain that

(2.3) w′(y) + ηe−w(y) − w′(y0) − ηe−w(y0) = −
∫ y

y0

g(w(s))ds.

By letting y → ∞ in (2.3), we reach a contradiction.

Suppose that l ∈ (−∞, ln(a)) ∪ (ln(a),∞). Then there is a y0 > 0 such that (−ln(a) +

3l)/2 < w < (ln(a) + l)/2 in [y0,∞). Also, we can find a sequence {yn} in [y0,∞) such that

yn → ∞ and w′(yn) → 0 as n → ∞. By integrating (1.7) from y0 to yn, we obtain that

(2.4) w′(yn) + ηe−w(yn) − w′(y0) − ηe−w(y0) = −
∫ yn

y0

g(w(s))ds.

This is impossible if we let n → ∞ in (2.4). This proves the lemma. �

3. The case η < 0

In this section, we always assume that η is a fixed negative constant. It follows from

Lemma 2.1 and (2.2) that any solution of (Pη) must be globally defined. Notice that w′(0) >

0.

The following lemma follow from Lemma 2.2 directly.

Lemma 3.1. Suppose that w′ > 0 in [0,∞). Then w(y) → ln(a) as y → ∞.

Lemma 3.2. Suppose that there is a y0 > 0 such that w′(y0) = 0 and w′ < 0 in (y0,∞).

Then w(y) → ln(a) as y → ∞.
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Proof. It follows from Lemma 2.2 that either w(y) → −∞ or w(y) → ln(a) as y → ∞.

Suppose that w(y) → −∞ as y → ∞. Note that w(y0) > ln(a). Let y1 > y0 be the point

with w(y1) = ln(a). From (2.3) it follows that

ηe−w(y) = ηe−w(y0) −
∫ y

y0

g(w(s))ds − w′(y)(3.1)

≥ ηe−w(y0) −
∫ y1

y0

g(w(s))ds.(3.2)

This is impossible, since ηe−w(y) → −∞ as y → ∞. The lemma is proved. �
For the case when w has at least 2 critical points, we have

Lemma 3.3. Suppose that w has at least 2 critical points. Then w is bounded.

Proof. By assumption, w has at least one minimum point, say, y0 > 0. Then E(y0) =

G(w(y0)) < 0, since w(y0) < ln(a). Also, by the definition of G there are constants m, M

such that

(3.3) G(m) = G(M) = E(y0), −∞ < m ≤ ln(a) ≤ M < ln(2a).

By the decreasing property of E, we have E(y) ≤ E(y0) for all y ≥ y0. Since G(w(y)) ≤ E(y),

it follows that m ≤ w(y) ≤ M in [y0,∞). Therefore, w is bounded. �
From Lemmas 3.1-3.3, we conclude that there is no global solution of (Pη) with the property

(1.9).

4. The case η > 0

4.1. Some properties. In this section, we always assume that η is a positive constant. Let

w be a solution of (1.7) and let [0, R), R ≤ ∞, be the maximum existence interval of w.

Note that E(y) = G(w(y)) < 0 for any minimum point y of w, since w(y) < ln(a). On the

other hand, E(y) ≥ 0 for any maximum point y of w such that w(y) ≥ ln(2a).

Recall that E(y) is monotone increasing in y. The first part of the following lemma is

similar to Lemma 2 in [3].

Lemma 4.1. Suppose that E(y0) ≥ 0 for some maximum point y0 ≥ 0 or some point y0 ≥ 0

with w′(y0) < 0. Then w′ < 0 in (y0, R) and w(y) → −∞ as y → R−.

Proof. For contradiction, let y1 > y0 be the first critical point. Then y1 must be a minimum

point. This is impossible, since E(y1) > E(y0) ≥ 0. Therefore, w′ < 0 for y > y0 as long as

w exists.

Let l := limy→R− w(y). Suppose that l > −∞. If R = ∞, then l = ln(a) by Lemma 2.2.

Also, there is a sequence {yn} such that yn → ∞ and w′(yn) → 0 as n → ∞. We obtain

that E(yn) → G(ln(a)) < 0 as n → ∞, a contradiction. On the other hand, if R < ∞ then

from

(4.1) w′(y) + ηe−w(y) − w′(y0) − ηe−w(y0) = −
∫ y

y0

g(w(s))ds
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it follows that w′ is bounded. This implies that w can be continued beyond R, a contradiction.

We conclude that l = −∞. This completes the proof. �

Lemma 4.2. Suppose that E(y0) ≥ 0 for some y0 ≥ 0. Then w′ < 0 in (y1, R) for some

y1 ≥ y0 and w(y) → −∞ as y → R−.

Proof. By Lemma 4.1, it suffices to consider the case when w′(y0) ≥ 0 and w′ > 0 in a

right neighborhood of y0. If w′(y1) = 0 for some y1 ∈ (y0, R), then w′ < 0 in (y1, R) and

w(y) → −∞ as y → R− by Lemma 4.1.

If w′ > 0 in (y0, R), then R < ∞. Otherwise, w(y) → ln(a) as y → ∞ by Lemma 2.2.

This implies that E(y) → G(ln(a)) < 0 as y → ∞, a contradiction. Hence R < ∞. Let

l := limy→R− w(y). Then l > −∞. If l < ∞, then by (4.1) w′ is bounded and so w can

be continued beyond R. This contradicts with the definition of R. If l = ∞, then by (4.1)

again w′ is bounded. This implies that w is bounded, a contradiction. Therefore, we have

w′(y) = 0 for some y ∈ (y0, R). Hence the proof is completed. �
Let L := limy→R− E(y) be the energy limit of w. The limit exists since E is monotone

increasing. If L < ∞, then R = ∞ by Lemma 2.1. It is clear that E(y0) ≥ 0 for some

y0 ≥ 0, if L = ∞. Conversely, we have

Lemma 4.3. Suppose that E(y0) ≥ 0 for some y0 ≥ 0. Then L = ∞ and w(y), w′(y) → −∞
as y → R−.

Proof. Clearly, L > 0. From Lemma 4.2 it follows that w(y) → −∞ as y → R−. Using the

relation
1

2
[w′(y)]2 = E(y) − G(w(y))

we deduce that w′(y) → −√
2L as y → R−. Moreover, it follows from (2.2) that L = ∞.

This completes the proof. �

Lemma 4.4. There is no solution of (1.7) with L < 0 except the trivial solution w ≡ ln(a).

Proof. Suppose that there is a solution w0 of (1.7) with the energy limit L0 < 0 and w0 �≡
ln(a). Set c = L0. Let (w1, 0), (w2, 0) be the (two) points on Γc := {(w, v) | v2/2+G(w) = c}
with w1 < w2. By the theory of continuous dependence on initial data and parameter, there

is a positive constant δ such that the trajectory of any solution w of (1.7) reaching the line

S := {(w, 0) | w2 − δ < w < w2 + δ} will leave Γc so that the energy limit L satisfying L > c.

Note that w0 is bounded, since G(w0(y)) ≤ E(y) < c for all y. Since c > G(ln(a)), it

follows from Lemma 2.2 that w cannot be monotone ultimately. Then there is a sequence

{yn} of critical points of w0 such that yn → ∞ and w0(yn) → w2 as n → ∞. Therefore,

the trajectory of w0 reaches S at yn for all n sufficiently large. This implies that L0 > c, a

contradiction. The lemma follows. �
It follows from Lemmas 4.3 and 4.4 that either L = ∞ or L = 0 for the energy limit L of

any non-constant solution of (1.7). Also, from the increasing property of E it follows that

E(y) < 0 for all y ≥ 0 and E(y) → 0 as y → ∞, if L = 0. For convenience, we call a solution



6 BERNOLD FIEDLER, JONG-SHENQ GUO, AND JE-CHIANG TSAI

with L = 0 a Type I solution; and a solution with L = ∞ a Type II solution. We remark

that w is a Type II solution if and only if E(y0) ≥ 0 for some y0 ≥ 0.

The following lemma shows that any Type II solution is non-global.

Lemma 4.5. Suppose that L = ∞. Then R < ∞.

Proof. For contradiction, we assume that R = ∞. Recall that w(y), w′(y) → −∞ as y → ∞.

It follows from (1.7) that w′′(y) → −∞ as y → ∞. Then by applying l’Hôpital’s rule we

compute that

lim
y→∞

{y2ew(y)} = lim
y→∞

y2

e−w(y)

= lim
y→∞

2y

−e−w(y)w′(y)

= lim
y→∞

2

−e−w(y)w′′(y) + e−w(y)[w′(y)]2

= 0.

Hence there is a constant y0 ≥ 1 such that

(4.2) ew(y) ≤ 1

y2

for all y ≥ y0.

On the other hand, from (1.7) it follows that

w′(y) + ηe−w(y) +

∫ y

y0

g(w(s))ds = A := w′(y0) + ηe−w(y0)

and so

ew(y)w′(y) + η + ew(y)

∫ y

y0

g(w(s))ds = Aew(y).

By an integration again we end up with

(4.3) ew(y) − ew(y0) + η(y − y0) +

∫ y

y0

{
ew(ξ)

∫ ξ

y0

g(w(s))ds

}
dξ = A

∫ y

y0

ew(s)ds.

Taking y0 sufficiently large so that |g(w(s))| ≤ aew(s) for all s ≥ y0. Then it is easy to

show that the integrals in (4.3) are uniformly bounded for all y ≥ y0. This contradicts the

assumption R = ∞. The lemma is proved. �
If L = 0 and w has infinitely many critical points, then by the increasing property of

E the sequence of maximum points (minimum points) is increasing and tends to ln(2a) (is

decreasing and tends to −∞, respectively).

We say that w is monotone ultimately if w is monotone for all y sufficiently large.

Lemma 4.6. If L = 0, then w′(y) < 0 for all y sufficiently large. Moreover, w(y) → −∞
and w′(y) → 0 as y → ∞.
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Proof. First, we claim that w is monotone ultimately. By the theory of continuous depen-

dence on initial data and parameters, there is a positive constant δ such that any solution

w of (1.7) with w(0) ∈ (ln(2a) − δ, ln(2a)) and w′(0) = 0 has the energy limit L = ∞. Let

c := G(ln(2a)−δ). Note that c < 0. Consider the closed curve Γc := {(w, v) | v2/2+G(w) =

c}. Suppose that w has infinitely many critical points. Then there is a sequence of max-

imum points {yn} such that w(yn) → ln(2a) as n → ∞, since L = 0. Then we have

w(yN) ∈ (ln(2a) − δ, ln(2a)) for some N ≥ 1. This implies that L = ∞, a contradiction.

Therefore, w is monotone ultimately.

Next, we claim that w′(y) < 0 for all y sufficiently large. For contradiction, we suppose

that w′(y) > 0 for all y sufficiently large. Then w(y) → ln(a) as y → ∞. Take a sequence

{yn} such that yn → ∞ and w′(yn) → 0 as n → ∞. Then E(yn) → G(ln(a)) < 0 as n → ∞,

a contradiction. Therefore, we must have w′ < 0 for all y sufficiently large.

If l := limy→∞ w(y) > −∞, then l = ln(a), by Lemma 2.2, and so there is a sequence {yn}
such that yn → ∞ and w′(yn) → 0 as n → ∞. Then E(yn) → G(ln(a)) < 0 as n → ∞. This

contradicts the assumption L = 0. Hence l = −∞.

Finally, from the relation

1

2
[w′(y)]2 = E(y) − G(w(y))

it follows that w′(y) → 0 as y → ∞. Hence the lemma is proved. �
Remark 4.1. Suppose that there is a solution w with L = 0. Then w(y) → −∞ and

w′(y) → 0 as y → ∞. Since aew ≥ −g(w), it follows from (1.7) that

a

∫ y

0

ew(y)dy ≥ −
∫ y

0

g(w(y))dy = w′(y) + ηe−w(y) → ∞

as y → ∞. Recall that κ(y) = ew(y). Hence the rotation number is +∞ and the corresponding

curve is a spiral wave.

4.2. Existence. In the sequel, we denote w(y; η, b) the solution of (Pη) to specify the de-

pendence of w on the parameters η and/or b.

We consider the problem (Qη):

w′′ + g(w) = ηe−ww′(4.4)

w(0) = ln(a), w′(0) = −η/a.(4.5)

Let w(y; η) = w(y; η, a) be the solution of (Qη). Set

A1 := {η > 0 | w′(y; η) = 0 for some y > 0}.
Note that A1 is an open set. We shall claim that (0, η0) ⊂ A1 for some positive constant η0.

For this, we set

u := w − ln(a), s = ay.

Then w satisfies (4.4)-(4.5) if and only if u satisfies the problem:

ü − ke−uu̇ + (e2u − eu) = 0(4.6)

u(0) = 0, u̇(0) = −k,(4.7)
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where k := η/a2 and the dot denotes the differentiation with respect to s.

Now, we consider the following equivalent system:

u̇ = z

ż = ke−uz + (eu − e2u)

with the initial condition (u(0), z(0)) = (0,−k). Set u = r cos θ and z = r sin θ. Then we

compute that

ṙ = kr sin2 θ + f1(r, θ),(4.8)

θ̇ = −1 + k sin 2θ/2 + f2(r, θ),(4.9)

where

f1(r, θ) := k sin2 θ(e−u − 1)r + sin θ(eu − e2u) + r sin θ cos θ,

f2(r, θ) := k sin 2θ(e−u − 1)/2 + cos θ(eu − e2u)/r + cos2 θ.

Fix α ∈ (0, 2) such that 4πα/(1−α/2) < ln 2 and let k ∈ (0, α). Note that f2(r, θ) = O(r)

as r → 0+ uniformly in k. Hence we can choose r0 ∈ (0, 1) (independent of k) such that

(4.10) |f2(r, θ)| <
1

2
(1 − α

2
) for all r ∈ (0, r0] and θ ∈ R.

Therefore, we obtain that

(4.11) θ̇ ≤ −(1 − α/2)/2

as long as r ∈ (0, r0]. Moreover, we may take r0 < 1/(40π) (independent of k) small enough

such that

(4.12) |f1(r, θ)| ≤ 5r2 for all r ∈ (0, r0] and θ ∈ R.

Set s0 := 4π/(1 − α/2). Then we have

(4.13) 1/2 − eks/4 > 0 for all s ∈ (0, s0] and for all k ∈ (0, α).

Since

lim
α→0+

1/2 − eks0/4

5s0eks0/4
=

1

20π
,

we may further assume that α is small enough such that

(4.14)
1/2 − eks0/4

5s0eks0/4
>

1

40π
.

From now on, we fix the constants r0 and α so that all the above conditions hold.

Lemma 4.7. The solution (r, θ) of (4.8) and (4.9) with r(0) ≤ r0/4 and θ(0) ∈ R satisfies

r(s) ∈ (0, r0/2) for all s ∈ [0, s0].

Proof. Integrating the equation (4.8) from 0 to s and using (4.12), we obtain that

(4.15) r(s) ≤ eksr(0) + seks5r2
0/4
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as long as r ≤ r0/2. For contradiction, we assume that r(s) = r0/2 for some s ≤ s0. Then

it follows from (4.15) that

r0 ≥ 1/2 − eks/4

5seks/4
≥ 1/2 − eks0/4

5s0eks0/4
,

by using (4.13) and the decreasing property of the function

K(s) :=
1/2 − eks/4

5seks/4
, s ∈ (0, s0].

Hence we reach a contradiction and the lemma is proved. �

Lemma 4.8. The set A1 contains (0, η0) for some small positive constant η0.

Proof. By Lemma 4.7, we can integrate (4.11) from 0 to s0 to obtain that

(4.16) θ(s0) − θ(0) ≤ −2π.

Then the lemma follows by setting η0 := min{r0/4, α}a2. �

Remark 4.2. It follows from (4.16) that the trajectory (u, z) in the phase plane goes around

(0, 0) clockwise once back to the line {u = 0, z < 0} if η ∈ (0, η0). Indeed, we can obtain that

the trajectory goes around (0, 0) as many times as we want by assuming the η small enough.

Note that the equation (4.4) is equivalent to the system (Sη):

w′ = v,

v′ = ηe−wv − g(w).

By a simple phase plane analysis, it is easy to see that any trajectory (w, v) of (Sη), with

(w(0), v(0)) = (ln(a), v0) for some v0 < 0 and (w(y0), v(y0)) = (w0, 0) for some y0 > 0

and w(y0) < ln(a), goes around (ln(a), 0) clockwise back to the line {w = ln(a), w′ < 0}.
In particular, it is interesting to see the property of the vector field on the initial curve

Γ := {(ln(b),−η/b) | b > 0} for a given fixed η > 0. Let D1 (D2, respectively) denote the

region lying above (below, respectively) Γ. Set v = w′. Then (v, 1) is a normal vector of the

initial curve Γ at the point (w, v). Since the inner product of (w′, v′) and (v, 1) is given by

−η(av +η)/v2, the vector field on Γ is pointed inward to D2 if w > ln(a); to D1 if w < ln(a).

Let Γ−
0 := {(w, v) | v < 0, w ≤ ln(a), v2/2+G(w) = 0}. Recall that the energy E is strictly

increasing along any trajectory. Fix η = a2. Then (ln(a),−η/a) ∈ Γ−
0 and the region lying

below Γ−
0 and above Γ∩ {w ≤ ln(a)} is a positively invariant region. Thus the solution w of

(Qη) is monotone decreasing to −∞ and so A1 is bounded above by a2. Then η̂ := sup A1 is

well-defined and η̂ < a2.

As before, we set L(η) := limy→R− E(y; η), where E(y; η) = [w′(y; η)]2/2+G(w(y; η). Note

that L(η) = ∞ if E(y; η) ≥ 0 for some y ≥ 0. Introduce

A2 := {η > 0 | w′(y; η) < 0 in [0, R) and L(η) = ∞}.
Similarly, we can see that for any given η > a2 the region lying below Γ−

0 , above Γ ∩ {w ≤
ln(a)}, and to the left of {w = ln(a),−η/a ≤ v ≤ −a} is a positively invariant region. Thus
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[a2,∞) ⊂ A2. Hence η̃ := inf A2 is well-defined and a2 > η̃ ≥ η̂. Note that A2 is an open

set. Moreover, for any η ∈ [η̂, η̃] the solution w(y; η) of (Qη) is of type I such that w′ < 0 for

all y ≥ 0.

We shall claim that η̃ = η̂ and that there is a spiral wave solution if and only if η ∈ (0, η̃].

To do this, we need the following comparison lemma.

Lemma 4.9. Suppose that vi is the solution of the following initial value problem

dv

dw
= ηie

−w +
aew − e2w

v
,(4.17)

v(ln(b)) = −ci,(4.18)

for i = 1, 2, where 0 < b ≤ a, c2 > c1 > 0, and η2 > η1 > 0. Suppose that v1v2 �= 0 on

(R, ln(b)] for some R < ln(b). Then v1 > v2 and v′
1 < v′

2 on (R, ln(b)].

Proof. Note that v1(ln(b)) > v2(ln(b)). For contradiction, we assume that there is w ∈
(R, ln(b)) such that v1 > v2 on (w, ln(b)] and v1(w) = v2(w). Then we have v′

1(w) ≥ v′
2(w).

However, from (4.17), for i = 1, 2, it follows that

(4.19) v′
1(w) = η1e

−w +
aew − e2w

v1(w)
< η2e

−w +
aew − e2w

v2(w)
= v′

2(w),

a contradiction. Therefore, we obtain that v1 > v2 on (R, ln(b)].

Note that v2 < v1 < 0 on (R, ln(b)] by assumption. Also, aew − e2w ≥ 0 for w ∈ (R, ln(b)],

since b ≤ a. Hence v′
1 < v′

2 on (R, ln(b)] by (4.19). The proof is completed. �
Now, we claim that η̃ = η̂. Suppose that η̂ < η̃. Set w1(y) := w(y; η̂) and w2(y) := w(y; η̃).

Then wi is of type I such that vi(y) := w′
i(y) < 0 on [0,∞) for i = 1, 2. Hence we can view

vi as function of wi, i = 1, 2. Therefore, vi (i = 1, 2) is the solution of (4.17)-(4.18) with

b = a, η1 := η̂, and η2 := η̃. It follows from Lemma 4.9 that v1 > v2 on (−∞, ln(a)]. Also,

from (4.17) it follows that

(4.20)
d(v1 − v2)

dw
= (η1 − η2)e

−w + (aew − e2w)

(
1

v1

− 1

v2

)
< 0 on (−∞, ln(a)).

By integrating (4.20) from −∞ to w ≤ ln(a), we obtain that

(v1 − v2)(w) − (v1 − v2)(−∞) < 0

for all w ≤ ln(a), a contradiction. Hence we conclude that η̃ = η̂.

Lemma 4.10. For a fixed η > 0, the problem (Pη) has at most one type I solution (up to

translations).

Proof. For contradiction, we assume that w1 and w2 are two type I solutions of (Pη). Since,

by Lemma 4.6, vi(y) = w′
i(y) < 0 for all sufficiently large y, we can view vi as a function

of w for i = 1, 2. Moreover, since Eq. (1.7) is autonomous, we may assume that v1 > v2

for all w < w0 for some w0 < ln(a). Then, as in (4.20) with η1 = η2 = η, we obtain that

(v1−v2)
′(w) < 0 for all w < w0. This leads to a contradiction and the proof is completed. �

We denote the solution w(y; η, b) of (Pη) by wb(y; η) or simply wb(y). Also, set vb(y) :=

w′
b(y). Note that (wb, vb) satisfies the system (Sη).
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Theorem 1. There is a type I solution of (Pη) if and only if η ∈ (0, η̃].

Proof. First, we assume that η > η̃. Then we have w′
a(y) < 0 for all y ∈ [0, Ra) and

wa(y), w′
a(y) → −∞ as y → R−

a for some Ra < ∞. Let γ be the trajectory of (wa, va)

in the phase plane. Note that γ lies above Γ. Then any trajectory (wb, vb) starting at

(ln(b),−η/b), with b < a, remains in the region below γ and above Γ. Hence w′
b(y) < 0 for

all y ∈ [0, Rb) and wb(y), w′
b(y) → −∞ as y → R+

b for some Rb < ∞, i.e., wb is of type II.

For b > a, the corresponding trajectory either remains below Γ or reaches Γ at some y > 0

with wb(y) < ln(a) by the phase plane analysis. Therefore, it is also of type II.

Now, given a fixed η < η̃. Then either L(η) = 0 or L(η) = ∞.

Suppose that L(η) = ∞. Let y0 = 0 and yi be the y-value of the ith intersection point

of the trajectory (wa, va) with the line {w = ln(a), v < 0}, i = 1, . . . , N , such that

−η/a = w′
a(y0) > w′

a(y1) > · · · > w′
a(yN). Note that 1 ≤ N < ∞. Consider the set

{α ∈ (w′
a(yN), w′

a(yN−1))} such that the trajectory starting from the point (ln(a), α) has

the property that L = ∞. Then it is easy to see that the supremum α0 of this set has

the property that the trajectory (w0, v0) starting from the point (ln(a), α0) is of type I with

v0(y) < 0 for all y ≥ 0. Therefore, we have at least 2N distinct solutions of (Pη) such that

they are all of type I.

For the case L(η) = 0, it follows from Lemma 4.6 that there is a finite integer N ≥ 1 such

that the problem (Pη) has at least 2N +1 distinct type I solutions. The theorem follows. �
In the following, we shall study the exact number of type I solutions for each η ∈ (0, η̃].

Lemma 4.11. Suppose that (wi, vi) is the solution of (Sηi
) with (wi(yi), vi(yi)) = (di, 0) and

(wi, vi) ∈ (−∞, ln(a)) × (0, +∞) for y ∈ (yi, zi), where η2 > η1 > 0, ln(a) > d1 > d2, and

zi satisfies that w(zi) = ln(a) for i = 1, 2. Then there does not exist ti ∈ [yi, zi], i = 1, 2,

such that (w1(t1), v1(t1)) = (w2(t2), v2(t2)). Moreover, if we view the wi as a function of v

for i = 1, 2, then we have w1 > w2 on [0, V ], where V := v1(z1).

Proof. Since vi > 0 for y ∈ (yi, zi], we can view wi as a function of v, and so wi satisfies the

following initial value problem

dw

dv
=

v

aew − e2w + ηie−wv
,(4.21)

w(0) = di(4.22)

for i = 1, 2. Note that d1 > d2. For contradiction, we assume that there exists v0 ∈ (0, V ]

such that w1 > w2 on [0, v0) and w1(v0) = w2(v0). Therefore, w′
1(v0) ≤ w′

2(v0). Note that

aew − e2w + ηie
−wv > 0 for (w, v) ∈ (−∞, ln(a)] × (0, +∞) and i = 1, 2. Then we have

w′
1(v0) =

v0

aew1(v0) − e2w1(v0) + η1e−w1(v0)v0

>
v0

aew2(v0) − e2w2(v0) + η2e−w2(v0)v0

= w′
2(v0),

a contradiction. This completes the proof. �
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Lemma 4.12. Given η0 > 0, there exists δ > 0 and W1 < ln(a) such that for any η ∈
(η0 − δ, η0 + δ), the solution (w(y), v(y)) of the system (Sη) with the initial condition w(0) =

w1 < W1 and v(0) = 0, intersects the line {w = ln(a), v > 0} at (ln(a), v(z)) for some z > 0

such that v > 0 on (0, z] and E(z) = [v(z)]2/2 + G(ln(a)) > 0.

Proof. Recall that for any fixed η > 0, the solution (w(y), v(y)) of the system (Sη) with the

initial condition (w(0), v(0)) = (r, 0) for some r < ln(a) intersects the line {w = ln(a), v > 0}
at (ln(a), v(z)) = (ln(a), s) for some s > 0 and z > 0 such that v > 0 on (0, z]. It is clear

that s is a decreasing function of r and s = s(r) maps (−∞, ln(a)) onto (0, +∞). Therefore,

given η0 > 0 and s0 > 0 with s2
0/2 + G(ln(a)) > 1/2, there exists r0 < ln(a) such that the

solution (w0(y), v0(y)) of the system (Sη) with the initial condition (w0(0), v0(0)) = (r0, 0)

intersects the line {w = ln(a), v > 0} at (ln(a), v0(z0)) = (ln(a), s0) for some z0 > 0 and

v > 0 on (0, z0]. Using the standard theory of continuous dependence on initial condition

and parameter and noting that the decreasing property of the function s, we can find a δ > 0

and W1 < ln(a) such that the conclusion of the lemma holds. The proof is completed. �

Lemma 4.13. Suppose that (wi, vi) is a solution of (Sηi
) with (wi(yi), vi(yi)) = (ln(a), di)

and (wi, vi) ∈ (ln(a), +∞) × (0, +∞) for y ∈ (yi, zi), where η2 > η1 > 0, d2 > d1 > 0,

and vi(zi) = 0 for i = 1, 2. Then there does not exist ti ∈ [yi, zi] for i = 1, 2 such that

(w1(t1), v1(t1)) = (w2(t2), v2(t2)). Moreover, if we view the vi as a function of w for i = 1, 2,

then we have v2 > v1 on [ln(a), W ], where W := w1(z1).

Proof. Since vi > 0 for y ∈ [yi, zi), we can view vi as a function of w, and so vi satisfies the

following initial value problem

dv

dw
= ηie

−w +
aew − e2w

v
,(4.23)

v(ln(a)) = di,(4.24)

for i = 1, 2. Note that d2 > d1. For contradiction, we assume that there exists w0 ∈
(ln(a), W ] such that v2 > v1 on [ln(a), w0) and v1(w0) = v2(w0). Therefore, v′

1(w0) ≥ v′
2(w0).

On the other hand, from (4.23) it follows that

(v2 − v1)(w
−
0 ) − (v2 − v1)(ln(a))

=

∫ w−
0

ln(a)

{(η2 − η1)e
−w + (aew − e2w)(1/v2 − 1/v1)}dw

>

∫ w−
0

ln(a)

(η2 − η1)e
−wdw

> 0,

where we have used the facts that v2 > v1 > 0 on [ln(a), w0) and aew − e2w < 0 for w ∈
(ln(a), w0]. This implies that v1(ln(a)) > v2(ln(a)), a contradiction. The lemma follows. �

Lemma 4.14. Suppose that (wi, vi) is the solution of (Sηi
) with (wi(yi), vi(yi)) = (di, 0) and

(wi, vi) ∈ (ln(a), +∞) × (−∞, 0) for y ∈ (yi, zi), where η2 > η1 > 0, d2 > d1 > ln(a), and

zi satisfies that w(zi) = ln(a) for i = 1, 2. Then there does not exist ti ∈ [yi, zi] for i = 1, 2
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such that (w1(t1), v1(t1)) = (w2(t2), v2(t2)). Moreover, if we view the wi as a function of v

for i = 1, 2, then we have w2 > w1 on [V, 0], where V := v1(z1).

Proof. Proceed as in Lemma 4.11 �
Combining Lemma 4.9 and Lemmas 4.11-4.14, the following lemma follows.

Lemma 4.15. Suppose that (wi, vi) is the solution of (Sηi
) with (wi(yi), vi(yi)) = (0, di) for

i = 1, 2, where η2 > η1 > 0, 0 > d1 > d2, and y1, y2 are real numbers. If (w2, v2) goes

around the point (ln(a), 0) clockwise and has at least m intersection points with the line

{w = ln(a), v < 0} for y ∈ [y2, R2), then so does for (w1, v1) in [y1, R1).

We are ready to prove one of the main theorem of this paper as follows.

Theorem 2. There exists a sequence of positive numbers

η̃ = η0 > η1 > η2 > · · · > ηm > · · · > 0

such that (Pη) has exactly 2m type I solutions, if η ∈ (ηm, ηm−1); and (Pη) has exactly 2m+1

type I solutions, if η = ηm.

Proof. We shall denote the solution of (Qη) by wη(y). Also, set vη(y) := w′
η(y). First, we

note that wη̃ is the only type I solution of (Pη̃).

Next, given a fixed η < η̃. Let L(η) := limy→R− E(y; η), where E(y; η) = [w′
η(y)]2/2 +

G(wη(y)). Then either L(η) = 0 or L(η) = ∞. Consider the solution (wη̃, vη̃) of (Sη̃). Using

Lemma 4.9 and the uniqueness of type I solution of (Qη) among all positive numbers η, the

solution (wη, vη) of (Sη) never intersect (wη̃, vη̃) and (wη, vη) hits the w-axis at (w0, 0) for

some w0 < ln(a). By theory of continuous dependence and Lemma 4.12, there exists δ > 0

and W1 < ln(a) such that for all η ∈ (η̃ − δ, η̃), the solution (wη, vη) of (Qη) will hit the

w-axis at (w0, 0) for some w0 < W1, then go into the region (−∞, ln(a)) × (0, +∞), and

intersect the line {w = ln(a), v > 0} at the point (0, v0) for some v0 > 0 such that

E(y0; η) = v2
0/2 + G(ln(a)) > 0,

where y0 satisfies that v(y0) = v0. Therefore, (wη, vη) will hit the line {w = ln(a), v < 0}
exactly two times and there exists y1 > y0 such that (wη, vη) ∈ (−∞, ln(a)) × (−∞, 0) for

all y ∈ (y1, Rη) and (wη, vη) → (−∞,−∞) as y → R−
η , and so L(η) = +∞. Define B1 to be

the set of all positive numbers η ∈ (0, η̃) such that (wη, vη) hits the line {w = ln(a), v < 0}
exactly two times and L(η) = +∞. Note that from Lemma 4.9 and Lemmas 4.11-4.14 it

follows that if r ∈ B1, then η ∈ B1 for all η ∈ [r, η̃). By Remark 4.2 and the above discussion,

the set B1 is nonempty and bounded below. Therefore, η1 := inf B1 exists. Furthermore,

(wη1 , vη1) hits the line {w = ln(a), v < 0} exactly two times and (wη1 , vη1) → (−∞, 0) as

y → +∞. By a similar argument, we can find a sequence of positive numbers

η̃ > η1 > η2 > · · · > ηm > · · · > 0

such that

(1) (wη, vη) hits the line {w = ln(a), v < 0} exactly m + 1 times and (wη, vη) →
(−∞,−∞) as y → R−

η for all η ∈ (ηm, ηm−1).
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(2) (wηm, vηm) hits the line {w = ln(a), v < 0} exactly m + 1 times and (wηm , vηm) →
(−∞, 0) as y → +∞.

Now, we turn to the problem (Pη) for a fixed η ∈ [ηm, ηm−1). Firstly, we suppose that

η ∈ (ηm, ηm−1). Let y0 = 0 and yi be the y-value of the ith intersection point of the

trajectory (wη, vη) with the line {w = ln(a), v < 0}, i = 1, . . . , m, such that −η/a =

w′
η(y0) > w′

η(y1) > · · · > w′
η(ym), where we have used the fact that the energy is increasing.

Note that 1 ≤ m < ∞. Consider the set {α ∈ (w′
η(ym), w′

η(ym−1))} such that the trajectory

starting from the point (ln(a), α) has the property that L = ∞. Then it is easy to see that

the supremum α0 of this set has the property that the trajectory (w0, v0) starting from the

point (ln(a), α0) is of type I with v0(y) < 0 for all y ≥ 0. It is easy to see that the set

{(w0(y), v0(y))|y ∈ R} intersect the initial curve Γ at exactly 2m points. Therefore, from

Lemma 4.10 it follows that we have exactly 2m distinct solutions of (Pη) such that they are

all of type I.

For the case η = ηm, it follows that the set {(wη(y), vη(y))|y ∈ R} intersect the initial

curve Γ at exactly 2m+1 points. Therefore, from Lemma 4.10 it follows that we have exactly

2m + 1 distinct solutions of (Pη) such that they are all of type I. The theorem follows. �
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