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1. INTRODUCTION AND MAIN RESULTS

Rigidly rotating spiral wave patterns of Archimedean shape are a prominent phenome-
non in the spatio-temporal evolution of planar reaction-diffusion systems. A first analysis
by Wiener and Rosenblueth [WR46] was motivated by electrical waves in heart tissue. For
experimental evidence of Archimedean spirals in Belousov- Zhabotinsky systems and oth-
er excitable chemical reaction media see for example [Win72], [Win87], [Win01], [BE93],
[UUM93], [RKPD94], [RNOE93]. See also the recent survey [Mik03] and the references
there. For related fluid convection experiments see [PB96].

One mathematical approach, initiated already by Wiener, aims at a geometric description
of the spatio-temporal dynamics of the sharp wave fronts which seem to emanate from a
highly focused ”core” region or "tip” and which take the form of an Archimedeam spiral, far
away form the tip. This approach, where the wave front is represented simply by a planar
curve z = z(s) € R?, parameterized over arc length s > 0, is sometimes called kinematic
theory of spiral waves, and has been developed on a mostly formal level. See for example
[KT92], [Kee92], [MZ91], [Mik03] and the references there. Typically the dynamics of the
curve z(s) is then described by a curvature driven flow

(1.1) u=U(k),

where u indicates the normal velocity and x denotes the signed curvature of the oriented
curve z(s). Here we define the signed curvature k along the negative of the left normal unit
vector n(s) to the unit tangent z’(s). In complex notation for z(s) € R? = C we therefore
have

(1.2) 2= —kn = —ikz.

We will only consider the case of nonvanishing wave speeds ¢ := U(0) # 0 of planar wave
fronts, in the normal direction n(s). We will first, and mostly, consider the case

(1.3) c:=U(0) > 0.

Our sign convention for « in (1.2) is chosen to later accomodate left rotating Archimedean
spirals which are winding outwards in clockwise direction, as are observed in the Belousov-
Zhabotinsky medium for monotonically decreasing U; see (1.4) below and the proof of Lemma
4.1.

By a spiral curve we quite generally mean a non-circular planar curve z = z(s),s > 0,
with everywhere non-zero curvature x and with uniformly bounded normal velocity u. The
special case

(1.4) u=c— Dk,

where the normal velocity is simply an affine linear function of curvature «, has been proposed
for spiral wave descriptions in the Belousov-Zhabotinsky reaction, see for example [Kee89],
[MZ91], as well as for surface waves in catalysis, see [IIY98], [Mer92]. The particular case
¢ = 0 is known as curve shortening and has also received significant attention; see for example
[Ang90], [Ang91], [GHS6].

Rather than by its position z, we may also describe any planar curve z(s) of class C?,
alternatively, by specifying its curvature x = k(s) as a function of arc length s. The advan-
tage of such a description lies in the obvious fact that different curves z(s) are represented
by the same curvature function x(s) if, and only if, they differ by a rigid planar proper Eu-

clidean motion. Thus «(s) distills the pure "shape” out of z(s). Moreover, a rigidly rotating
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temporal evolution z(t, s) of wave front curves will be represented by a single ¢-independent
curvature function (s). Under the curvature flow (1.1), in fact, the resulting nonlinear
parabolic partial differential equation for z(¢, s) reduces to a (nonlocal) ordinary differential
equation, for a rotating wave x(s). Specifically

(1.5) u'(s) + K(s) /08 kuds = w,

where w denotes the rotation frequency and v = U (k) may be nonlinear. For the convenience
of our reader, we derive (1.5) in section 2 below. See also the companion paper [FGT03] for
an alternative, estimate-based treatment of (1.5), as well as the earlier references [Mer92],
ITY98].

Equation (1.5) for rigidly rotating curves z(s), under curvature flow, in fact suggests to
consider the normal velocity u, rather than curvature x, as the dependent variable. We
therefore invert the constitutive relation (1.1):

(1.6) k= T(u)
with I := U~!. For I and its continuous derivative I',, we assume
(1.7) IeC* T(c)=0 forsome c¢>0, and I',(u)#0 for all w.

Nonmonotone, and hence noninvertible velocity dependence U(k) on curvature has been
proposed by [ZMM98], but is excluded in our present analysis. Because spiral curves possess
nonzero curvature k, everywhere, assumption (1.7) restricts our search to global solutions
u = u(s) of (1.5) which satisfy

(1.8) u(s) # ¢ for all s, suplu(s)] <oo, and u' #ZO0.

Indeed, u' # 0 avoids circles z(s) of constant curvature, and the second condition avoids
wave fronts of unbounded speeds. In Proposition 3.4 below we will in fact show that the
uniform boundedness of |u| is a consequence of the other assumptions, for u < c.

In polar coordinates z = r exp(ig) for curves z = 2(s) € R? = C, we can clearly distinguish
two different types of spirals, depending on the asymptotic behavior of (r(s), ¢(s)) for arc
length s — +00. We speak of an Archimedean spiral, if

dr
dip
possibly after a reflection z — Z. Note that the limiting value 27a can be viewed as the

asymptotic radial wave length in the far field » — co. In contrast, we speak of a limit circle
spiral, if

(1.9) © — —00, —a#0,

(1.10) = —00, "= R >0,

possibly after a reflection and a translation z — z 4+ z5. In particular, as we will see below,
any rotating Archimedean spiral necessarily satisfies

(1.11) u(s) = ¢ and k(s) = 0="T(c)

for s — oo, in view of the constitutive relation (1.6). Similarly, a limit circle spiral must
satisfy

(1.12) u(s) =0 and |k(s)| — % — T (0).



Figure 1.1. A global bifurcation diagram of rotating Archimedean spirals with angular wave
speeds w > 0 and tip velocity u(0).

We now formulate our main theorems 1.1 and 1.2, which show that the above two types
of spirals are the only ones which can occur as rigidly rotating solutions to the curvature
flow (1.1), (1.5) with nonzero angular speed w.

Theorem 1.1. Let the constitutive relation k = I'(u) of (1.6) satisfy (1.7), that is, I'(c) =0
for some ¢ > 0, and I'y(u) # 0 for all u. Consider positive angular rotation speeds w and
monotonically decreasing constitutive laws,

(1.13) w>0>T,.

Then there exists a strictly decreasing sequence wi > wy > --- \, 0 and associated functions
uF(w), for 0 < w < wy, with the following property. A C3-solution z = z(s), s > 0, of the
curvature flow equation (1.5),(1.6), for which the normal velocity u = u(s) satisfies spiralling
assumption (1.8) with u < ¢, exists if, and only if, the tip velocity u(0) and the derivative
u'(0) at the tip s = 0 satisfy

(1.14) u(0) € {u, (W), uy (W)}, ¥(0) =w

for some positive integer n.

The associated solutions z = z(s) = rexp(ip) are right winding, left rotating Archimedean
spirals, in the sense of (1.9), (1.11). The tip z(0) rotates on a circle of radius p = |u(0)/w|.
The asymptotic wave length 2mwa of the Archimedean spiral in the far field r — oo, in the
sense of (1.9), is given by

(1.15) 2ma = 27c/w.

The functions w — uX(w) possess the following properties for every n € N:

(i) the union of the graphs of ur forms a C3-curve, with nonvanishing curvature at w = w,;
(ii) uE(w,) =0, and ut(w) — +c for w \, 0;

(111) for all angular rotation speeds 0 < w < w, we have the strict ordering

(1.16) uf (w) > ug (W) > ... >yt (w) > 0> u, (w) > ... >uy(w) > uy (w).

See Figure 1.1 for an illustration of the resulting global bifurcation diagram of rotating
Archimedean spirals, and Figure 1.2(b),(c) for a numerical simulation of the Archimedean
spirals z(s) € R?, themselves. For a more detailed discussion of the interpretation of Figure
1.2 we refer to section 8.
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Figure 1.2. Archimedean ((b), (¢)) and circle ((d) — (f)) spirals z = z(s) = (z(s),y(s)) for
['(u) =1 —2u, w= +0.05, by increasing resolution near the tip. For the underlying center
manifold in the plane (u,v) = (u,u’) see (a).
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Theorem 1.2. Under the assumptions of theorem 1.1, consider negative angular rotation
speeds w and monotonically decreasing constitutive laws, such that

(1.17) w<0, T,<0.

Then for any tip velocity u(0) < ¢ there exists a unique rotating solution z(s),s > 0, of the
curvature flow equation. The normal velocity is given by the unique bounded solution u(s)
of (1.5),(1.6) with tip derivative u'(0) = w.

The associated solutions z = z(s) = rexp(ip) are limit circle spirals, in the sense of
(1.10),(1.12). In particular, the tip z(0) rotates on a circle of radius p = |u(0)/w|. The limit
circle, for s — 00, in the sense of (1.10), possesses radius R = 1/T'(0), as claimed in (1.12).

Corollary 1.3.

(i) Assume I'(c) = 0 for some ¢ > 0, and consider u < ¢, but this time for the monotonically
increasing case 'y > 0. Then Theorems 1.1, 1.2 remain valid, if we replace z(s) by its
complex conjugate Z(s). The Archimedean spirals, for example, are then left winding and left
rotating.

(i1) If T'(¢) = 0 for some ¢ < 0, and u > ¢, then Theorem 1.1 holds for w < 0 < Ty, whereas
Theorem 1.2 applies to w > 0, 'y, > 0. Sign statements and inequalities involving negative
w and w, then hold for —w, —w, instead.

(11i) If T'(c) = 0 for some ¢ < 0, and u > ¢, then Theorem 1.1 also applies to the cases
w <0, I'y <0, while Theorem 1.2 applies to w > 0 > I'y,. In these cases, both the additional
remarks of statements (i) and (ii) apply.

The remaining paper is organized as follows. We begin with the case w > 0 > ', of
Theorem 1.1. In section 2, we derive the integral equation formulation (1.5) for rotating waves
under curvature flow, see also [Mer92]. We derive an equivalent second order formulation of
(singular) Lienard pendulum equation type. In particular we propose a Lyapunov function
E = E(u,u') of energy type, which is singular at © = ¢ and is increasing for wI'T, < 0,
but decreasing for wI'T', > 0. In section 3, we use a regularizing time transformation which
exhibits spirals, in the sense of our definition (1.8), to lie on the (stable) center manifold
of the trivial unstable equilibrium (u,u') = (¢, 0), after regularization. The energy function
E(u,u'), however, remains singular. In particular we show, that solutions outside the center
manifold do not qualify as spirals. Moreover we compute the center manifold to leading
third order. In section 4, we show that solutions in the left center manifold indeed are
Archimedean spirals as claimed in Theorem 1.1. The global bifurcation diagrams as given
by the graphs of the functions u(w) are derived in section 5. Section 6 reviews the results
of the previous sections and proves Theorem 1.1. The necessary modifications for the proof
of Theorem 1.2 are collected in section 7. In fact we use certain symmetry arguments to
also treat the remaining cases mentioned in Corollary 1.3. We conclude, in section 8, by
investigating the self-intersection properties of the Archimedean and the limit circle spirals
z(s), as established in Theorems 1.1, 1.2, and Corollary 1.3 above.
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typesetting was miraculously performed by Chun-Tsung Hsueh, Chi-Jen Wang, and Chin-
Chin Wu. Ann Bjoerner helped expertly with the design of several figures. This work has
also been supported by the Deutsche Forschungsgemeinschaft, SFB555 ” Complex Nonlinear
Processes”.



2. EQUATIONS FOR ROTATING WAVE CURVES

In this section we briefly derive the integral equation
(2.1) o (s) + K(s) / K(o)u(o)do = w
0

for a planar C?-curve z = z(s) in R? = C which left rotates at constant angular speed w € R
around the origin, under curvature flow; see also [Mer92]. As before, s indicates arclength
measured from the tip s = 0, u is normal velocity, and & is signed curvature; see (1.2). For
the present paper, we prefer an equivalent singular second order formulation of the Lienard
pendulum type, which we derive in (2.13), (2.14), (2.15) below. For an associated singular
energy, or Lyapunov function, see Proposition 2.2.

Proposition 2.1. Let 2 = 2(s) e R2 2 C,s > 0, be a planar C*-curve rotating at constant
angular velocity w. Then curvature k(s) and normal velocity u(s) satisfy (2.1), as functions
of arclength s.

Proof. We recall that the arclength parametrization satisfies
(2.2) Z2=727Z =1, and "7 +272"=0

in complex notation. The scalar product (z1, 29) of 21,22 € R? is given by
1
(23) (2’1, ZQ) = Re(zlz_Q) = 5(212'_2 + Z_1Z2),

and n := iz’ denotes the left unit normal to the curve z(s).
The normal velocity u of the time dependent curve Z = e*!z(s), which left rotates at
constant angular speed w € R, is given by the normal projection

(2.4) u = (Z;,n) = (iwe™'z, e*"iz') = wRe(2Z') = g(zi' +z2').
Using (2.2), the s-derivative v’ is given by
(2.5) v —w = wRe(zZ").
At the tip s = 0, rigid rotation of z(s) around the origin provides the additional condition
(2.6) 0 = (z,n) = Re(z - (—iz')) = Im(2Z").

Indeed the curve normal n must be tangent to the circle | z(0) |= p of the tip motion. Hence
z(0) and the tangent z’(0) are parallel:

(2.7) 2(0)] = p = [Re(2Z")|.
For the normal velocity u(0) at the tip
(2.8) u(0) = wRe(27),

two cases arise. If 2’ points out of the tip circle of radius p = Re(zZz') > 0, this implies
u(0) = wp. If 2’ points inside the tip circle, however, then p = —Re(2z') > 0 and u(0) = —wp
possesses the opposite sign, due to our choice of curve orientation.

We finally recall our definition (1.2) of signed curvature k. By (2.2) we can therefore write

(2.9) k=12" /2 =i2"Z' = —Im(2"Z"),

and k is of course real.



With these preparations we can now calculate

S S
o W, _
Kuds = i2"7 - = (7' + z7')ds
0 0 2
w [°
= 3 (—Z"2'2z" + 22’z )ds

0

(2.10) = wlm (/ E"zds)
0
= wlm ([E’z]z —/O Z’z'ds)

= wIm(Z'(s)z(s)).
Besides the defining equations (2.4), (2.9) for u, x, we have freely used (2.2) and integration

by parts here. Not that the imaginary part of Z’2’ = 1 vanishes. At the tip s = 0, moreover,
Im(Z'z) = 0 by (2.6).

To complete the proof of the integral curvature equation (2.1), we use (2.9), (2.10), (2.2),
and recall (2.5) to obtain

m(s)/ kuds = wklm(z'z2)
0

= S (i2"7)(Fz— 77)
i
(2.11) - —%(E“z +2"7)
—wRe(2z")
= w—u.
This proves (2.1) and the proposition. O

To rewrite (2.1) as a pendulum equation we first note that v € C?, by (2.1), for C?-curves
z rotating under curvature flow, with £ = I'(u) a C"-function of u. Differentiating (2.1) with
respect to s and using (2.1) to replace the integral term, we thus arrive at
!

(2.12) u" + i(Lu —u') + k*u = 0.
K

Substituting k = I'(u), this is equivalent to the singular second order pendulum equation of
Lienard type
r
(2.13) u” + ?“(w —u')u' + Ty = 0.
The singularity arises in the plane wave limit v = ¢, of course, where k = I'(¢) = 0 by
assumption (1.7).
As is standard, we may rewrite (2.13) as a singular first order system
(2.14) u o= w
i F’u 2
(2.15) Vo= —?(M—U)U—P u.
For later analysis it will be most convenient to study (2.14), (2.15) after multiplication by
the Euler multiplier I'. If we introduce a new, non-arclength parameter 7 such that



Figure 2.1. Phase portrait of the curvature flow systems (2.14)-(2.15), (2.16)-(2.17), (3.1)-
(8.2), with respect to increasing arclength s.

"=4 =T(u(s))£ =T- ', then the singular rotating wave system (2.14), (2.15) takes the

regular form

(2.16) v = Tw
(2.17) v = —Ty(w—v)v—Tu.

Specifically our parameter transformation reads

(2.18) s = /OT C(u(r))dr

in the new variables u(7). Note the sign reversal in 7 for negative I". Below we use the same
letter to denote v = u(7) and, barely avoiding confusion,

(2.19) v=uv(r) =u'(s) = a(r)/T(u).

Whatever parametrization we use, let us consider the following singular energy or Lya-
punov function

1 1

5(1}/11(11))2 + §u2.

Proposition 2.2. Along solutions (u,u’) = (u,v) of (2.13)-(2.17) the energy function E of
(2.20) satisfies the monotonicity property

(2.20) E = E(u,v/) = E(u,v) =

(2.21) E' = —wlw?/I?

and therefore is a Lyapunov function as long as wl'T, # 0. Note how the angular rotation
speed w plays the role of a damping parameter in (2.21). Equivalently to (2.20) we have

(2.22) E = —wly(v/T)2

Proof. Differentiating (2.20) with respect to arclength s and using (2.14)-(2.18), the mono-
tonicity property (2.21), (2.22) is immediate. O



3. CENTER MANIFOLD AND BOUNDEDNESS

In this section we study the center manifold W€ of the trivial plane wave equilibrium
(u,v) = (c,0) of the regularized rotating wave system

(3.1) v = Tw
(3.2) v = —Ly(w—v)v—T3%

which was derived in (2.16), (2.17). For a phase portrait of (3.1), (3.2), alias (2.16), (2.17)
and (2.14), (2.15), see Figure 3.1. See [Van89], [CH82] for a background on center manifolds.
In particular we compute the leading third order term of W€ in Lemma 3.1. In Lemmas
3.2, 3.3, we then describe the central role of the center manifold W€ for our global study of
bounded spirals, in the sense of definition (1.8). Throughout we assume that (1.7) holds:
[ € C* T'(c) =0 for some ¢ > 0, and T', # 0. For definiteness we consider the case

(3.3) I, <0<w
in the present section.

Lemma 3.1. Under assumptions (1.7), (3.3), the trivial plane wave equilibrium (u,v) =
(c,0) of (3.1), (3.2) possesses a center manifold We: v = v°(u). In the left half-space u < c,
this center manifold is unique and consists of all initial conditions (u,v) = (ug,vo), at 7 =0,
for which

(3.4) lim (u,v)(7) = (c,0).

T—+00
We call this part of the center manifold W€. Locally near (c,0), the center manifold W, is
of differentiability class C* and depends C* on the parameter w > 0. The manifold W¢, is a
graph over u and possesses an erpansion

(3.5) ve(u) = afe —u)® + - -

with the nonzero coefficient

(3.6) a=Ty(c)? c/w

In particular, the flow on W€ is locally given by

(3.7) i = T(u)v(u) = —P“(‘jg “(e—u)t +
Globally, we observe that

(3.8) supE = ¢

on W\ {(¢,0)} holds for the Lyapunov function E of Proposition 2.2.

Proof. The vertical line v = ¢ is invariant under (3.1), (3.2). Linearization at the trivial
equilibrium (u,v) = (¢, 0) provides the diagonal system

(3.9) i = 0
(3.10) v = —wly(c)v
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with eigenvalues 0 and —wI'y(c) > 0, by (3.3). The vertical line v = ¢ is the (strong)
unstable manifold of (¢,0). By [Van89], for example, system (3.1), (3.2) also possesses a
one-dimensional, locally invariant, local center manifold

(3.11) v:uc(u) :am(c_u)m+...

of class C3, for I' € C*. Here m > 2, so that W¢ is tangent to the horizontal eigenspace of
the zero eigenvalue.

To determine «,,, we use (3.11), the u-equation of (3.1), and invariance of the center
manifold to derive

(3.12) v = vS(u)i = vilv® = ma2 Ty(c)(c— u)*™ + -

On the other hand, (3.11) and the v-equation of (3.2) provide

(3.13) ¥ = T ww —v°) — Tu = —wly(c)am(c — u)™ + Ty(e)*clec — u)? + - --
Comparing leading coefficients in (3.12) and (3.13), we immediately conclude
(3.14) m = 3, a=as="T,() c/w

as was claimed in (3.5), (3.6). Inserting our expression of W¢ into the u-equation of (3.1) we
obtain (3.7). In particular sign condition (3.3) implies & > 0 on the (local) center manifold
v = v¢(u), for u # ¢ > 0. Because the vertical line v = ¢ is flow-invariant, the center
manifold W€ never crosses u = ¢, except trivially at v = 0. Thus W€\ {(¢,0)} decomposes
into a stable left branch

(3.15) We =wen {u<c}

and an unstable right branch W¢, where u > c¢. Note that W are single trajectories, each.
Because @ > 0 on W, locally, solutions on W€ satisfy convergence property (3.4) locally,
and hence globally. _

To prove (3.8), sup E = %CQ on W¢, we note that Proposition 2.2 implies £ > 0 there.
Inserting expansion (3.5) locally in (2.20) provides

1
(3.16) E=§CZ—C(C—U)+-'-

It remains to show uniqueness of W€, locally, and the characterization by convergence (3.4).
This follow from Shoshitaishvili’s theorem; see [Arn83]. Generalizing the Grobman-Hartman
theorem, this result asserts that near (u,v) = (¢, 0) system (3.1), (3.2) is locally C°-equivalent
to the product flow

(3.17) o = T(u)v(u)
(3.18) v = —wly(c)
of the u-flow on W€ and the linearized hyperbolic remainder v. Because the set of initial
conditions with forward convergence property (3.4) is one-dimensional in (3.17), (3.18), co-
inciding with the part u < ¢ of the u-axis, and because that set corresponds to WU {(c,0)},

locally, the left part W€ of the center manifold is locally — and hence globally — characterized
by convergence property (3.4). In particular, W€ is unique. This proves Lemma 3.1. O

Lemma 3.2. As in Lemma 3.1, assume

(3.19) I, <0<w.
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Let u = u(s) < ¢,0 < s < 00, be any solution of the rotating curve equation (1.5), alias
(2.12)-(2.15). (By sign convention (1.2), Ty < 0, and T'(c) = 0 for some ¢ > 0, this
corresponds to positive k = I'(u) and to right winding rotating curves z(s).) Then u(s)
satisfies the boundedness and sign conditions (1.8) if, and only if, (u,v) = (u(s),u'(s)) lies
on the left center manifold W° as defined in Lemma 3.1.

Proof. By Proposition 2.2 and assumption (3.19), the energy 0 < E(s) = E(u(s),u'(s)) =
s(u'/T(u))? + Lu? is strictly increasing for u < ¢, except at the equilibrium u = v’ = 0.
Suppose first that (u,v) € We. Then u(s) < ¢ for all s; see (3.8). Obviously |u(s)| is
bounded, because u(s) — ¢ for s — oco. Likewise, v’ # 0 because u # c. This proves (1.8).
Now suppose, conversely, that the boundedness and sign conditions (1.8) hold. By u' # 0,
our solution (u,v) = (u(s), u'(s)) does not coincide with the equilibrium v = v = 0. Consider

(3.20) 0 < E:=limsup E(s) < o0
We will distinguish the three case

E=
(3.21) (b) 0< E < 00,
E = .

In case (a), the monotonicity property of E implies (u,u') = (0,0), which is excluded in
(1.8).

In case (b), the finite energy bound E < oo for E = 1(v/T'(u))? + su? provides bounds on
|u|, and then on |v|. We claim that the Q-limit set {2 in the regularized system (2.16), (2.17)
then satisfies

(3.22) Q= {(c,0)}.

Indeed the construction (2.20) of the energy E and the Lyapunov property (2.22) imply
that either £ = 0 on , or else u = ¢ so that E has become ”singular”. Boundedness
0 < E < E < oo of E implies that u = ¢ implies v = 0 in the ”singular” case, proving claim
(3.22). In the other case, FE =0 implies v = 0 on §, by (2.22). Consequently (2.17) implies
0 =% = —T3u. The case u = 0 being treated in (a), this leaves I'(u) = 0, that is u = c on
(2, again proving claim (3.22).

Therefore (3.22) holds and (u,v) lies on We, by Lemma 3.1. Inserting expansion (3.5) for
We, we in fact see that E = E(c,0) = % in thls case.

In case (c) we first claim that v can cross the u-axis at most once, when E > %02 holds
for the Lyapunov function E(u,v) = £(v/T')* + su® of Proposition 2.2. Clearly v = 0 then
implies |u| > ¢. If u < —c, then v = 0 implies v = —I'"?u > 0. The case u > c is excluded
by assumption. This proves our claim. Therefore v must be eventually positive, or else
eventually negative.

If v is eventually positive, then v is bounded, as is u. Indeed u' = v > 0 then implies
u > —(C'. Moreover u < ¢ by assumption, and —C < u < ¢ implies

Ly
(3.23) v' = —?v(w —v) —T%u <0,

for large enough v > w. The Lyapunov property of Proposition 2.2 then implies that

(u(s),v(s)) converges to the equilibrium (c,w). Indeed, convergence to (c,0) is excluded
because W€ is confined inside the bubble E < 1¢? by (3.8). The convergence to (c,w)
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occurs at an exponential rate, in the 7-variable, by linearization of (2.16), (2.17). Therefore
(2.18) implies

(3.24) s < /000 C(u(7))dr < oo,

and convergence to k = I'(c) = 0 occurs at finite arclength s. This is excluded by assumption
(1.8).

We now address the case of eventually negative v. Then v’ = v < 0 makes u decrease.
The bounds —C < u < ¢ and E = +oo therefore imply that |v | must become unbounded,
eventually, by getting strongly negative. But then

(3.25) v < —av?

holds for some positive constant a. Hence —v(s) blows up at some finite arclength sy > 0,
proportionally to (s — s)~'. Therefore, |u| is unbounded for s ~ sy, contradicting our
boundedness assumption (1.8). This concludes our analysis of case (c), and proves the
Lemma. U

As a twin to Lemma 3.2 we now consider the backwards flow —oo < s < 0 of the rotating
wave equation (1.5). Just as Lemma 3.2 will be associated to the Archimedean spiral solu-
tions of Theorem 1.1, the following lemma will, after a "time” reversal s — —s lead to the
limit circles of Theorem 1.2, via the transformations of section 7.

Lemma 3.3. Assume 'y, < 0 < w as in (3.19) above. Let u = u(s) < ¢, —o0 < s < 0,
be any nonconstant solution of the rotating curve equation (1.5), alias (2.138)-(2.15). Then
u(s) satisfies the boundedness and sign conditions (1.8) for —oo < s < 0 if, and only if,

(3.26) sgr_noo(u(s), u'(s)) = (0,0).

Proof. By Proposition 2.2 and assumption (3.19), the energy 0 < E(s) = E(u(s),u'(s)) =
s (W /D (u))? + u? is strictly decreasing for u < ¢ and for decreasing s \, —oo, except at the
equilibrium v = v’ = 0.

Obviously (3.26) implies boundedness (1.8). Suppose conversely that boundedness as-
sumption (1.8) holds. Analogously to the proof of Lemma 3.2, (3.20) and (3.21)(a)-(c), we
distinguish the three cases E=0, 0 < E < 3¢%, and 1¢? < E < oo for E := limFE(s) > 0 and
s — —o0.

In case (a), £ = 0, the conclusion
(3.27) lim u(s) =0

§—»—00
is obvious. Since I'(0) > 0, by assumption (3.19) and because ¢ > 0, we also conclude
' =v — 0 for s - —o0, from E = 0. This proves (3.26) in case (a).

We thus have to exclude cases (b) and (c). In case (b), 0 < E < $ ¢?, the trajectory
(u(s),v(s)) enters the bounded energy bubble {0 < E < ¢} of the center manifold W,
in backwards ”time” s. Since the trivial equilibrium (u,v) = (c,0) is repelling inside this
bubble, in backwards ”time” direction, the u-component remains bounded away from c,
uniformly:

(3.28) u(s) <c—6

for some § > 0 and all s < 0. In particular the energy F remains nonsingular. Hence E' = 0
on the a-limit set of the backwards bounded trajectory (u,v)(s). Therefore the a—limit set
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coincides with the unique equilibrium v = v = 0 inside the energy bubble {E < ¢?}. In
particular, E = 0, contradicting case (b).

In case (c), E > 3c¢?, backwards convergence of even a subsequence (u(sy),v(ss)) to
the equilibrium (¢, 0) is excluded by the assumption u(s) < ¢. Indeed the (unique) forward
unstable manifold of (¢, 0) under the regularized flow (2.16), (2.17) is confined to the invariant
vertical line u = c. By forward stability along the center manifold W¢, the unstable manifold
coincides with the unstable set, from the left half plane u < c¢. See Figure 3.1. Similarly, the
equilibrium (u,v) = (¢,w) is stable from the left and, therefore, cannot be in the a-limit set
of our trajectory.

By the above arguments, bounded parts of the closed a-limit set must be bounded away
from u = ¢; see (3.28). Because E = E is therefore nonsingular on bounded parts of the
a-limit set, such parts would have to consist of equilibria which, however, have all been
excluded above. Therefore, the a-limit set is empty. With |u| being bounded, this implies

(3.29) SEEnOO lv(s)| = oo.

Sign inspection of v' = —T'yv(w — v)/T — 'y with T, < 0 < T" shows that this can only

happen, in backwards ”time”, if v — 4+o00. With |I',/T'| bounded below, a simple Riccati

comparison argument as in Lemma 3.2 shows that this contradicts the global existence

assumption in (1.8). This excludes case (c¢) and proves the Lemma. O
We conclude this section with a comment concerning the boundedness part

(3.30) sup |u(s)| < oo
of our assumption (1.8). The following proposition shows, that the boundedness property

(3.30) in fact holds automatically under the remaining assumptions of (1.8), if we consider
solutions which are defined globally for s € S, where either S = [0, 00) or S = (—o0, 0].

Proposition 3.4. Assume w > 0>T, as in (8.19) above. Let u=u(s) <c¢, s €S, be any
solution of the rotating curve equation (1.5), alias (2.18)-(2.15). Then

(3.31) sup |u(s)| < oo,
ses

both in case S = [0,00) and in case S = (—o0, 0|, provided that
(3.32) ~(u) == sup ( T, @)/ - r(m—3/2)
u<u

is integrable over u € (—oo, —1], with finite integral.

Proof. We only consider the case S = [0,00), omitting analogous arguments for S =
(—00, 0].

In the proof of Lemma 3.2, cases (a),(b) of (3.21), we have already observed that a finite
energy bound E on E = 1(v/I'(u))?+ su? implies a bound on |u|. Therefore suppose E = oo,
as in case (3.21) (c). We have then also noticed that (u,v) remains bounded if v ever becomes
positive.

It only remains to consider the case v < 0 for all s > 0. We can therefore assume indirectly

(3.33) u(s) \y —o0, for s — oc.

Without loss of generality, then, suppose v < —1 for all s > 0. By construction of our
assumption (3.32), we observe that y(u) > 0 is increasing with u, possesses the limit
vy(—00) = 0, and hence y(u(s)) is decreasing to zero for s — oco.
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We first consider the measurable set
(3.34) S :=={s>0; v(w—v)+v(u)? <0}

We claim that S_ possesses finite Lebesgue measure. Indeed v < 0 implies

2

(335) _'U/I = —v > _g + (UJZ + ,Y(u)—Q)l/Z >0

on S . For sufficiently negative u, where the limit y(—oc) = 0 implies y(u)™? — +oo, we
can therefore use (3.35) and estimate the Lebesgue measure of S_ to be finite:

(3.36) || = / ds < —/__OO du /__1 2(y(w)2)2du < 2/_17(u)du < 0.

1 —v oo —00
In particular, the complementary set
(3.37) S;:=[0,00)\S_ ={s>0; v(w—v)+7(u)?>0}

is nonempty. We claim next that S, is positively invariant, i.e., S, = [sq,00) for some
so > 0, and v' > 0 on S,. Indeed

(3.38) v(w —v) > —y(u) 2 = sup(=ul'(@)® /T (@) > —ul'(u)?/Ty(u)

u<u
holds for all s € S;. Hence I', < 0 < I" implies the second part of our claim:

r
(3.39) v = —Tuv(w —v) —ul?>0.
To prove the first part, positive invariance of S, suppose we are ever in danger of leaving

S at s =s;. Then
(3.40) v(w—v)+yu)2=0
there. Differentiation with respect to s implies

d 2 d
(3.41) g(v(w —v)+y(u) %) = (w— 200 — ?%V(U(S)) > 0.
Here we have used (3.39), the monotone decay of v > 0 and v < 0 < w. Therefore S, =
[s0, 00) is nonempty, positively invariant, and v" > 0 on S;.
In conclusion, v v < 0 is bounded. This contradicts the underlying differential equation
(2.15), by which v < 0 < w and u < 0 imply

r
(3.42) v = —?uv(w —v) = u > T2 (Y(w—v) + 1) - (—u).
Since T'(u) > 0 is bounded below for u < 0, and since v — 0, u — —oo for s — 0o, we see
from (3.42) that v — 400, contradicting boundedness of v. This proves, indirectly, that v
cannot remain negative for all s > 0. The proof of the proposition is therefore complete. [
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4. ARCHIMEDEAN SPIRALS AND THE LEFT CENTER MANIFOLD

In this section we study global solutions u(s) < ¢,s > 0, of the rotating curve equation
(1.5) in the case

(4.1) c>0, w>0>T,

of Theorem 1.1. We show that the associated rotating curves z = z(s) are Archimedean
spirals in the sense of (1.9).

Lemma 4.1. Let u(s) < ¢,s > 0, be a nonconstant bounded solution of (1.5), alias (2.13)-
(2.15). Then (u,u’)(s) lies in the left center manifold W¢ introduced in Lemma 3.1. The
associated planar curve z = z(s) with arc length parameter s and curvature k(s) = T (u(s))
is a right-winding Archimedean spiral in the sense of (1.9), (1.11). More precisely, the curve

z(s) = r(s) exp(ip(s)) satisfies

limu =c¢
(4.2) limy = —oco
limﬁ = —c/w
de

for s — 400, in polar coordinates (r, ).

Proof. The solution (u,u') lies in W€, by Lemmas 3.1, 3.2. In particular limu(s) = ¢, for
s — +o00. To prove the Archimedean property (4.2), we differentiate the polar coordinates

z = rexp(ip):

(4.3) 2= (r'[r+i¢)z.

By (2.4), the normal velocity u is given as

(4.4) u = wRe(2Z") = wrr'

because 7, ¢ in (4.3) are both real. Therefore limu = ¢ in W° implies
1

(4.5) 5(7“2)' =7 =5 c/w>0

for s = oo. In particular r — oo.
Because z = z(s) is parametrized by arclength s, we also have

(4.6) 1= = () + (r¢')”

Dividing by (rr')?, for large s, and letting r, s — oo, we obtain
dy w

4.7 lim — = +—

(4.7) m dr c

from (4.5), (4.6). Up to a sign, this proves claim (4.2) of the lemma.

To determine the sign in (4.7), we observe that outward oriented right winding spirals
are characterized by slope dr/dy < 0 and, according to our sign convention (1.2), by signed
curvature x > 0. In our case, u * ¢ approaches ¢ from below on the left local center manifold
We. Therefore I'y < 0 =T'(c) indeed implies k = I'(u) > 0, and hence dr/dy < 0, for large
positive s. (Alternatively, we could have computed the signs of k and of dr/dp directly from
our expansion (3.5), (3.6) of the center manifold.) This proves the lemma. O
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5. THE GLOBAL BIFURCATION DIAGRAM FOR ROTATING ARCHIMEDEAN SPIRALS

We continue under the assumptions of section 4. In particular, Lemma 4.1 exhibits the
Archimedean character of all nonconstant solutions u(s) < ¢,s > 0, of the curve equation
(1.5), alias (2.13)-(2.15). In addition, such solutions must necessarily lie in the left center
manifold W¢ of (¢, 0). By invariance of W€, this is equivalent to

(5.1) (ug,v9) € WE

for the tip velocity uo = u(0) and its derivative vy = v(0) = »'(0) with respect to arc length
s. The rotation frequency w of that rotating curve solution is then simply given by

(5.2) Vo = W

RO

N

/
9P
¢

/\/
%
\\_//Q)//(L

Figure 5.1. Contracting, spiralling center manifold W€, and upwards moving intersection
line v = w, for increasing rotation frequencies w > 0.

as follows trivially from (1.5) at s = 0; see also (2.5). Since w enters the rotating curve
system (2.14), (2.15), alias (2.16), (2.17), as a parameter, the center manifold W¢ in fact
depends on w. In the present section we study the highly nonlinear system (5.1), (5.2) and,
more specifically, the global bifurcation diagram associated to the parameter w > 0. See
Figure 1.1.

The geometric intuition behind our result is simple enough; see Figure 5.1. On the one
hand, an increasing rotation frequency w strengthens the friction term E = —wl,(v/T')?
of the Lyapunov function E; see (2.22). In backwards “time” s, or 7, this contracts the
center manifold W€, as it spirals into u = v = 0 for s — —o0, making it decay to zero
faster and faster. The boundary condition vy = w of (5.2), on the other hand, pushes the
horizontal intersection line v = w of Figure 5.1 upwards. As a result, we see the pairs
u (w) of intersection points move upwards and coalesce, at w = w, and with collision values
uF (wp) = 0.

Evident as this may sound, we take a more cautious approach for the sake of complete
mathematical rigor. We first parametrize the w-dependent left center manifold W° in the
form v = u(s,w), v =wv(s,w), with the normalization

(5.3) u(0,w) =0 and u(s,w) >0 for s> 0.

Note that u,v depend C3-differentiably on (s,w). In general, the tip (u,v) = (ug,vy) does
not correspond to s = 0 in this normalization.
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In Lemmas 5.1, 5.2 below, we prove that zero is a regular value of the function

(5.4) V(s,w) :=v(s,w) —w

This allows us to solve the boundary condition (5.2), alias

(5.5) V(s,w) =0,

for s = s¥(w), in Lemma 5.3. The two branches sZ(w) coalesce at their common value

(5.6) sE(w) = sp, at W = W,

Here s, < 0 and w, > 0 will enumerate all solutions of the system
(5.7) U(Sp,wn) =0,  V(Sp,wn) = Wy

In Lemma 5.4, finally, we will define

(5.8) ut(w) == u(sE (w),w)

n n

for 0 < w < wy, to see that these intersection points of the contracting, spiralling center
manifold W¢ with the upwards moving line v = w indeed satisfy the claims of Theorem 1.1.
In Figure 5.1, for example, the values u¥(w,) = 0 indicate that the horizontal line v = w,
just touches the center manifold spiral W°¢ from above.

Lemma 5.1. Let d = d(s,w) denote the Jacobi determinant of the center manifold solution
(u(s,w),v(s,w)) and let" = Oy denote the partial derivative with respect to arc length s. Then

(5.9) d = (-T,/T)((w— 2v)d +v®), and
(5.10) d<O0foralseR w>0.

Proof. Once (5.9) is proved, d(s,w) cannot change sign from positive to negative as s in-
creases. It is then sufficient to prove (5.10) for large s — +oo, where the local expansion
(3.5), (3.6) is valid for the center manifold W¢. Inserting this expansion into the definition
of d yields the expansion

[y(c)*c?

(5.11) d=v°0,v° = — 3

(c—u)f+---<0

for s = 400, u — c.
If remains to prove (5.9). Abbreviating the rotating curve system (2.14), (2.15) by u’ =
f(u,w) with u = (u,v), we see that

=N
I

u Au,
(5.12) (u) = fuu'
(uw)l = faUy + fu
A straightforward calculation then shows
d = u'"Au,+u' Au

(5.13) = ((fuu)Au, +u' A (fuu,)) +u' A f,

= tr(fy)- (W Auy)+u' Af,

= tr(fu)-d+u Af,

Inserting the appropriate partial derivatives of f then proves (5.9) and the lemma. O
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Lemma 5.2. Consider V(s,w) = v(s,w) — w, as defined in (5.4) for s € R, w > 0. Then
zero is a reqular value of V.. More specifically, the following two cases arise when v(s,w) = w.
(i) If u(s,w) # 0, then V; =v' # 0.
(1) If u(s,w) = 0, then

(5.14) Vo=v=0,v,<0, and v"=-T?0)w<0.
Proof. From (2.15) we conclude
(5.15) v = —Tu,

Sy S3 S92 S1 S

Figure 5.2. The solution set of v(s,w) = w, according to Lemma 5.3.

whenever v = w, alias V' = 0. Since I' > 0 for u < ¢, this proves claim (i). To prove claim
(ii) it remains to show v, < 0 for u = 0,v = w. But in this case Lemma 5.1 implies

!
(5.16) 0>d=det | " " )=det [V ") =0vv,=uwy,.
v, 0 w,
The calculation of v” is straightforward. This proves the lemma. O

From Lemma 5.2 and the implicit function theorem it is clear that the solution set of
V(s,w) = 0 — the primary object of study in our present section — consists of at most
countably many disjoint, embedded, planar curves. The following lemma describes these
curves as pairs of graphs of functions s = s> (w), 0 < w < wy,, joined at the same limits
s =8, forw S w,.

Lemma 5.3. The solution set of V(s,w) = 0, for s € R, w > 0, consists of countably
many disjoint connected components. Fach component is an embedded planar curve and is
characterized uniquely by its mazimal value w, of w > 0. These values are given by the
solutions of the system

(517) U(Snawn) =0, U(Sn’wn) = Wn;
ordered such that
(5.18) wi > wy >N 0, s, = —o00.

The remaining two pieces of each connected component of solutions V(s,w) = 0 are pairs of
graphs of functions

(5.19) s =s5(w), 0<w < wy.

n
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These pairs share the same limat

(5.20) sp = lim s-(w)
w,wn,

and are ordered such that

(5.21) 5T >8] > 85 >8, >85 >85>

for any w > 0, as long as s (w) are defined. See Figure 5.2.

n

Proof. Because zero is a regular value of V', by Lemma 5.2, the solution set of V(s,w) =0
decomposes into (at most) countably many curves. We claim that w must attain its maximum
wy, on each such curve. Indeed v — 0 for s - o0 and any w > 0. Backward convergence of
We to (0,0), for s = —o0, in fact follows analogously to the proof of Lemma 3.3. Moreover,
energy increase implies

1 1
(5.22) E= §(U/F)2 + §u2 <

on W¢; see Proposition 2.2 and the analysis of (3.21) (a)-(c) in the proof of Lemma 3.2. This
implies a corresponding upper bound for v. These two observations allow us to conclude that
w = v > 0 does attain its maximal value, say w, at s = s,, on each such curve. Differentiating
implicitly with respect to s then implies

(5'23) 0=V, + wa,(sn) =V, = v = _FQU
at (s,w) = (Sn,wn), and hence u = 0. This proves (5.17).
Conversely, let (s,,w,) € R x (0,00) be any solution of system (5.17). Let (s(f),w(0))

be a parameterization of the solution curve V' (s,w) = 0 through (s,,w,) corresponding to
6 = 0. Then

(5.24) @(0) =0, & <0,

02

DN | —

where the dot " indicates a derivative with respect to 6. Indeed (5.17) implies V; = o' =
—I'?u =0, at # = 0, and therefore w(0) = 0 by implicit differentiation of V = 0 as in (5.23).
Differentiating V' = 0 twice, inserting v' =V, =0, u = 0, v = w, w = 0 and, without loss of
generality, s = 1, we obtain

(5.25) 0=Vis®+ V00 =0" — (1 —v,)& = —T?w — (1 — v,)&.

Because v, < 0 at u = 0, by (8.15), this implies & < 0 and proves claim (5.24).

By (5.24), none of the solution curves V(s,w) = 0 can possess a local minimum w, of
w. Moreover the local maximum w, of w at # = 0 is unique, on each curve, and coincides
with its global maximum. Because w(f) # 0 for # # 0, we may globally and differentiably
parameterize each curve over w,

(5.26) s = s, (w),

for positive and negative 6, respectively. Since w does not possess a local minimum and
because w = v — 0 for s — +oo on any solution curve, the parameterizations (5.26) are
well-defined for all 0 < w < w,,. Without loss of generality we may also assume

(5.27) s, (w) < st (w)

for all w. This proves part of the si-ordering (5.21). Also s, = lim, »,, sF(w) follows by
construction, proving (5.20). The full ordering of the transverse intersections times s = s
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of the solution (u(s,w),v(s,w)) € W¢ with the horizontal line v = w, for any fixed w, then
reflects their ordering along the center manifold W€, as it spirals backwards into u = v = 0.

It only remains to prove that system (5.17) indeed possesses countably many solutions
(Sn,wn), ordered as in (5.18). With the above local analysis, the solutions (s,,w,) of (5.17)
are clearly isolated in R x (0,00); hence their number is at most countable. We claim
their number is infinite. Indeed, the left center manifold W consists of countably many
pieces within the half plane v > 0. Each such piece gives rise to one solution continuum
(sn(6),wn(F)) of V =0, and to one w-maximum at (S,,w,). The maximum values w, are
disjoint, for different continua. Indeed w,, = w,, implies s,, = s,, because W€ is not a periodic
solution. Therefore w, and wy,, belong to the same (s,w)-continuum and hence n = m. We
may therefore order the sequence w, such that

(528) W1 > Wy > ..

The limit w, \, 0 follows because the left center manifold W€ can intersect the horizontal

line v = w at most finitely often, for any fixed w > 0. The limit s, — —oo follows because the

trajectory W€ needs time s, — —oo for its n-th crossing of the positive v-axis, in backwards

”time” s. This proves the lemma. O
Based on Lemma 5.3, we can now complete our analysis in the case w > 0 > I',, of Theorem

1.1. Based on the parametrization (u,v) = (u(s,w), v(s,w)) of the left center manifold W*

and on the functions s = s*(w) of Lemma 5.3, see (5.3) and (5.19), we define

(5.29) i W) = { u(st(w),w), for 0<w<w,

0, for w=uw,
By construction, the pairs

(5.30) (1o, vo) = (uy, (w),w),

n
enumerate all tip points (ug, vg) € W° for which vy = w, and thus solve the original problem

(5.1), (5.2) of the present section. Here w > 0 is fixed and the pertinent indices n satisfy
wp > w, so that (5.30) is indeed well-defined.

Lemma 5.4. The C3-functions u: (w) defined in (5.29) above satisfy claims (i)—(iii) of The-
orem 1.1.

Proof. To prove differentiability claim (i), we only have to consider the point w = w,, where

the curves u meet;:

(5.31) U, (wn) =0 = uf (wy).

n

Because zero is a regular value of V' = v(s,w) — w, by Lemma 5.2, and because w = w, is a
local maximum of the n-th solution curve of V = 0, by Lemma 5.3, we can C®-parametrize
the solutions of V' =0 by s,

(5.32) w = Qy(s),

locally near €,(s,) = wy,- In this local parametrization,

IR

n

(5.34) w = Qy,(s)
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is a C3-parametrization of the joined curves u; . Differentiating V' = 0 twice with respect to
s, and using € (s,) = 0 at the local maximum w, = Q,(s,), we obtain

(5.35) Q" =v"/(1-v,) <0

at s = s,; see (5.25) and Lemma 5.2, (5.14). Differentiating s — u(s,2,(s)) once with
respect to s, at s = s,,, we observe

(5.36) —u(s,Qn(s)) =u' +u,Q, =u' =v=0Q, > 0.

Therefore we may as well use a local parametrization w = €, (u) of the curve (5.33), (5.34)
over u. Note that the curvature at the local maximum w, = ,(0) does not vanish, also in
this new parametrization, by (5.35), (5.36). This proves claim (i).

To prove claim (iii), we recall the ordering (5.21) of the intersection times s (w) of the
backwards center manifold trajectory (u(s,w),v(s,w)) € W€ with the horizontal line v =
w > 0. Since v/ = —I"%u on this line, we see that

(5.37) v(s,w) >w, for s, (w)<s<s!(w),

describes the arcs of W¢ above v = w. In particular this implies u}(w) > 0 > u_ (w), for
0 < w < wy, by the sign of v’ at these intersection points. The ordering u; (w) > ug (w) > ---
follows from the time ordering (5.21) of the intersection times s (w) and the strict nesting
of the arcs (5.37) of W above the line v = w. This proves claim (iii).

To prove claim (ii), we first observe that uX(w,) = 0 holds by definition (5.29). To study
the limit of uF(w) for w \, 0 we note that w = 0 is the integrable limit of conserved energy
E = 3(v/T)? 4 ju?; see Proposition 2.2. Any fixed finite number of arcs (5.37) of W¢ above

the line v = w converges to the level line
1
(5.38) E(u,v) = E(c,0) = 502

in this limit, see also case (b) of the proof Lemma 3.2. Indeed (2.21) of Proposition 2.2
implies
(5.39) E' = —w([,/T)(2E — u?)

along any trajectory. Applied to any level set E(u,v) = Ey < £¢?, a periodic orbit for w = 0,
we see from (5.39) how the energy decay along the corresponding orbit converges to zero for
w N\ 0, uniformly during any finite number n of revolutions. Because trajectories do not
intersect, this proves convergence of the arcs of W¢ above the line v = w to the level set
E = 3¢?. A forteriori, each intersection point (uf(w),w) € W converges to the intersection
of this level set with the u-axis v = 0, for w \, 0. These latter intersections are trivially
given by the u-values u = tc. This proves claim (ii) and the lemma. O

6. PROOF OF THEOREM 1.1

In this section we recollect the ingredients to the proof of Theorem 1.1, as provided in
sections 2-5 above.

We seek to determine all solutions z = z(s) of the curvature flow equation (1.1), (1.5),
(1.6) which rotate at constant angular velocity w by moving with normal velocity u at signed
curvature k = I'(u). We consider the case w > 0 > I',. We assume u < ¢, where ¢ > 0 is the
unique zero of I'. Moreover u(s) is nonconstant and bounded for 0 < s < oo by assumption
(1.8).
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In section 2 we have observed that u = u(s) then is a global, forward bounded solution
of the singular second order system (2.13), alias (2.14), (2.15), of Lienard pendulum type.
This system can also be rescaled to the form

(6.1) v = Ty
(6.2) v = —Iy(w—v)v—-T3%

by a transformation s +— 7 from arc length s to a new "time” 7; see (2.16)-(2.18). In
Proposition 2.2 we have stated an energy increasing property of system (6.1), (6.2) for the
singular energy E = (v/I')? + Lu®.

In section 3 we have studied the center manifold W of the degenerate equilibrium (u,v) =
(¢,0) of (6.1), (6.2); see Lemma 3.1. Lemma 3.2 then proves that u(s) < c¢ satisfies the
boundedness condition (1.8) if, and only if, (u,v) = (u,u’) lies on the unique left part W¢
of the center manifold W¢. Because dim W¢ = 1, this is a single trajectory of (6.1), (6.2).

Lemma 4.1 of section 4 shows that the trajectory of W€ gives rise to a right-winding
Archimedean spiral z(s), asymptotically for 7, s — +o00. This fact does not depend on the
choice of the tip point (ug, v9) € W, which corresponds to s = 0. Because bounded solutions
u(s) < ¢, s > 0, must lie on W, by section 3, this proves our claims on the Archimedean
property of rotating solutions to curvature flow, as made in Theorem 1.1.

Section 5 observes that necessarily u'(0) = vy = w for any rotating solution of our curvature
flow equation; see (5.1), (5.2) and also (2.5). This proves the second part of claim (1.14)
of Theorem 1.1. In Lemmas 5.3 and 5.4 we then study the solution set V' = 0, which
correspond precisely to the intersections of the trajectory W€ with the horizontal line v = w
in the (u,v)-plane. Alternatively, by (5.1) and (5.2), the u-values of these intersection points
correspond 1-1 to the tip velocities u(0) of the solutions z(s) to curvature flow which rotate
at constant angular velocity w. The complete characterization of the bifurcation diagram
of these u-values for varying positive parameter w, in Lemma 5.4, therefore completes the
proof of Theorem 1.1. O

Remark 6.1. We repeat and emphasize that the boundedness assumption (1.8) in Theorem
1.1 can be weakened, for example according to Proposition 3.4. There it was proved that
solutions u(s) < ¢, s > 0, are uniformly bounded, a priori, provided that I'(u) satisfies
a growth restriction expressed by integrability of the function « defined in (3.32). The
integrability condition holds, for example, for any at least algebraic growth I'(u) ~ |ul?,
p > 0, for u - —oo. The integrability condition fails to hold, for example, for only
logarithmic growth I'(u) ~ (log|u|)? with p < 3.

7. PROOFS OF THEOREM 1.2 AND COROLLARY 77

Theorem 1.2 addresses the same nonlinearity I'y, < 0 with a positive zero u = ¢ of T'(u)
but, in contrast to Theorem 1.1, with negative angular velocity, w < 0. As the resulting limit
circle spirals u(s) differ drastically from the Archimedean spirals of Theorem 1.1, we cannot
expect to prove Theorem 1.2 by a simple reflection z — Z in the complex z-plane. We prove
Theorem 1.2 by a transformation w — & := —w, and a ”time” reversal s — 5 := —s, in the
second order Lienard equation (2.13). This will allow us to freely use the results of sections
2-5, as recalled in our proof of Theorem 1.1 in section 6. Similar transformations will then
prove the remaining cases, as summarized in Corollary 1.3.
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In the case w < 0, ', < 0, ¢ > 0 of Theorem 1.2 we apply the ”time” reversal transforma-
tion

w = W=-w
(7.1) § — §=-—s

u = uU=u

v o U=—0

to the Lienard second order system (2.14), (2.15). Denoting by ' the derivative with respect
to § again and omitting ”A” for typographic convenience, we obtain the transformed system

(7.2) u =

Iy
(7.3) v = —?(w —v)v — Iy
which is identical to the original form of (2.14), (2.15). Moreover w, in fact &, has become
positive once again. The only remaining difference to our previous analysis in sections 2-6 is
that we now have to consider bounded solutions u(s) < ¢ of (7.2), (7.3) in backwards ” time”
—00 < s < 0, rather than forward time. This is due to the ”time” reversal (7.1). Moreover

(7.4) v(0) =w

must hold at the tip s = 0. Indeed this follows from the integral equation (1.5) for rotating
solutions of curvature flow by inserting s = 0, just as in our derivation of (5.2).

Lemma 7.1. Under the sign conditions w < 0, I'y, < 0, ¢ > 0 of Theorem 1.2, consider any
solution (u,v) = (u(s),v(s)) of the singular Lienard system (7.2), (7.8) with initial condition
(uo,v9) at s =0 satisfying

(7.5) uy < ¢, V= w.

Then the solution (u,v) exists globally in backwards “time” —oo < s < 0 and spirals into
zero at an exponential rate.

Proof. By Proposition 2.2, the energy E = $(v/T')* + u? decays in backwards ”"time” s. In
particular, £ is bounded, and so are (u,v). Lemma 3.3 then proves convergence of (u,v) to
(0,0) for s — —oo and, in particular, global backwards existence — not only in the regularized
”time” variable 7 but also in the arc length variable s itself. Exponential convergence follows
by linearization at the (forward) unstable focus u = v = 0. This proves the lemma. O

We now return to forward convergent solutions u(s) — 0 for s — +o0, in the original arc
length variable s, reverting transformation (7.1). The following lemma provides the analogue
of Lemma 4.1 for limit cycle spirals z = z(s).

Lemma 7.2. Let u(s) converge to zero exponentially for s — +oo. Then the associated
planar curve z = z(s) with arc length parameter s and curvature k(s) = T'(u(s)) is a right-
winding limit circle spiral in the sense of (1.10), (1.12). More precisely, the curve z(s) =

r(s)exp(ip(s)) satisfies
(7.6) limy' = -1/R, limr = R:=1/T'(0), limk =1/R,

for s — 400, in polar coordinates (r, ).
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Proof. Trivially u — 0 implies kK = I'(u) — I'(0) =: 1/R > 0. ;jFrom the proof of Lemma 4.1
we recall the general facts

(7.7) w(%mf —u,
(7.8) (r")? + (r¢')? = |Z')* = 1;

see (4.4), (4.6). Exponential convergence u — 0 and x — 1/R therefore implies exponential
convergence ' — 0, by (7.7), and r — R = 1/I'(0). Therefore (7.8) implies exponential
convergence ¢' — +1/R. A look at signed curvature, according to z” = —ikz’ in (1.2), then
shows ¢ — —1/R < 0 and ¢ — —oc. This proves (7.6) and the lemma. O

Lemmas 7.1 and 7.2 together prove Theorem 1.2 except for the claim p = |u(0)/w| on the
tip radius p = |2(0)|. This follows trivially because the normal velocity u(0) at the tip is
tangential to the tip circle |z| = p, traversed at angular velocity w; see (2.6), (2.7). This
proves Theorem 1.2. O

To prove Corollary 1.3 we first address the case I, > 0 and ['(¢) = 0 for some ¢ > 0.
Replacing I' < 0 by

(7.9) T'(u):=—T(u) >0

neither changes integral equation (2.1), where x = I'(u) enters quadratically, nor the sin-
gular Lienard system (2.14), (2.15). Therefore our analysis of solutions (u(s),v(s)) of these
equations, which led to the proof of Theorems 1.1, 1.2, remains valid verbatim. (Cautious
readers will carefully apply a regularizing time transformation "= —I'-' here, with —I" > 0,
to preserve the "time” direction in the regularized system (2.16), (2.17) and its subsequent
center manifold analysis.) The corresponding rotating solution z(s) of the curvature flow
equation, however, now satisfies

(7.10) 2 = —il7 = +il'7,

instead of the original form (1.2). Passing to complex conjugates

(7.11) 7' = —il'7

then re-establishes the original form (1.2), for z instead of z, and then proves Corollary
1'3”1(“:)) 'prove Corollary 1.3(ii) where I'(¢) = 0 for some ¢ < 0, and u > ¢, we replace u by —u
according to the following transformation. Let

(7.12) U=-u, 1=—v, &=-w, D@)=TI(u)=T"(-7).

Then (,7) satisfy the Lienard system (2.14), (2.15) with & = —w and ['\(@) = [(-2)
replacing w and I'. Since @, I' satisfy the assumptions of Theorems 1.1 and 1.2, in the
respective cases, and since

(7.13) Z = —ik? = —il(u)7' = —il(@)2'

the previous analysis applies verbatim, up to the obvious reversals of inequalities caused by
u=-uand U= —w.
To prove Corollary 1.3(iii), we only have to combine the above transformations (7.9) and
(7.12). This proves Corollary 1.3. O
The totality of the four cases, three in the corollary and one in the theorem, corresponds
quite simply to the Klein 4-group Z, X Z, generated by the commutative transformations
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(7.9) and (7.12). Theorems 1.1 and 1.2 are related, less trivially, by a ”time” reversal s — —s
as in (7.1), for (2.14), (2.15), and by its dynamic consequences for the associated curves z(s).

8. SELF-INTERSECTIONS

So far, we have proved Theorems 1.1 and 1.2 on rotating spiral curves z = 2(s) € C,
parametrized over arc length s in the complex plane and left rotating at angular velocity
w. We now address the issue of self-intersections of the resulting spirals z(s). This is a
particularly relevant issue with respect to our original motivation by singular front positions
z(s) in singular limits € N\, 0 of excitable reaction diffusion systems; see section 1 and the
references there. If we interpret fronts z(s) as level curves of solutions to such systems, for
small € > 0, we may in fact expect any such intersection to disconnect immediately, at least
for generic initial data. See [FMO0O] for a detailed justification of this claim. In particular,
any self-intersecting rotating wave curve, if at all existent, should become unstable with
respect to perturbations of initial data, if at all existent, for small £ > 0.

We continue to consider the case I'(c) = 0 for some ¢ > 0. In Proposition 8.1 below we
show that all limit circle spirals of Theorem 1.2, w < 0, I, < 0, are unfortunately self-
intersecting. Proposition 8.2 then deals with the branches u(0) € {uf(w)}, v'(0) = w of
Archimedean spirals z(s), which are asserted to exist for w > 0 > I', in Theorem 1.1. We
show that these spirals do not intersect themselves, for the primary branch n = 1. For small
w > 0 and high branch numbers n, in contrast, we do encounter self-intersections again.

Proposition 8.1. The limit circle spirals z = z(s) of Theorem 1.2 and Corollary 1.3 possess
infinitely many self-intersections for s — +oc.

Proof. We recall from (1.2) and (2.14), (2.15) that

(8.1) 2" = —ik2';
(8.2) u =w,
Ly
(8.3) v = —?(w —v)v — I,

where kK = I' = T'(u) denotes curvature. Limit circle spirals, according to the proof of
Theorem 1.2 and Corollary 1.3 in section 7, correspond to solutions (u(s),v(s)) converging
to zero exponentially for s — +00. The direction of s — —oo should be taken, for example,
when we now choose to apply transformation (7.1) and work with w > 0 in the proof of
Proposition 8.1 for Theorem 1.2.

By C'-linearization of (8.2), (8.3) at zero, for example according to Belitskii [Bel73], we
can expand

(8.4) u(s) = Re(ae"®) + o(e"?)

for s — —oo. Here p denotes the complex eigenvalue of the linearizatoin of system (8.2),
(8.3) at zero and a denotes some nonzero complex constant. Note Rey > 0 and Imp # 0.
Inserting expansion (8.4) into x = I'(u), we get a similar expansion

(8.5) k = ko + Re(ae”®) + - |

omitting terms of order o(e#*) from now on. Note that ko = ['(0) = 1/R is the curvature of

the limit circle.
Next we define

(8.6) exp(i)) := 2 € S*
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and rewrite (8.1) as
(8.7) T ———

Inserting expansion (8.5) and integrating (8.7) we obtain
(8.8) Y(s) = —KoS + ¢y — Re(%e’“) + -

for a suitable constant 1¢y. Choosing s = 0 appropriately, we may assume a/p = 1 in
(8.8). Integrating (8.6) via expansion (8.8), and also expanding the exponential exp(it)
with respect to the (backwards) exponentially decaying term Re(exp(us)) we calculate

S
(8.9) 2(8) = 2o + €™¥° (L(l — 7Sy z/ e " Re (e’ )do + - - ) .
K9 0

To simplify (8.9) we observe that equation (8.1) is invariant with respect to, both, translations
and complex multiplications of the curve z(s) by constants. To study self-intersections of
z(s) we may therefore omit additive and multiplicative constants in (8.9). The additive
constant is in fact zero, necessarily, because the resulting limit circle, for s — —oo, must
rotate around its center; see Lemma 7.2. This reduction allows us to study the curve

(8.10) 2(s) = e 4 g, / RO Re () dor -+ - - -
S
instead. Elementary integration in (8.10) shows
; 1 1 1 _
8.11 =m0 (] S (———eM ) .. |
(8.11) (o) m e (1 Gl ey )
and therefore the asymptotically oscillatory behavior
1
8.12 1= |2 = 2Re( “k) =0
.12 21 = 2Re( 5 e +

for s - —o0.

To complete the proof we only claim that expansion (8.12) entails infinitely many self-
intersections of the curve z(s). Clearly the right hand side possesses infinitely many simple
zeros, for s — —oo, due to the nonvanishing imaginary part of u. Suppose now, indirectly,
the curve z(s) = rexp(ip) was not self-intersecting for large enough negative s. Then
r = |z| = 1, in our scaling (8.12), and lim ¢’ = —1 by (7.6). We now argue as in the proof of
the Poincaré-Bendixson theorem. The non-selfintersecting Jordan curve z(s) must approach
its limit circle monotonically : numbering by s; > s9 > --- — —o0 the passage of r(s) at any
particular fixed angle (g, the sequence 7, = r(s,) — 1 must be eventually monotone. Note
that the direction of this monotonicity does not depend on the choice of ¢y. This observation
clearly contradicts the infinitely many sign changes of (8.12), for s — —oo. Therefore the
proposition is proved. O

Proposition 8.2. Consider the Archimedean spirals with tip velocities u(0) € {u, (w),u(w)},
u'(0) = w, for 0 < w < wy, as derived in Theorem 1.1 and Corollary 1.8. For n = 1 these
Archimedean spirals are not self-intersecting. For sufficiently large n and sufficiently small
w, however, these Archimedean spirals do possess self-intersections.
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Proof. We only address Theorem 1.1, where w > 0 > T';, and I'(¢) = 0 for some ¢ > 0, with
analogous arguments for Corollary 1.3. We first address the case n = 1 of Theorem 1.1.
By Lemma 5.3 and in particular by ordering (5.21), the ”times” s (w) are the last positive
intersections ”times” of the center manifold solution (u(s),v(s)) € W€ of system (8.2), (8.3)

with the axis v = w. Our phase plane analysis of W° in section 3 then shows that
(8.13) u'=v>0

for sy (w) < s < +oo. Therefore the curvature k(s) = I'(u(s)) of the asymptotically
Archimedean spiral z(s) is strictly decreasing along solutions, in case n = 1.

The monotonicity of k(s) excludes self-intersections. Indeed any self-intersection would
produce a closed loop, with possibly infinite curvature at the intersection. Curvature along

Figure 8.1. Self-intersections of Archimedean spirals near the core region.

a differentiable closed loop, however, possesses at least two local maxima and two local
minima; see for example [Ang99]. Even with one maximum being infinite, the remaining
curvature k(s) cannot be strictly monotone. This contradiction excludes self-intersections,
in case n = 1.

We now choose w > 0 sufficiently small and prove self-intersections of z(s) corresponding
to tip conditions u(0) € {uX(w)}, v'(0) = w with large enough n. In fact we choose n so
large that (u(s), v(s)) remains near the unstable focus equilibrium u = v = 0 for at least two
cycles. The cycle time is controlled by the uniformly nonzero imaginary part

r 2 112
14 — r2_(_“> [ lu 2.
(8.14) v or” s T
of the eigenvalue y = 1 + iv of the linearization of (8.2), (8.3) at u = v = 0. Here the
expansion refers to small w > 0 and I', ', are evaluated at u = 0. Similarly, the unstable

read part n > 0 of y is given by

(8.15) - (— ﬁ)w.

By linearizing the flow (8.2), (8.3) over a uniformly finite time horizon of two cycle times,
approximately 47 /v =~ 47 /T'(0), we now repeat the derivation of the oscillatory behavior
(8.12) verbatim. We recall that in our derivation (8.4)-(8.11) of (8.12) we have rescaled a/u
to 1, by shifting s in exp(us) to sufficiently negative values. With both |al, alias |u(0)|, and
v(0) = w uniformly small we may therefore assume (8.12) to remain valid with remainder
terms of order o(|u(0)| + w) = o(| exp(us)|) and with large negative s. Validity does not
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extend to s — —oo, however, because Belitskii linearization cannot be invoked to hold
uniformly in the integrable limit w 0. Validity over two cycle times, however, follows by
simple linearization of the finite time nonlinear flow itself.

Why are two cycles of (u,v)(s) sufficient to prove self-intersection of z(s)? The reason
is a one-to-one resonance between the cycling frequency v of (u,v)(s) and the approximate
cycling frequency k =~ I'(0) of 2" = —ikz' for kK = I'(u) and u near zero. See the expansion
(8.14) for v. In passing we note that this resonance is also responsible for the drifting motion
of the approach to a limit circle in Figure 1.2(f). Choose

(8.16) sT >8] > s8> sy

to denote alternately strict local maxima (+) and minima (—) of (8.12), all within two
cycles of (u,v). For small w > 0, the spacing of these times is approximately one half period,
7w/T'(0), apart. In polar coordinates z(s;t) = rj-E exp(zkp;t), the resonance ¢'(s) ~ —I'(0)
implies that the angles gO;-t are approximately 7 apart, so that go;r and @, point in two
antipodal directions. Moreover the right winding curve satisfies

(8.17) rf>ry>1>r, >r],

by (8.12). See Figure 8.1. Such a curve z(s) must intersect itself. This proves Proposition

8.2. ]
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