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1 Introduction and examples

Bifurcation theory deals with the dynamics associated to vector fields

ẋ = fx(x, λ)

λ̇ = 0
(1.1)

which depend on one or several real parameters λ ∈ IRm. Mostly the analysis is local

in λ. Moreover x ∈ IRn, or x in an n-dimensional manifold, is near a fairly simple time

invariant object. See for example [CH82], [GSS85], [GSS88], [GH82], [HK91], [Kuz95],

and the many references there. Frequently, for example, it is assumed that

0 = fx(0, λ) (1.2)

so that x = 0 is a given “trivial”, or “primary” equilibrium solution, independently of

the parameter λ. Clearly this gives rise to a manifold of trivial equilibria of dimension

m = dimλ. In addition, the equation λ̇ = 0 trivially provides an invariant foliation

λ = constant of phase space (x, λ), transverse to the equilibrium manifold (0, λ).

In the present paper, we abandon this foliation by constant parameter values λ, but

keep the requirement of a trivial equilibrium manifold in effect. Replacing λ by y ∈ IRm

to mark that difference we consider

ẋ = fx(x,y)

ẏ = fy(x,y)
(1.3)

with the convenient abbreviation ż = f(z), where z = (x,y) and f = (fx, fy). As before,

we assume the existence of a manifold of trivial equilibria

0 = f(0,y) (1.4)

for all y ∈ IRm. We also assume f ∈ Cκ to be sufficiently smooth, throughout; κ ≥ 5 is

more than enough.

The celebrated Takens-Bogdanov bifurcation deals with (1.1) for two real parameters

λ = (λ1, λ2) ∈ IR2 and under the (generic) assumption of an algebraically double zero

eigenvalue

Dxf
x(x = 0, λ = 0) =

 0 0

1 0

 , (1.5)

see [Arn72], [Tak73], [Tak74], [Bog76a, Bog76b], and also [Bog81a, Bog81b]. For more

recent accounts see also [GH82], [Arn83]. The standard unfolding in parameter space

λ = (λ1, λ2) involves a curve of stationary saddle-node bifurcations, and half-arcs of Hopf



Takens-Bogdanov bifurcations without parameters 3

bifurcations and homoclinic orbits, respectively. In the present paper, in contrast, we will

drop the foliation λ̇ = 0, but treat (1.3), (1.4) with x,y ∈ IR2 and a nilpotent linearization

(1.5) in complete analogy to the celebrated Takens-Bogdanov bifurcation.

We contend that the problem of bifurcation from manifolds of equilibria, even in

absence of any parameter foliations λ̇ = 0, and degenerate as it may seem, arises quite

naturally in applications. We give three examples next. For further details we refer to

section 12 below, as well as to [AA86], [AF89], [Far84], [Lie97], [Lie00], [FLA00a], [FL00],

[FLA00b].

Example 1.1 Our first example arises in population dynamics, game theory etc.; see also

[Far84]. For x = (x1, . . . , xn) ∈ IRn
+ let B be a degenerate real (n × n)-matrix, say with

one-dimensional right/left kernel spanned by r, l ∈ IRn, respectively. Consider the system

ẋj = xj · ((Bx)j − bj), (1.6)

j = 1, . . . , n. For b = (b1, . . . , bn) ∈ range B, we obtain a line of equilibria

x = x0 + y · r, y ∈ IR, (1.7)

which may intersect the positive orthant. Analysis is facilitated, in this example, by the

presence of a first integral (alias, conserved quantity) given by
∏
j x

lj . Higher-dimensional

kernels of B may clearly give rise to higher-dimensional equilibrium subspaces.

Example 1.2 Our second example arises in the study of viscous profiles of nonlinear

hyperbolic conservation laws, mixed with stiff balance laws. We consider travelling wave

solutions u(t, ξ) = U(ε−1(ξ − st)) of systems

∂tu+ ∂ξF (u) = ε−1G(u) + εδ∂2
ξu, (1.8)

where ε ↘ 0 indicates a small parameter. The associated travelling wave system is

independent of ε and reads

δU ′′ + (sU − F (U))′ +G(U) = 0 (1.9)

The case of vanishing G(u) ≡ 0 of pure conservation laws has been studied most widely;

see for example [Smo94]. Putting z = (U,U ′), we obtain a trivial equilibrium manifold

(U, 0) of dimension dimU = 1
2

dim z. Heteroclinic solutions which converge to different

limits (u±, 0) in this manifold, for time tending to ±∞, are called viscous shock profiles

of the Riemann problem with Riemann data u±. Indeed, the solution U(ε−1(ξ− st)) then

converges in the limit ε ↘ 0 to a discontinuous weak solution of (1.8), a shock, which

propagates at constant speed s. Analysis is greatly facilitated by the first integrals

δU ′ + sU − F (U) ≡ constant, (1.10)
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in this case.

The opposite extreme where G(u) = 0 only holds for isolated points u does not give

rise to equilibrium manifolds of positive dimension. A typical case, however, arises when

some — but not all — components Gj(u) vanish identically. This corresponds to con-

servation laws for some components uj, whereas the remaining u-components encounter

source terms. As a consequence the equilibrium system

G(u) = 0 (1.11)

becomes under-determined, and equilibrium manifolds z = (u, 0) ∈ M usually appear.

The dimension m of M will typically be given by the number of conservation laws. For

detailed analysis of the case of single conservation laws, alias lines of equilibria, see [Lie97],

[Lie00], [FLA00a], [FL00], [FLA00b], as well as sections 2, 12 below. We explicitly men-

tion the appearance of linearly stable weak viscous shock-profiles, which violate the Lax

entropy condition and are oscillatory — in marked contrast to the case G ≡ 0 of pure

conservation laws.

Example 1.3 Our third example is based on an observation for coupled oscillators due

to [AA86], see also [AF89], [Lie97], [FLA00b]. Let i ∈ {±1, . . . ,±(m+1)} denote the

vertices of an (m + 1)-dimensional 2m+1-hedron C. The neighbors Ni of vertex i are all

i′, except i itself and −i. Consider the coupled system

u̇i = F

(
ui,

∑
i′∈Ni

ui′

)
. (1.12)

If F (·, 0) is odd, F (−u, 0) = −F (u, 0), then the coupled oscillator system (1.12) possesses

an invariant subspace, where the dynamics is described by an (m+ 1)-fold direct product

of the uncoupled flows

u̇ = F (u, 0). (1.13)

Indeed the subspace given by

u−i = −ui, (1.14)

for all i, is invariant and eliminates any coupling. For examples on graphs more intricate

than C see [AF89].

Suppose the uncoupled dynamics (1.13) possess a periodic orbit. This gives rise to

an (m+ 1)-dimensional invariant torus of the coupled system (1.12), foliated by periodic

orbits. In a (local) Poincaré cross section the torus manifests itself as an m-dimensional

manifold M of fixed points. As was pointed out by [Tak73], in normal form up to any

finite order this Poincaré map (or its second iterate) coincides with the time-one map of



Takens-Bogdanov bifurcations without parameters 5

an autonomous vector field in the Poincaré cross section; see [BT89]. The manifold M of

fixed points then becomes a manifold M of equilibria.

Alternatively, we may assume equivariance of F under an S1-action such that the

periodic orbits of (1.13) become group orbits alias rotating waves under this action. Then

the full vector field (1.12) pulls back to a vector field in the Poincaré section, by the Palais

construction, and the Poincaré map coincides with the time one map of the pulled back

vector field. See for example [AF89], and for the Palais construction [FSSW96]. Again,

the manifold M of fixed points becomes an equilibrium manifold.

Sufficiently motivated, as we now are, to consider vector fields with equilibrium

manifolds M of dimension m, the paper is organized as follows. In section 2, we recall

some basic results on the case of equilibrium lines, m = 1. The simplest case of a

nontrivial eigenvalue zero, in the linearization, is addressed, as well as the two cases of Hopf

bifurcation without parameters, caused by purely imaginary eigenvalues. Section 3 lists

several possibilities for bifurcations from equilibrium planes, m = 2 — among them, most

notably, the Takens-Bogdanov bifurcation without parameters. Focussing on only this

case for the rest of this paper, we briefly discuss the relevant normal form which preserves

the equilibrium plane; see section 4. In section 5, a suitable scaling provides an expansion

in an artificial small blow-up parameter ε. To leading order ε0, the resulting scaled system

becomes completely integrable, in section 6, though not quite Hamiltonian. The resulting

slow flow of first integrals, at order ε1, is derived in section 7, relegating discussions

of elliptic integrals to section 8. Resorting to some numerical evaluation of Weierstrass

functions, at last, this analysis remains incomplete. “Averaging” of the rapid oscillations

in the slow flow is performed in section 9. Before we draw geometric conclusions on

the three essentially different types of Takens-Bogdanov bifurcations without parameters,

in section 11, we stroll the landscape of averaging, subharmonic resonance, Melnikov

functions, truncation of normal forms and discretization of the “averaged” vector field,

in section 10. We conclude, in section 12, with an explicit example of stiff balance laws,

which exhibits all three types of Takens-Bogdanov bifurcations without parameters which

are derived in this paper.
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2 Bifurcations from lines of equilibria

As a preparation for our investigation of Takens-Bogdanov bifurcations from planes of

equilibria, in section 3, we first recall earlier results on bifurcations from lines of equi-

libria. We begin with the case of normal hyperbolicity of the equilibrium line, and then

proceed to address the occurrence of a nontrivial zero eigenvalue as well as purely imagi-

nary eigenvalues. In classical bifurcation theory, characterized by a foliation λ̇ = 0 by a

scalar parameter λ ∈ IR, these latter cases would correspond to bifurcation of nontrivial

equilibria and to Hopf bifurcation of small amplitude periodic oscillations, respectively.

In the notation of (1.3), (1.4) we consider vector fields

ẋ = fx(x, y)

ẏ = fy(x, y)
(2.1)

with x ∈ IRn, scalar y ∈ IR replacing the parameter λ, and a trivial line of equilibria

0 = f(0, y) (2.2)

of the vector field f = (fx, fy). In block matrix notation, the linearization A(y) of f at

the equilibrium (0, y) ∈ IRn+1 is given by

A(y) =

 A0(y) 0

0

 , (2.3)

with the normal part A0(y) := Dxf
x(0, y). The spectrum of A(y) is given by

specA(y) = {0} ∪ specA0(y), (2.4)

just adding a (trivial) eigenvalue zero to the spectrum of the linearization A0(y) normal

to the equilibrium line.

Normal hyperbolicity simply requires all eigenvalues of A0(y) to possess nonzero real

part. Standard theory of normal hyperbolicity then identifies a local center-stable manifold

W cs of the equilibrium line which consists of all initial conditions (x0, y0) ∈ IRn+1 near

{0}× IR, such that x(t) remains small for all positive times t. The center-stable manifold

W cs is foliated by the strong stable manifolds W ss(y) of those (x0, y0) ∈ IRn+1 near {0}×IR

selected by the additional requirement

lim
t→+∞

(x(t), y(t)) = (0, y). (2.5)

Similarly, but going backwards in time instead, we obtain the foliation of the center-

unstable manifold W cu by strong unstable manifolds W uu(y). See for example [HPS77],
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y

x1

x2

Figure 2.1: A normally hyperbolic line of equilibria with flow-invariant foliation.

[Fen77, Fen79], [Aul84] for additional background and technical details. Tangent spaces

to W ss(y) and W uu(y) at (0, y), for example, are given by the eigenspaces of A(y) corre-

sponding to the spectrum strictly in the left and right complex half plane, respectively.

By (2.4), these eigenvalues are precisely the eigenvalues of the normal part A0(y).

An interesting generalization of the Grobman-Hartman theorem to the case of non-

hyperbolic equilibria has been proved by [Sho75]; see [Arn83]: locally, the flow is given

as a direct product of the linearized hyperbolic part with the flow in the center manifold

W c, up to C0 flow equivalence. Applied to our case, where W c = W cs ∩W cu is just the

equilibrium line, this reduces the flow to

ẋ = A0(y)x

ẏ = 0.
(2.6)

Note that y has in fact become a parameter, in these coordinates. See figure 2.1 for a

phase portrait.

We consider the two generic possibilities of a non-hyperbolic normal part A0(y) next:

a simple (nontrivial) eigenvalue zero, and a simple purely imaginary pair ±i, respectively,

which cross the imaginary axis at nonzero speed, as y increases through y = 0. Eliminating

the foliations due to the remaining hyperbolic part of A0(0), we reduce our attention to

the center manifold and only consider x = x ∈ IR, x = (x1, x2) ∈ IR2, respectively.

For the case of a simple eigenvalue zero, where x = x ∈ IR, see [Lie97], [DR98].
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y

x

Figure 2.2: Phase portrait of failure of normal hyperbolicity due to a nontrivial simple

eigenvalue zero, at y = 0.

Since f(0, y) ≡ 0, we can divide by x and obtain

ż = xf̃(z) (2.7)

for z = (x, y) ∈ IR2. Dividing by the Euler multiplier x, which reverses time for x < 0,

we obtain the time orbits of (2.7) from the time orbits of

z′ = f̃(z). (2.8)

Invoking a flow box theorem for (2.8), adapted to preserve the straight equilibrium line,

reduces (2.7) to

ẋ = axy

ẏ = x.
(2.9)

Note the normal part of the linearization

A0(y) = Dxf
x(0, y) = ay (2.10)

and a 6= 0, by transverse crossing of the zero “eigenvalue” ay of A0(y) at y = 0. To avoid

the case ẏ = fy(z) ≡ 0 of a trivial foliation with “ordinary” bifurcation parameter y, the

nondegeneracy condition Dzf
y(0, 0) 6= 0 has to be imposed on (2.7). Since fy(0, y) ≡ 0

and hence Dyf
y(0, 0) = 0 we obtain Dxf

y(0, 0) 6= 0, which accounts for the y-component

of (2.9). See figure 2.2 for a phase portrait with a = 1. Note the absence of nontrivial

equilibria and the heteroclinic orbits in the lower half plane x < 0.
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The case of purely imaginary eigenvalues y ± i, at y = 0, of the normal part lin-

earization A0(y) leads to a normal form

ṙ = ry

ẏ = 1
2
ar2

ϕ̇ = 1

(2.11)

in polar coordinates x1 + ix2 = reiϕ for x = (x1, x2) ∈ IR2. We have used the purely

imaginary Hopf eigenvalues ±i at y = 0 to eliminate dependence on ϕ, in normal form,

and we have truncated at second order. For a technically more careful discussion, we

refer to [FLA00a]. This result was used by [DR98] to illustrate a more general blow-up

procedure. Division by the Euler multiplier r leads to the linear system

ṙ = y

ẏ = 1
2
ar

(2.12)

We distinguish the elliptic case, a < 0, and the hyperbolic case, a > 0. The elliptic case

was already studied by [Far84], see also [FLA00a], [FL00], [FLA00b], [Lie00].

In normal form, truncated at any finite order, the flow reduces to (2.11), with all

orbits spiraling along ellipsoids in the elliptic case, or cones and hyperboloids, in the

hyperbolic case. See figure 2.3.

Note how all nonstationary orbits leave a neighborhood of the equilibrium line in

either forward or backward time, in the hyperbolic case. This observation remains true

when we include higher order terms not in normal form.

In the elliptic case, such higher order terms may split the ellipsoids in a transverse

way. Due to results of Neishtadt type [Nei84], the splittings will be exponentially small

in terms of the size of the ellipsoid, in the analytic case; see also [BR01], [FS96], [Gel99],

[GL01], and the references there. Note the absence of periodic orbits. In fact, any

nonstationary orbit is heteroclinic from an equilibrium y− > 0 to an equilibrium y+ < 0,

locally. The set of all ω-limiting equilibria y+ which occur in any fixed, two dimensional

strong unstable manifold W uu(y−) may cover a closed interval in (−∞, 0), however, due

to Neishtadt splitting.

Still, the system possesses a smooth Lyapunov function V = V (x, y), in the elliptic

case, which decreases strictly along all trajectories. We give one possible construction. It

turns out that all nonstationary orbits cross the x-plane y = 0, and do so transversely;

see [FLA00a], proposition 2.1. Normalizing time to t = 0, at this crossing, we define

V (x(t), y(t)) := p(tanh t; y−, y+) (2.13)
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(a)

y

r

y

r

(b)

y

x1

y

x1

(c)

y

x1

x2

y

x1

x2

Figure 2.3: Hopf bifurcation from lines of equilibria without parameters; elliptic case

(left) and hyperbolic case (right). Normal form (a), Poincaré section x2 = 0 (b), and

three-dimensional views.
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where p(τ ; y−, y+) is the unique parabola in τ mapping the three τ -values (−1, 0,+1) to

(y−, 0, y+), and y± = limt→±∞ y(t) depend on the specific trajectory. Then V (x, 0) = 0,

V (0, y) = y, and V is a smooth Lyapunov function.

Just as the classical Takens-Bogdanov bifurcation in two parameters requires an un-

derstanding of stationary and Hopf bifurcations, in one parameter, all the above examples

for bifurcations along lines of equilibria, without parameters, will contribute to the three

types of Takens-Bogdanov bifurcations from an equilibrium plane presented in the next

section.

3 Bifurcations from planes of equilibria

We now proceed to an analysis of planes of equilibria arising in vector fields

ẋ = fx(x,y)

ẏ = fy(x,y)
(3.1)

where x ∈ IRn, y = (y1, y2) ∈ IR2 and f = (fx, fy) satisfies

0 = f(0,y), (3.2)

for all y. As before, we have a block matrix decomposition of the linearization

A(y) = Dzf(0,y) =

 A0(y) 0

A1(y) 0

 , (3.3)

with families of real (2×n)-matrices A1(y) parametrized by y ∈ IR2. For the normal part

A0(y), which determines the nontrivial spectrum of A(y), several nonhyperbolic cases

arise in generic two-parameter families; see the cases in [Tak73] and the discussion in

[Arn83]. Specifically, A0(0) can possess

(a) a simple eigenvalue zero

(b) a pair of simple, purely imaginary eigenvalues (Hopf)

(c) an algebraically double, geometrically simple eigenvalue zero (Takens-Bogdanov)

(d) both (a) and (b) (zero-Hopf)

(e) two nonresonant pairs of simple, purely imaginary eigenvalues (Hopf-Hopf)

Clearly (a), (b) will then occur along curves in y-space, unless additional degeneracy

conditions like non-transverse eigenvalue crossings or degeneracy of other higher order
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terms are imposed. Cases (c)–(e), in contrast, possess codimension two in the space of

(n× n)-matrices A0(y) and hence will generically occur at isolated values of y ∈ IR2, say

at y = 0.

As a diversion, we also note a hybrid between “ordinary” bifurcation theory, where

λ̇ = 0, and on the other hand (3.1), (3.2), which fix only the y-plane x = 0. Let

fy = (fy1 , fy2) and assume

0 ≡ fy2(x,y) (3.4)

for all (x,y) ∈ IRn+2. Then ẏ2 = 0, and y2 becomes an “ordinary” bifurcation parameter.

Writing y = (y, λ) with y, λ ∈ IR, in this case, we then have to discuss systems of the

form

ẋ = fx(x, y, λ)

ẏ = fy(x, y, λ)
(3.5)

where f(0, y, λ) ≡ 0. These vector fields are just one-parameter versions of systems with

trivial equilibrium lines, as discussed in section 2, see (2.1), (2.2). For fixed λ, for example,

cases (a) and (b) were discussed in section 2. In fact, (b) gave rise to two distinct cases

of Hopf bifurcation without parameters which we called elliptic and hyperbolic. Varying

λ, cases (d) and (e) can then be viewed as the collision of cases (a)-(b), and (b)-(b),

respectively. Similarly, as we will see below, the Takens-Bogdanov case (c) can arise from

the Hopf case (b) if the Hopf frequency tends to zero as the parameter λ varies. The

half-arc of Hopf bifurcation points, in the (y, λ)-plane, then terminates at a nilpotent

Jordan block A0.

In this paper, we henceforth restrict to the Takens-Bogdanov case (c), where A0(0)

is nilpotent. We now summarize some main results. Under suitable nondegeneracy con-

ditions, we may choose local coordinates (y1, y2) such that A0(y), A1(y), take the form

A0(y) =

 a(−y1 + y2) −y1

1 0

 (3.6)

A1(y) =

 (c1y1 + c2y2) 1

c3(c1y1 + c2y2) 0

 (3.7)

for some a 6= 0. For details we refer to our discussion of normal forms in section 4. Again

we have omitted the hyperbolic part of A0, so that x = (x1, x2) ∈ IR2. Note that we may,

and do, assume a > 0 if we allow for linear transformations of x,y and for a reversal of

time. In fact we will absorb a completely into the scaling, alias blow-up (5.2) below. Note
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the Jordan block of order 3 in the full linearization

A(y) =

 A0(0) 0

A1(0) 0

 =


0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

 (3.8)

at y = 0.

A normal form of the vector field ż = f(z) up to second order in z = (x,y) reads

as follows:
ẋ1 = ax1(−y1 + y2)− x2y1 + abx2

2

ẋ2 = x1

ẏ1 = x2 + x1(c1y1 + c2y2)

ẏ2 = c3x1(c1y1 + c2y2).

(3.9)

In the following sections 5–11, we use a blow-up or scaling reminiscent of the classical

Takens-Bogdanov bifurcation, to exhibit features of the truncated system (3.9), locally

near x = y = 0, which survive the addition of higher order terms. Some of these features,

which are the main result of this paper, can be summarized as follows.

Let b /∈ {−17/12,−1}. Then there exists a neighborhood U of x = y = 0 in IR4 such

that any trajectory (x(t),y(t)) which remains in U , be it for all positive or all negative

times, converges to some equilibrium (0,y), in the trivial equilibrium plane x = 0. More

specifically, let z(t) = (x(t),y(t)) ∈ U for all t ≥ 0. Then lim x(t) = 0, for t→ +∞, and

there exists

y+ := lim
t→+∞

y(t). (3.10)

Similarly, z(t) ∈ U for all t ≤ 0 implies lim x(t) = 0, for t→ −∞, and

y− := lim
t→−∞

y(t) (3.11)

exists. Of course, nonstationary heteroclinic orbits which remain in U for all t ∈ IR and

for which both (3.10) and (3.11) hold, are possible, albeit with y+ 6= y−. In particular, U

is void of nontrivial equilibria, of periodic orbits, and of any homoclinic orbits. Any orbit

which remains in U , for all times t ∈ IR, is stationary or heteroclinic.

In figure 3.1 we depict the three essentially different cases which arise in the three

parameter regions

Case (A) b<−17/12

Case (B) −17/12<b<−1

Case (C) −1<b
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(A)

y, y1

λ, y2 hyp. HopfSin

Fin1-het

y-entry

y-entry
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y-entry

x-exit

x-exit

x-exit
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(1)

(1)
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(1) (0)
(0)
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(B)
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x-exitx-exit
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x-entry
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(C)

y, y1
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ell. Hopf
Fout

Fin

1-het
x-exit

x-entry

x-entry

(1)

(1)

(1) (0)

(0)
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Figure 3.1: Three cases of Takens-Bogdanov bifurcations without parameters, see (3.9)

and (A)–(C) for coefficients. Unstable dimensions i of trivial equilibria (0,y) are indicated

by (i); “n-het” indicate saddle-saddle heteroclinics with n revolutions around the positive

y1-axis. See sections 9,11 for a detailed description.
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figure 2.2
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Figure 3.2: Schematic diagrams of bifurcations from lines of equilibria.

Arrows indicate the pairings (y− 7→ y+) by heteroclinic orbits. We also indicate exit sets,

for which the strong unstable manifolds W uu(y) leave U in forward time, at least partially,

as well as entry sets, where W ss(y) shares the same fate in backwards time. The difference

between “x-entry/exit” and “y-entry/exit” will be explained in sections 9–11.

It is interesting to note that these diagrams do not depend on the values of c1, c2, c3,

to leading order; see the blow-up construction in section 5. In particular, we may choose

c1 = c2 = 0. This identifies y2 as a parameter, to leading order, by ẏ2 = 0. Writing

y1 = y, y2 = λ as in diversion (3.4), (3.5) above, we can equivalently view the Takens-

Bogdanov bifurcations without parameters as a termination of Hopf bifurcation from a

line of equilibria given by the y-axis, as an external parameter λ is varied. In this setting,

both the elliptic and the hyperbolic Hopf case arise, as discussed in section 2.

Although figure 3.1 gives an indication of heteroclinicity, it does not reveal the

detailed geometry of the associated flows of (x, y) ∈ IR3, as parametrized by λ ∈ IR. In

fact the results of figures 2.2, 2.3 would be represented quite schematically by figure 3.2.

All geometric intricacies are lost, like W uu(y−) terminating at y+-intervals in the elliptic

Hopf case, or distinctions between saddle-saddle heteroclinics, saddle-node heteroclinics,

and focus-node heteroclinics. For some such geometric detail we refer to section 11 below.
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4 Normal forms

In this section we consider
ẋ = fx(x,y)

ẏ = fy(x,y)
(4.1)

with x,y ∈ IR2, an equilibrium plane

0 = f(0,y), (4.2)

and nilpotent normal part linearization

A0(0) = Dxf
x(0, 0) =

 0 0

1 0

 . (4.3)

For terms up to order 2 in x,y, we derive the normal form (3.9) such that the y-plane

x = 0 remains an equilibrium plane.

As a first step we consider the appropriately nondegenerate linearization

A(0) =

 A0(0) 0

A1(0) 0

 =


0 0

1 0

0 0

0 0

A1(0)
0 0

0 0

 (4.4)

at x = y = 0. The nondegeneracy which we choose for A1(0) is such as can occur in generic

two-parameter families of linearizations A(y) subject to the equilibrium constraint (4.2).

We fix y = 0 by requiring nilpotency of A0(0). Because the y-plane x = 0 is distinguished

to be an equilibrium plane, we may consider

rangeA(0) ∩ {x = 0} (4.5)

as an invariant object. With a two-dimensional kernel of A(0) at hand, generically, and one

dimension of range A(0) fixed as the x2-axis, by A0(0), the space (4.5) is one-dimensional:

call it the y1-axis. Therefore A1(0) takes the form

A1(0) =

 α 1

0 0

 , (4.6)

generically with a nonzero upper right entry which we have normalized to 1. The upper

left entry α can be eliminated by a skew linear transformation ỹ1 = −αx2 + y1. Thus

α = 0 in (4.6), and henceforth. This proves that A(0) indeed takes the form (3.8) with a

Jordan block of order 3, generically.
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Normal forms of vector fields with higher nilpotency have been studied extensively;

see for example [CS86]. For the definitive exposition of normal forms, in general, see

[Van89], [Tak73]. For our purposes we need a slight adaptation, restricting local transfor-

mations Φ of the vector field (4.1) to those near identity diffeomorphisms which map the

equilibrium y-plane x = 0 into itself. We do not require Φ to fix this plane pointwise. In

terms of Taylor polynomials, we successively expand

Φ(z) = z + Φ2(z) + · · · , (4.7)

with Φk = (Φx
k,Φ

y
k) homogeneous in z of degree k. The above restriction fixing the y-plane

x = 0 amounts to

Φx
k(0,y) = 0 (4.8)

for all y ∈ IR2, k = 2, 3, . . ..

In the Taylor expansion of the vector field f(z) = Az + f2(z) + · · ·, transformations

by Φ allows us to eliminate terms of f in the range of the Lie bracket [·, f ],

[g, f ](z) = g′(z)f(z)− f ′(z)g(z), (4.9)

up to any finite order k. Here g denotes the vector field which, as an element of the Lie

algebra of the diffeomorphism group, generates the transformation Φ by the exponential

map, i.e. by time integration of the vector field g. Expanding

g(z) = g2(z) + · · · (4.10)

by order of z, we see that g enables us to successively eliminate components of fk(z) in

the range of adA,

((adA)g)(z) = [A, g](z) = Ag(z)− g′(z)Az. (4.11)

The normal form of f is then given, up to any finite order k, by a linear complement to

the range of (4.11), as g is varied.

How do we keep track of the restriction (4.8) during this normal form process?

Clearly the Lie algebra of associated vector fields g = (gx, gy) has to just satisfy

gx
k(0,y) = 0 (4.12)

for all y ∈ IR2, k = 2, 3, . . .. The normal form of f then amounts to an element of the

linear complement, in the space of vector fields f satisfying (4.2), to the range of adA

restricted to those g satisfying (4.12). Note here that (adA)g satisfies (4.2) if g satisfies

(4.12). Indeed, transformations by the flow of g preserve the y-plane of equilibria of f ,
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and A = A(0). The normal form itself depends on the choice of a complement in (4.11),

(4.12), of course.

One of the many possible normal forms of f then takes the form

ẋ1 = x1h1(2x1y1 − x2
2,y) + x2h2(2x1y1 − x2

2,y) + x2
2h3(2x1y1 − x2

2,y),

ẋ2 = x1,

ẏ1 = x2,

ẏ2 = x1y1h4(x1y1,y),

(4.13)

with suitable formal Taylor series h1, . . . , h4, up to any finite order. (Note the restriction

h1(0, 0) = h2(0, 0) = 0 due to the prescribed linearization.) Indeed with A = A(0)

nilpotent as in (3.8), by (4.4)–(4.6) and g satisfying the restriction (4.12), we see that a

complement to range(adA) in the space of f satisfying (4.2) is spanned by h1, . . . , h4 at

any finite order k of g. Technical details of this calculation can be found in the appendix.

Truncating the general normal form (4.13) at second order, we obtain the same

expression (4.13) with first-order terms h1 = h11y1 + h12y2, h2 = h21y1 + h22y2, and

constants h3, h4:

ẋ1 = x1(h11y1 + h12y2) + x2(h21y1 + h22y2) + h3x
2
2,

ẋ2 = x1,

ẏ1 = x2,

ẏ2 = h4x1y1.

(4.14)

A linear transformation,

x̃1 = −h21x1, ỹ1 = −h21y1 − h22y2,

x̃2 = −h21x2, ỹ2 = (h12h21/h11 − h22)y2,
(4.15)

which will be motivated in sections 5–7 then converts (4.13) into the previously stated

truncated normal form (3.9). We specifically note

a = h11/h21, b = −h3/h11, (4.16)

and the nondegeneracy conditions

h11, h21 6= 0, h12h21 − h11h22 6= 0. (4.17)
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5 Scaling, alias blow-up

Linearizing the normal form (3.9) at the y-plane of equilibria, we obtain the unfolding

A(y) =


a(−y1 + y2) −y1 0 0

1 0 0 0

(c1y1 + c2y2) 1 0 0

c3(c1y1 + c2y2) 0 0 0

 (5.1)

of the Jordan block or order 3 at y = 0. The analysis of the standard Takens-Bogdanov

bifurcation crucially uses a scaling to near Hamiltonian form, which preserves the nilpotent

Jordan block, of order 2 there, at λ = 0. This is impossible, for nilpotencies of odd order.

Instead, we present a scaling by small 0 < ε < ε0 to near completely integrable form:

x1 = (ε/a)4x̃1, y1 = (ε/a)2ỹ1

x2 = (ε/a)3x̃2, y2 = (ε/a)2ỹ2,
(5.2)

and t = aε−1t̃. Inserting into the normal form (3.9) and omitting tildes, as well as terms

of order ε2 and beyond, we obtain

ẋ1 = −x2y1 + ε(x1(−y1 + y2) + bx2
2)

ẋ2 = x1

ẏ1 = x2

ẏ2 = 0

(5.3)

Note that y2 has become simply a parameter in this scaling. Therefore the two viewpoints

on Takens-Bogdanov bifurcation without parameters, as presented in section 3, (c) and

the diversion (3.4), (3.5), coincide to order ε. To emphasize the foliation by ẏ2 = 0, in

the following sections, we will rename

λ := y2

y := y1

(5.4)

and discuss the rescaled normal form

ẋ1 = −x2y + ε(x1(−y + λ) + bx2
2)

ẋ2 = x1

ẏ = x2

(5.5)

for small ε > 0. Understanding the solutions of (5.5) with

‖x(t)‖, ‖y(t)‖, |λ| ≤ C, (5.6)

for all t ∈ IR, and for 0 ≤ ε < ε0(C), is a significant step towards understanding all

solutions of the original system (1.3), (1.4) in a neighborhood U ⊂ IR4 of the Takens-

Bogdanov bifurcation at z = (x,y) = 0. We therefore address system (5.5) in sections

6–9 below and return to the issue of omitted higher order terms in section 10.
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6 Complete integrability, to scaling order zero

We consider the scaled vector field (5.5) to order zero in ε, that is

ẋ1 = −x2y

ẋ2 = x1

ẏ = x2.

(6.1)

Equivalently, we rewrite (6.1) as a third order scalar equation

0 = ˙̇ẏ + yẏ = d
dt

(ÿ + 1
2
y2). (6.2)

Immediately, this provides a first integral of motion

Θ = ÿ + 1
2
y2 = x1 + 1

2
y2 (6.3)

in terms of x1, y. Considering (6.3) as a second order differential equation for y, on the

other hand, we obtain the Hamiltonian system

ÿ + 1
2
y2 −Θ = 0, (6.4)

as was to be expected from a good Takens-Bogdanov type problem. The Hamiltonian

provides a second integral of motion

H = 1
2
(ẏ)2 + 1

6
y3 −Θy = 1

2
x2

2 − x1y − 1
3
y3. (6.5)

Conversely, we can parametrize all trajectories of (6.1) by (Θ, H, y):

x1 = Θ− 1
2
y2

x2
2 = − 1

12
q(y).

(6.6)

Here q(y) is the Weierstrass polynomial

q(y) = q(y; 24Θ, 24H) = 4y3 − 24Θy − 24H (6.7)

with coefficients 24Θ and 24H.

Before we perform a complete integration of (6.1) in terms of Weierstrass functions,

in section 8, we record how to eliminate Θ > 0 from (6.4) entirely by a simple scaling.

Let y(t) = yΘ,H(t) denote any solution of (6.4) with energy H. Then

yΘ,H(t) = Θ1/2 y1,H̃(Θ1/4t) (6.8)

where y1,H̃ is a solution of (6.4) with energy

H̃ = Θ−3/2H. (6.9)
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y

x2

x1

θ = −0.6

θ = 0

θ = 0.5

line of equilibria

Figure 6.1: Phase portraits of the integrable scaled flow, at order zero in ε.

A similar scaling applies to the less interesting case Θ < 0, where all orbits are unbounded.

With these remarks it is easy to plot the phase portraits of system (6.1); see figure

6.1. Note the x2-independent invariant parabola sheets x1 = Θ − 1
2
y2 which, for Θ ≥ 0,

contain all bounded orbits. Also note how the collection of homoclinic orbits confines

the set of bounded orbits. In fact, the homoclinic orbits emanate from the hyperbolic

saddles, at y < 0, and loop around the positive y-axis before returning to the saddle. No

further stationary orbits bifurcate from the equilibrium plane, represented by the y-axis.

All remaining bounded orbits are periodic, forming a periodic “bubble”.

Finally, we observe that the scaled flow is independent of the parameter λ = y2, to

order zero in ε. This absence of λ, which extremely facilitates the perturbation computa-

tions below and was already crucial to the simplicity of the scaling (6.8), (6.9), originated

from our linear transformation (4.15) by which h22 was eliminated from our normal form

(4.14).
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7 Slow flow of first integrals, to order ε

With complete integrability at order ε0 at hand, we now consider the scaled vector field

(5.5) to order ε, that is

ẋ1 = −x2y + ε(x1(−y + λ) + bx2
2)

ẋ2 = x1

ẏ = x2.

(7.1)

With z = (x1, x2, y) and obvious notation for the scaled nonlinearities f0, f1, we abbreviate

(7.1) as

ż = f0(z) + εf1(z). (7.2)

Parametrizing trajectories z by (Θ, H, y), according to (6.3), (6.5), (6.6), we obtain dif-

ferential equations for Θ, H; for example

Θ̇ = Θz · ż = Θzf0(z) + εΘzf1(z), (7.3)

where Θz indicates the gradient with respect to z. Note that Θzf0(z) = 0, because Θ is a

first integral of the order zero flow; see section 6. We thus arrive at the slow flow for the

first integrals

Θ̇ = ε
[
(Θ− 1

2
y2)(−y + λ)− 1

12
bq(y)

]
Ḣ = −εy

[
(Θ− 1

2
y2)(−y + λ)− 1

12
bq(y)

]
.

(7.4)

In contrast to the slow motion of Θ, H, the variable y will move on a time scale of order

one, for ε→ 0. Cutting through the bubble of periodic orbits, at order ε0, we in fact have

a Poincaré section Σ, transverse to the flow (7.1), defined by the half plane

Σ = {(x, y) | x1 > 0 = x2} . (7.5)

Indeed ẋ2 = x1 > 0 in Σ. The boundary of Σ consists of the equilibrium y-axis. A

parametrization of Σ by (Θ, H) is given by choosing y as the middle one of the three

solutions y of

q(y; 24Θ, 24H) = 0 (7.6)

and putting

x1 := Θ− 1
2
y2. (7.7)

The domain of definition of these coordinates is simply

Θ−3/2|H| = |H̃| < 2
3

√
2, Θ > 0. (7.8)
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The boundary of Σ is given by the values H̃ = 2
3

√
2, for the saddles at y < 0, and

H̃ = −2
3

√
2, for the foci at y > 0, with y = 0 relegated to Θ = 0. This allows us to

express the Poincaré return map

Πε : Σ→ Σ, (7.9)

wherever defined, in terms of the coordinates (Θ, H) as Πε(Θ0, H0) = (Θ̄, H̄), where

Θ̄ = Θ0 +
∫ T ε

0
Θ̇(t)dt = Θ0 + εIΘ(ε,Θ0, H0)

H̄ = H0 +
∫ T ε

0
Ḣ(t)dt = H0 + εIH(ε,Θ0, H0).

(7.10)

Here T ε = T ε(Θ0, H0) denotes the Poincaré return time.

The form (7.10) of the Poincaré return map Πε suggests to compute I = (IΘ, IH)

at ε = 0 and to view Πε as a time discretization of first order, with time step ε, of the

vector field
d

dt

(
Θ

H

)
= I(Θ, H). (7.11)

We call (7.11) the Poincaré flow of first integrals. The somewhat delicate issue of conver-

gence of the integrals IΘ(ε,Θ0, H0), IH(ε,Θ0, H0) to their counterparts I(Θ0, H0), evalu-

ated at ε = 0, is postponed to section 10.

By the form (7.4) of the (Θ, H)-flow, we then conclude

I(Θ, H) =
∫ T 0

0

[
(Θ− 1

2
y2)(−y + λ)− 1

12
bq(y)

] (
1
−y

)
dt. (7.12)

Here ε = 0, and therefore Θ, H are fixed. The Poincaré time T 0 is the minimal period

of the periodic orbit y(t) of the integrable order zero vector field discussed in section 6.

To evaluate the integrals (7.12) it is therefore sufficient to compute, for k = 0, . . . , 4, the

integrals

Jk = Jk(Θ, H) =
∫ T 0

0
(y(t))kdt (7.13)

for the periodic solution y(t) of (6.4) which is determined by Θ, H. The simple scaling

argument (6.8), (6.9) shows that

Jk(Θ, H) = Θk/2−1/4Jk(H̃), (7.14)

where we have abbreviated Jk(1, H̃) = Jk(H̃). In the next section we recall a recursion

relation and compute the complete elliptic integrals Jk(H̃) in terms of Weierstrass elliptic

functions.
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8 Elliptic integrals and Weierstrass functions

In this section we evaluate the complete elliptic integrals

Jk(H̃) :=
∫ T

0
(y(t))kdt, (8.1)

for k = 0, . . . , 4, as introduced in (7.13), (7.14), in terms of Weierstrass elliptic functions.

We recall that y(t) = y(t,Θ = 1, H = H̃) is a periodic solution of the second order

equation (6.4), with Θ = 1 and energy H = H̃, that is

ÿ + 1
2
y2 − 1 = 0 (8.2)

1
2
(ẏ)2 + 1

6
y3 − y = H̃. (8.3)

Note that T = T (H̃) = J0(H̃) denotes the minimal period, for |H̃| < 2
3

√
2. Also note the

continuous limits
J0(−2

3

√
2) = 23/4π

J0(2
3

√
2) = +∞

(8.4)

corresponding to the Hamiltonian center at y =
√

2 and to the homoclinic saddle at

y = −
√

2, respectively.

To establish the relation of Jk(H̃) to complete elliptic integrals, we recall

ẏ2 = − 1
12
q(y) (8.5)

from (6.5)–(6.7), where q(y) = 4y3− 24y− 24H̃ is the cubic Weierstrass polynomial. Fol-

lowing traditional notation, let e1 > e2 > e3 denote the three real zeros of q depending on

H̃ ∈ (−2
3

√
2, 2

3

√
2). Obviously then e1, e2 are the maximal, minimal values, respectively,

of the periodic orbit y(t). By time reversal symmetry these values occur at, say, t = T/2

and t = 0, respectively. We can therefore rewrite

Jk(H̃) =
∫ T

0
y(t)kdt = 2

∫ e1

e2

yk

ẏ
dy = 2

∫ e1

e2

yk√
− 1

12
q(y)

dy (8.6)

which clearly identifies Jk as complete elliptic integrals.

Following an elementary exposition by [Tri37], [Tri48], we derive a two-term recur-

sion for the elliptic integrals Jk. Just differentiate

d

dy

(
yk
√
q(y)

)
=

1√
q(y)

(
kyk−1q(y) + 1

2
ykq′(y)

)
. (8.7)
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Integrating over y, from e2 to e1, and reinserting the factor
√
−1/12 indeed provides

a linear 2-term recursion relation for Jk, because q(ej) = 0. Therefore all Jk can be

expressed linearly in terms of J0 and J1. For k = 0, . . . , 4 we obtain explicitly

J0 = J0(H̃)

J1 = J1(H̃)

J2 = 2J0

J3 = 6
5
(3J1 + 2H̃J0)

J4 = 12
7

(2H̃J1 + 5J0).

(8.8)

We now express J0 in terms of the Weierstrass function p(z), defined by the inverse

elliptic integral

z + kω + ilω′ =
∫ p(z) dz√

q(z)
(8.9)

See for example [Tri48], [HC64] [Lan87] for some background. Due to the complex Rie-

mann surface of
√
q(z), two complex periods ω, iω′ of the complex Weierstrass function

q(z) arise. Choosing ω, ω′ > 0 we see that

J0(H̃) = 2
√

3ω′. (8.10)

Indeed, p(ω/2) = e1, p((ω + iω′)/2) = e2, and (8.10) follows by multiplication with√
−1/12 and J0, ω

′ > 0.

To compute J1 we note that the definition (8.9) of the Weierstrass function p(z)

implies

y1,H̃(t) = p(
√
−1/12 (t+ t0)) (8.11)

by separation of variables in (8.3). Therefore

J1(H̃) =
∫ T

0
y(t)dt =

∫ J0(H̃)

0
y1,H̃(t)dt

=
∫ √12ω′

0
p(
√
−1/12 t)dt = −

√
−12

∫ iω′

0
p(z)dz

= 2
√

3 i ζ(iω′),

(8.12)

where ζ = −
∫
p denotes the Weierstrass ζ-function. The sign of the derived expression

for J1 can, in case of doubt, be derived by continuation from H̃ = −2
3

√
2, where ω′ =

2−1/43−1/2π and J1 = 25/4π.

For later reference we collect some further properties of J0, J1. It is possible to

analytically show continuity at H̃ = ±2
3

√
2 of the following expressions

2J1 + 3H̃J0 =

 0 at H̃ = −2
3

√
2

213/4 · 3 at H̃ = 2
3

√
2

(8.13)
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H̃
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3

√
2− 2
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√
2

24 4
√

8
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√

2

2J1 + 3H̃J0

3H̃J1 + 4J0

H̃
+ 2

3

√
2− 2

3

√
2

√
2

5
7

√
2

−3
2
H̃

g(H̃)

Figure 8.1: Plots of the nonlinearities 2J1 + 3H̃J0, 3H̃J1 + 4J0, and g(H̃).

Similarly, we obtain the limiting values of

3J1H̃ + 4J0 =

 0 at H̃ = −2
3

√
2

215/4 · 3 at H̃ = 2
3

√
2

. (8.14)

Numerical inspection of the expressions (8.13), (8.14) by Mathematica indicates, but of

course does not quite prove, positivity:

2J1 + 3H̃J0 > 0, 3H̃J1 + 4J0 > 0 (8.15)

for −2
3

√
2 < H̃ ≤ 2

3

√
2. Concerning the quotient nonlinearity

g(H̃) :=
5

7

3H̃J1 + 4J0

2J1 + 3H̃J0

(8.16)

which will play a crucial role in section 9, we note the limiting values

g(H̃) =


√

2 at H̃ = −2
3

√
2

5
7

√
2 at H̃ = 2

3

√
2

. (8.17)

The limit at H̃ = 2
3

√
2 follows from (8.13), (8.14). The limit at H̃ = −2

3

√
2 follows

easily when relating g(H̃) back to the change of stability along the Hopf line λ = y in the

equilibrium plane; see (9.10). We will also trust the numerics of Mathematica to reliably

indicate that
5
7

√
2 < g(H̃) <

√
2, −3

2
H̃ < g(H̃) (8.18)

for |H̃| < 2
3

√
2, see figure 8.1.
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9 Poincaré flows of first integrals

Further postponing the issue of higher order perturbations slightly, we study the Poincaré

flow (7.11), in this section. By (7.12)–(7.14) and recursions (8.8) for the complete elliptic

integrals Jk(H̃), the Poincaré flow takes the form

Θ̇ = 2
5
Θ5/4(b+ 1)(2J1 + 3H̃J0)

Ḣ = 2Θ7/4
(

1
5
λΘ−1/2(2J1 + 3H̃J0)− 1

7
(b+ 2)(3H̃J1 + 4J0)

) (9.1)

Here J0 = J0(H̃), J1 = J1(H̃) as in section 8. To derive (9.1) we evaluate the integrals

I(Θ, H) in (7.12) along y(t) = yΘ,H(t), then substitute y1,H̃ by (6.8), replace H by H̃ =

Θ−3/2H according to (6.9), and apply recursions (8.8) which only hold for Θ = 1, before

grouping terms as in (9.1). Since Jk = Jk(H̃) we prefer to use H̃ as a variable in (9.1)

directly and write

Θ̇ = 2
5
Θ5/4(b+ 1)(2J1 + 3H̃J0)

˙̃H = 2
5
Θ1/4(b+ 1)(2J1 + 3H̃J0)

(
λ
b+1

Θ−1/2 − 3
2
H̃ − αg(H̃)

) (9.2)

where we have abbreviated

α =
b+ 2

b+ 1
= 1 +

1

b+ 1

g(H̃) =
5

7

3H̃J1(H̃) + 4J0(H̃)

2J1(H̃) + 3H̃J0(H̃)

(9.3)

We recall the properties of the right-hand sides of the Poincaré-flow (9.2) as collected

in section 8, (8.13)–(8.18). We have assumed b 6= −1 so that b + 1 6= 0. Moreover Θ > 0

is invariant, and 2J1 + 3H̃J0 > 0 except for the centers H̃ = −2
3

√
2. Therefore it makes

sense to parametrize all (Θ, H̃)-orbits over τ = log Θ. Writing ′ = d
dτ

this leads to the

simplified equation

H̃ ′(τ) = λ
b+1

e−τ/2 − 3
2
H̃ − αg(H̃). (9.4)

It is obvious that we can now absorb the value |λ/(b+1)| into a mere shift of “time” τ , as

long as λ = y2 6= 0. The autonomous case λ = 0 corresponds to the limiting case τ = +∞
discussed below and will be omitted for its simplicity. To understand the dynamics of the

Poincaré flow (7.11) for λ 6= 0, it is therefore sufficient to discuss the two vector fields

H̃ ′(τ) = ±e−τ/2 − 3
2
H̃ − αg(H̃) (9.5)

for the various regimes of the real parameter α = 1 + 1/(b + 1). For each of the signs ±



28 Bernold Fiedler and Stefan Liebscher

which is given by sign(λ(b+ 1)), the following three cases arise

Case (A) b<−17/12 ⇐⇒ −7/5<α<1

Case (B) −17/12<b<−1 ⇐⇒ α<−7/5

Case (C) −1<b ⇐⇒ 1<α

(9.6)

Phase portraits of the six resulting cases are provided in figure 9.1.

We comment on the derivation and interpretation of these phase portraits next.

First we recall that orbits of (9.2) and (9.5) coincide, if we put

Θ = ( λ
b+1

)2eτ . (9.7)

For b < −1 however, the time direction of (9.5) has to be reversed to account for the time

direction vested into these orbits by (9.2).

We also recall that H̃ = −2
3

√
2 refers to the equilibrium half line x = 0, y1 = y =√

2Θ > 0, for any y2 = λ, in terms of the original Takens-Bogdanov system (3.1)–(3.3),

(3.6), (3.7) and its normal forms (3.9), (4.13), (5.3), (5.5); see also figure 3.1. Indeed

Θ−3/2H = H̃ = −2
3

√
2, y =

√
2Θ, and the definitions (6.3), (6.5)–(6.7) of Θ, H imply

x = 0, y > 0. Consistently with this observation, both Θ̇ and ˙̃H vanish along this line,

because 2J1 +3H̃J0 = 0 at H̃ = −2
3

√
2; see (8.13). In the original coordinates (x, y) these

equilibria are normally hyperbolic, except along the Hopf line

λ = y > 0. (9.8)

Indeed, the (strict) unstable dimension is 2, for 0 < y < λ, and 0 for 0 < λ < y. These

unstable dimensions are easily detected in the right half of figure 9.1.

In the (H̃, τ)-coordinates of (9.4), the Hopf line (9.8) manifests itself by a horizontal

tangent

H̃ ′ = 0. (9.9)

at H̃ = −2
3

√
2, for any fixed λ > 0. Evaluating condition (9.9) together with λ = y =

√
2Θ

immediately yields the limiting value

g(−2
3

√
2) =

√
2 (9.10)

as was claimed in (8.17). For fixed λ < 0, in the left half of figure 9.1, we just as easily

detect strict normal stability of the equilibria x = 0, y > 0.

For very negative τ , alias small Θ > 0, it is easy to discuss the orbits of (9.5). Since

|H̃| ≤ 2
3

√
2 and 5

7

√
2 ≤ g ≤

√
2 are uniformly bounded in the region of interest, we obtain
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Cases λ < 0 λ > 0

(A)

−7
5
< α < 1

⇐⇒

b < −17
12

τ

H̃1-het

Fin

τ

H̃Sin

hyp. Hopf

(B)

α < −7
5

⇐⇒

−17
12
< b < −1

τ

H̃

τ

H̃Sin 1-het Sout

hyp. Hopf

(C)

1 < α

⇐⇒

−1 < b

τ

H̃

τ

H̃1-het

Fout ell. Hopf Fin

Figure 9.1: Phase portraits of equation (9.5), see also (9.3), (9.6) and the explanations

following there. Time direction refers to the flow (9.2).
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almost vertical orbits which connect the horizontal boundaries H̃ = ±2
3

√
2 in very short

“time” intervals τ . The direction, with proper reversal for b < −1, is easily determined.

For very positive τ , as well as for λ = 0, the exponential term disappears and we

are left with the autonomous limiting equation

−H̃ ′(τ) = 3
2
H̃ + αg(H̃). (9.11)

We use properties (8.17), (8.18) of g to study this limiting equation for |H̃| < 2
3

√
2. Since

5
7

√
2 ≤ g ≤

√
2 and −3

2
H̃ ≤ g, the right-hand side possesses zeros if, and only if,

−7
5

< α < 1. (9.12)

Only in this case (A), therefore, the orbits of (9.5) do not connect the horizontal bound-

aries H̃ = ±2
3

√
2 within finite “time” τ , for all large positive τ , as they did for very

negative τ and still do for large positive τ in the other cases (B), (C). Rather, in case (A),

the zero or, hypothetically, zeros of 3
2
H̃ + αg(H̃) provide semi-invariant regions, for large

τ > 0, which prevent orbits from connecting the horizontal boundaries. Instead,

lim
τ→+∞

H̃(τ) ∈ (−2
3

√
2,+2

3

√
2) (9.13)

exists for all orbits starting at sufficiently large τ > 0. This accounts for the shaded

regions labeled “y-entry”, in figure 3.1 (A). Note that the backwards escape time t < 0 is

finite in terms of the original system (9.1), due to (9.13) and positivity property (8.15) of

2J1 + 3H̃J0.

We discuss the upper horizontal boundary H̃ = +2
3

√
2 next. This H̃-value does

not only indicate the half line of saddle equilibria x = 0, y = −
√

2Θ < 0, which can be

discussed analogously to the case H̃ = −2
3

√
2 treated above. It also characterizes the fate

under perturbation to positive ε of the family of homoclinic orbits, which exists for ε = 0.

This latter view point is in fact the only appropriate one, if we insert the nonzero limiting

values (8.13), (8.14), (8.17) in (9.1), (9.5), at H̃ = 2
3

√
2. Then Θ̇ 6= 0 along this line, and

H̃ ′ vanished only at the simple zero

±e−τ/2 = (3
2
H̃ + αg(H̃)) =

√
2

12b+ 17

7(b+ 1)
(9.14)

of the right hand side of (9.5). In terms of (9.2) and the original (scaled) variables

y = −
√

2Θ = ∓
√

2eτ/2λ/(b+ 1) this occurs along the asymptote

λ = −1
7
(12b+ 17)y. (9.15)

These points in figure 9.1, and lines in figure 3.1, are labeled “1-het”. They correspond to

zeros of an associated Melnikov function and to saddle-saddle heteroclinic orbits, in the
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original system, as we will see in the next section. The remaining boundary regions H̃ =
2
3

√
2 where ˙̃H is positive or negative, respectively, indicate a splitting of the homoclinic

bubble such that orbits escape in backward or forward time from a neighborhood U of

the origin in the equilibrium plane x = 0. In figure 3.1 this behaviour is marked as

“x-entry/exit”.

10 Higher order: Poincaré flow, averaging, Melnikov

Before completing our analysis of Takens-Bogdanov bifurcations without parameters, in

section 11, we now digress for a discussion of the effects of omitted higher order terms.

We recall the three approximation steps which we have applied:

(a) truncation to second order normal form (section 4)

(b) omission of scaling terms of order ε2 and higher (section 5)

(c) approximation of the Poincaré map Πε by the time ε map of the Poincaré flow

(section 7, (7.9)–(7.12)).

To ensure that our original variables ((ε/a)4x1, (ε/a)3x2, (ε/a)2y, (ε/a)2λ) cover a neigh-

borhood U of the origin in IR4, we fix C > 0 arbitrarily large, consider the scaled variables

(x1, x2, y, λ) in a ball of radius C, and analyze the complete, non-truncated rescaled dy-

namics for 0 ≤ ε < ε0 = ε0(C).

In terms of the variables (τ, H̃, y), τ = log Θ, we immediately see that solutions

which do not intersect the Poincaré section

Σ = {(τ, H̃, y) | τ ∈ IR, |H̃| < 2
3

√
2, y = e2} (10.1)

become unbounded, or else belong to some equilibrium in the closure Σ̄ or to its strong

stable or strong unstable manifold W ss(y), W uu(y). As before e2 = e2(Θ, H) denotes the

middle zero of the Weierstrass polynomial q(y), where indeed x2 = 0; see (6.6), (6.7),

figure 6.1, and (7.6), (8.6).

We are interested in bounded nonstationary solutions which remain in U and thus

intersect Σ. We have seen in section 7, that the Poincaré map Πε, wherever defined on Σ,

is just some first order discretization of the Poincaré flow (7.11), (7.12) with time step ε.

This statement concerning approximation (c) was made for Poincaré maps Πε which arise

after completion of the approximation steps (a), (b). More generally, we observe that

the same statement evidently remains true, when approximations (a), (b) are included.

Indeed, we then include the “parameter” λ = y2 into our construction of Σ, Πε, and the
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Poincaré flow. Since the omitted terms perturb the Poincaré map Πε, by terms of order

ε2 or higher order, the map Πε remains a first order discretization of the unperturbed

Poincaré flow.

In the remainder of this section we discuss two issues. First, we recall how the

Poincaré flow and its discretization Πε relate to the usual averaging approach. Second,

we relate the Poincaré flow and Πε to the Melnikov functions associated to the family of

homoclinic orbits. In particular we address the behavior of Πε near the saddle boundary

H̃ = 2
3

√
2 of the Poincaré section Σ.

The averaging procedure aims at eliminating the oscillations of y from the slow

flow of (Θ, H) in (7.4). See [BM61], [Hal63], [Arn83] for a background. The elimination is

achieved by successive y-dependent transformations of (Θ, H). These transformations suc-

cessively lead to autonomous vector fields for (Θ, H), independent of y, with y-dependent

corrections of order εN , N = 2, 3, . . .. The first step N = 2 replaces yk in (7.4) by the

time average
1

T

∫ T

0
(y(t))kdt =

Jk
J0

, (10.2)

over the unperturbed T -periodic solution y(t), in the notation of (7.13). Replacing Jk by

Jk/J0, everywhere, converts our Poincaré flow (7.11), (7.12) to the first averaged flow of

the standard approach. The Poincaré flow and the averaged flow just differ by an Euler

multiplier T = T (Θ, H) = J0. In particular the analysis of section 9 applies. Except for

our interpretation of the Poincaré map Πε as the time ε discretization, rather than a time

T · ε discretization, of the (Θ, H) flow the two view points are completely equivalent —

as long as T (Θ, H) = J0 remains finite.

Near homoclinicity, alias near J0 =∞ or near the upper horizontal boundary H̃ =
2
3

√
2, the Poincaré flow (7.11), (7.12) offers an advantage, because the vector field I =

I(Θ, H) can be interpreted directly in terms of Melnikov functions. See [CH82], [FS96]

for a background. For systems

ż = f0(z) + εf1(ε, z) (10.3)

with an unperturbed homoclinic orbit z(t), at ε = 0, a Melnikov function M associated

to z(t) is given by

M =
∫ +∞

−∞
ψ(t)Tf1(0, z(t))dt, (10.4)

where ψ is a nontrivial bounded solution of the adjoint variational equation

ψ̇ = −(Dzf0(z(t)))Tψ. (10.5)

In the presence of first integrals Θ, H at ε = 0 we may choose

ψ(t) = DzΘ(z(t)), DzH(z(t)) (10.6)
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and obtain corresponding Melnikov functions MΘ,MH. By definition (7.11), (7.12), these

Melnikov functions coincide with the components of the Poincaré flow I = (IΘ, IH):

MΘ = IΘ, MH = IH (10.7)

at homoclinic orbits.

As in classical Melnikov theory, which usually deals with nondegenerate homoclinic

orbits rather than families of homoclinic orbits, the terms ±ε(IΘ, IH)(Θ0, H0) indicate the

leading order in ε of the return to Σ of the strong unstable and strong stable manifolds

W uu(y), W ss(y), respectively, of the saddle equilibrium at y = −
√

2Θ0, Θ
−3/2
0 H0 = H̃ =

2
3

√
2. This of course assumes that the corresponding point

Θ̂ = Θ0 ± εIΘ(Θ0, H0)

Ĥ = H0 ± εIH(Θ0, H0)
(10.8)

actually lies in Σ, to within order ε2. Similarly, orbits for which (Θ̂, Ĥ) lies outside Σ,

to within order ε, do not return. Indeed the integrals I = (IΘ, IH)(ε,Θ0, H0) in (7.10)

converge of order ε, uniformly for T ε ≤ ∞, as long as the orbit starting at (Θ0, H0) ∈ Σ̄

does return to Σ. For saddle equilibria (Θ0, H0) ∈ ∂Σ where T ε = +∞, we only have to

replace the return point (Θ̄, H̄) in Σ by the return point of the strong unstable or strong

stable manifold of (Θ0, H0) and observe the uniform estimate

‖(Θ̄, H̄)− (Θ̂, Ĥ)‖ = O(ε2). (10.9)

In section 9 we have determined “heteroclinic” values of Θ0 > 0 for which

˙̃H = 0 (10.10)

at the saddle boundary H̃ = 2
3
; see (9.14), (9.15). Because these zeros of ˙̃H are simple,

with respect to Θ, an adaptation of standard Melnikov theory shows the existence of

nearby heteroclinic orbits. To within order ε2, these orbits start at the computed values

of Θ0, H0 = 2
3

√
2Θ

3/2
0 , y, λ and terminate at the value ŷ, λ associated to Θ̂, Ĥ =

2
3

√
2Θ̂3/2. By (10.8), (9.15) the corresponding values y, ŷ differ by order ελ. In terms of

the original variables y1 = (ε/a)2y, y2 = (ε/a)2λ we therefore obtain a cusp of saddles

in the equilibrium y-plane, with the two half-arcs connected almost horizontally by a

heteroclinic orbit. Indeed the horizontal width of the heteroclinic sector is of order ε3 at

distance ε2 from the origin.
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11 Geometry of Poincaré maps

In this section we complete our analysis of Takens-Bogdanov bifurcations without pa-

rameters. In particular we complete our proof of the heteroclinic and x-entry/exit orbits

indicated in figure 3.1. Although higher order terms introduce a small drift in the “pa-

rameter” λ, we may safely ignore this effect for simplicity of presentation. Likewise, we

omit a discussion of the rather simple case λ = 0 for brevity.

In the previous section we have advocated to use the (Θ, H) Poincaré flow (9.1) not

only on the Poincaré section Σ given by |H̃| < 2
3

√
2, τ ∈ IR, but up to the boundary H̃ =

2
3

√
2 of the saddle equilibria y < 0 and their strong stable and unstable manifolds W ss(y),

W uu(y). Alternatively to (Θ, H), we can use the coordinates τ = log(Θ((b + 1)/λ)2),

H̃ = Θ−3/2H of (9.5) and figure 9.1. Note, however, that a time ε discretization step of

(9.1) as realized by the Poincaré return map Πε corresponds to a τ -step of size

Θ−1Θ̇ε = 2
5
Θ1/4(b+ 1)(2J1 + 3H̃J0) · ε (11.1)

Near the saddle boundary where Melnikov theory applies this expression simplifies to a

τ -step of

Θ−1Θ̇ε = 48
5

(2Θ)1/4(b+ 1) · ε, (11.2)

by (8.13). As was pointed out earlier, we may restrict our analysis to regions |H̃| ≤ 2
3

√
2,

τ ≤ C, and 0 < ε < ε0(C).

We first consider the simplest cases: (B), (C) with λ < 0. In these two cases all

orbits of the Poincaré flow are pointing strictly downwards. Therefore, the collection

W cu =
⋃
y<0

W uu(y) (11.3)

of strong unstable manifolds of the saddles intersects Σ in an infinite sequence of “hori-

zontal” lines, accumulating to the stable equilibria along H̃ = −2
3

√
2. All points of Σ in

between these lines leave the neighborhood U of x = y = 0, in backwards time, while con-

verging to the stable equilibria in forward time. We can view W cu as a two-dimensional

scroll, forward spiraling into the equilibria x = 0, y > 0. It is an interesting warm-up to

visualize this scroll in figure 6.1.

The two most interesting cases are cases (B) and (C) with λ > 0 which exhibit Hopf

bifurcation, without parameters of course, in coexistence with saddle heteroclinic orbits
˙̃H = 0 at H̃ = 2

3

√
2 as discussed in section 10. The remaining two moderately interesting

cases, (A) with λ > 0 and λ < 0, are similar to cases (B) and (C) with λ > 0, respectively:

the former preserves the hyperbolic Hopf point but the heteroclinic orbit has disappeared
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Figure 11.1: Poincaré section Σ of case (C), λ > 0 of figure 9.1. Coding: magenta =

W cu(saddle), blue = W cs(saddle), red = W uu(center), and green = W ss(center).

ell. HopfFout Fin

1-het
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2
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2
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Figure 11.2: Set of bounded orbits in the Poincaré section Σ of case (C), λ > 0.
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through τ = +∞. Conversely, the latter preserves that heteroclinic orbit but has pushed

the elliptic Hopf point out through τ = +∞.

We first discuss the interesting case (C), λ > 0 which involves both a saddle hetero-

clinic orbit and an elliptic Hopf point; see figure 11.1. For a local section near the elliptic

Hopf point which involves exponentially small splittings of heteroclinic separatrices see

[FLA00a] and figure 2.3 (b) left. We first follow the saddle segment S, between the two

saddle end points y± < 0 of the saddle-saddle heteroclinic, forward under Πε. The (ma-

genta) forward continuation is a piecewise smooth curve W c
+ with tangent jumps of order

ε at the (forward) points y+,n, n = 0, 1, 2, . . . of W uu(y+) ∩ Σ. Let

Fin := lim
n→∞

y+,n

Typically the (green) curve W ss(Fin) will intersect W c
+ transversely, even at the points

y+,n. The curve W c
+ will therefore limit to an interval of stable equilibria yc

+ > 0, around

Fin to the right of the Hopf point. Note however, that transversality has not been proved

but can typically be expected to hold for a first-order time ε discretization of the Poincaré

flow as given, for example, by the Poincaré map Πε. Similar statements hold true for the

(blue) backwards continuation W c
− of S in Σ and its intersection with the (red) unstable

manifolds W uu(yc
−). We also illustrate the behavior of some strong stable and strong

unstable manifolds of other equilibria y > 0 on the bottom line H̃ = −2
3

√
2. Note how

these manifolds transversely connect to equilibrium intervals on the other side of the

elliptic Hopf point, or disappear partially, or disappear completely as their source points

y > 0 move away from the Hopf point through Fout. Also, transverse splitting effects

should not be expected to be exponentially small any more, during this transition, but

to be of order ε. Outside the “Hopf bubble” depicted in figure 11.2, we will encounter

“horizontal” copies of the center manifolds W cu ∩Σ, W cs ∩Σ of the saddles to the right,

left, respectively, as we have indicated. These extend from the intersection points y±,n
and form smooth continuations of the piece of W c

± immediately above y±,n. Again we

note that all orbits are heteroclinic, as indicated in figure 3.1, with only one saddle-saddle

heteroclinic, or also become unbounded through the split homoclinic family. These facts

persist under higher order perturbations.

We now turn to the final interesting case (B), λ > 0, which involves both a saddle

heteroclinic orbit and a hyperbolic Hopf point; see figure 11.3. For a local section near

the hyperbolic Hopf point see again [FLA00a] and figure 2.3 (b) right. This local analysis

shows that the Hopf point itself possesses a stable (and an unstable) half-arc W s
Hopf ,

(W u
Hopf) indicated in green (red) and terminating at saddle points Sout, Sin to the right

(left) of the Hopf point. We encounter the strong stable (unstable) manifolds of the

equilibria y > 0 at H̃ = −2
3

√
2. Also note the heteroclinic saddle-saddle connection from
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Figure 11.3: Poincaré section Σ of case (B), λ > 0 of figure 9.1. Coding: magenta =

W cu(saddle), blue = W cs(saddle), red = W uu(center), and green = W ss(center).
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Figure 11.4: Set of bounded orbits in the Poincaré section Σ of case (B), λ > 0.
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y− to y+ which was established in section 10.

From our analysis of the Poincaré flow in figure 9.1 (B), λ > 0, we conclude that Πε

maps the collection W cu of strong unstable manifolds of saddles to the right of y− as is

indicated by W cu
+n in figure 11.3. Note how these manifolds W cu

+n converge to the union of

W u
Hopf with the bottom line of normally stable equilibria to the right of the Hopf point.

A similar pattern W cs
−n arises from the center stable manifold W cs of saddles to the left of

y+ under backwards iteration of Πε.

By continuity of the curves W cu
+n, W cs

−n′ , n, n
′ = 0, 1, 2, . . ., each curve W cu

+n must

intersect each curve W cs
−n at least once, in the sector of Σ between W u

Hopf and W s
Hopf , say

at a point yn+n′
n . Then the (n+ n′ + 1) points yn+n′

k , k = 0, . . . , n+ n′, lie on an (n+ n′)-

heteroclinic orbit from the saddle yn+n′

0 to the saddle yn+n′

n+n′ . Indeed Πε(yn+n′

k ) = yn+n′

k+1 .

Note y− = y1
0, y+ = y1

1, in this notation. We call these points (n+n′)-heteroclinic because

they revolve around the equilibrium line x = 0 for (n+ n′) times before returning to the

saddle line; see figure 6.1. Note that neither (expected) uniqueness nor transversality of

these infinitely many saddle-saddle heteroclinic orbits was addressed here. We have only

established their existence.

In conclusion, except for equilibria and the above (n+ n′)-heteroclinic orbits yn+n′

k ,

all points in Σ leave the region U in forward or backward time, due to homoclinic splitting,

see figure 11.4. In figure 11.3 we have indicated lifetimes in numbers of revolution ±n,

according to direction of exit. In the sector between W u
Hopf and W s

Hopf we have indicated

the total number of revolutions, because the points outside
⋃
n(W cu

n ∪W cs
−n) in this sector

exit in both forward and backward time. Again we note that all nonstationary orbits which

remain in U are heteroclinic, as was claimed in section 3 and in figure 3.1, including saddle-

saddle (n+n′)-heteroclinic orbits yn+n′

k , k = 0, . . . , n+n′, for any n+n′ = 1, 2, 3, . . .. These

facts persist under higher order perturbations. In addition to the geometric insight now

gained into the three different cases of Takens-Bogdanov bifurcation without parameters,

these observations complete the proof of our claims of section 3.
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12 Stiff hyperbolic balance laws

In this last section we return to example 1.2, (1.8)–(1.11) of hyperbolic conservation laws

with stiff source terms

∂tu+ ∂ξF (u) = ε−1G(u) + εδ∂2
ξu, u ∈ IRn, ξ ∈ IR, (12.1)

which was mentioned in the introduction. Here δ ≥ 0 is a fixed small parameter providing

a small viscous regularization, and ε↘ 0 accounts for the stiffness of the source term. For

the sake of simplicity of the following calculations we restrict ourselves to the case δ = 0

of vanishing viscosity. Results for small δ can be obtained by a perturbation analysis as

demonstrated in [FL00], [Lie00] for the case of Hopf bifurcation without parameters.

Rescaling t = t̃/ε, ξ = ξ̃/ε and omitting tildes we arrive at the ε-independent system

∂tu+ ∂ξF (u) = G(u), u ∈ IRn, ξ ∈ IR. (12.2)

Strict hyperbolicity of this balance law requires DF (u) to possess n distinct real eigen-

values α1(u) < · · · < αn(u) for any u. Travelling-wave solutions u(t, ξ) = U(ξ − st) are

given by solutions of

U̇ = (F ′(U)− s)−1 G(U), (12.3)

as long as s 6∈ {α1, . . . , αn}. Heteroclinic orbits of (12.3) between equilibria u−, u+ cor-

respond to travelling waves u(t, ξ) = U(ε−1(ξ − st)) of (12.1) which connect the left and

right states u−, u+ by a thin layer with width of order ε. In the limit ε↘ 0 they tend to

discontinuous weak solutions, called shocks.

For a system of m pure conservation laws combined with n − m balance laws we

expect m-dimensional equilibrium manifolds of (12.3). A different mechanism that leads

to manifolds of equilibria is provided by source terms G(u) which only depend on some,

but not all, of the components of u. Chemical reactions, for example, typically depend

on concentrations and temperature but not on flow velocities.

Aiming at Takens-Bogdanov points on such equilibrium manifolds we consider four-

dimensional systems n = 4 with two-dimensional manifolds of vanishing source G = 0. We

intend to provide examples of (12.3) exhibiting Takens-Bogdanov bifurcations which are

generated by the interaction of flux F and source G. Separately, none of these components

would be compatible with such complicated heteroclinic behaviour as we have observed

for example near the Hopf line.

In fact, the flux can be chosen as a gradient F (U) = ∇UΨ(U). Therefore the

travelling wave equation that corresponds to the pure conservation law

∂tu+ ∂ξF (u) = εδ∂2
ξu, (12.4)
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is of gradient type

U̇ = ∇Ψ(U)− sU + C, C = constant . (12.5)

All bounded trajectories of this system converge to equilibria, no foci occur.

The pure kinetics

∂tu = G(u), (12.6)

on the other hand, can be chosen to be stabilizing: G′(u) will possess real, negative eigen-

values, in addition to the two trivial eigenvalues generated by the manifold of equilibria.

Each local trajectory of (12.6) then converges eventually monotonically to some point on

the equilibrium manifold.

In contrast to their individual properties, the interaction of a gradient flux function

F with a stiff, but stable, source term G in (12.1) can provide Takens-Bogdanov points

with all the structure described in the preceeding sections. In particular any heteroclinic

orbit that we found near the bifurcation point corresponds to a small-amplitude travelling

wave of the hyperbolic balance law.

To construct our example of (12.3) with Takens-Bogdanov bifurcation at the origin,

we absorb the wave speed into the flux by setting s = 0. We have to require G(0) = 0.

The linearization at the origin will satisfy


0 0 0 0

1 0 0 0

0 1 0 0

0 0 0 0

 = (F ′(U))−1G′(U)|U=0

= (F ′(0))−1G′(0).

(12.7)

Moreover F ′ must be invertible and, because F = ∇UΨ, symmetric. This can easily be

achieved, for example by the choices

F ′(0) =


0 γ1 0 0

γ1 0 γ2 0

0 γ2 γ3 0

0 0 0 γ4

 , G′(0) =


γ1 0 0 0

0 γ2 0 0

γ2 γ3 0 0

0 0 0 0

 , (12.8)

with γ1, γ2 < 0 and γ3, γ4 6= 0. The following example provides an expansion at the

origin which directly coincides with the normal form (3.9), by the identification u =
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(u1, u2, u3, u4) = (x1, x2, y1, y2):

F (u) = ∇uΨ(u)

Ψ(u) = γ1u1u2 + γ2u2u3 + 1
2
γ3u

2
3 + 1

2
γ4u

2
4

G(u) = F ′(u) · (normal form)

=


γ1u1

γ2u2 + γ1(−u3 + u4)u1 − γ1u3u2 + γ1bu
2
2

γ2u1 + γ3u2

0


(12.9)

Although the flux F is linear in this example, (12.9) meets all requirements for Takens-

Bogdanov bifurcation discussed before. Similar examples with genuinely nonlinear flux

functions F can be constructed by choosing a genuinely nonlinear F with linearization

(12.8) at the origin and setting G = F · (normal form), as above. With the parameter

choices

γ1 = −
√

6, γ2 = −5, γ3 = 6, γ4 = −1, (12.10)

for example, G′(0) possesses eigenvalues −5,−
√

6,0,0 and F ′(0) possesses eigenvalues

−4,−1,+1,+9 such that G is stabilizing the origin and F is strictly hyperbolic. Note

that this structure will persist under small changes of the parameters as well as under

small changes of the wave speed s.

In summary, Takens-Bogdanov bifurcations are possible in stiff hyperbolic balance

laws of the form (12.1). This holds true for genuinely nonlinear flux F , nonvanishing

viscosity δ > 0, and under small perturbations of the system. We conclude by highlight-

ing some of those properties of the shock solutions generated by our Takens-Bogdanov

example which contradict conventional wisdom for small amplitude shocks of systems of

nonlinear, strictly hyperbolic balance laws.

For hyperbolic conservation laws one usually expects viscous shock profiles to be

monotone. In particular, in numerical simulations small oscillations near the shock layer

are regarded as numerical artefacts due to grid phenomena or unstable numerical schemes.

In many schemes “numerical viscosity” is used to automatically suppress such oscillations

as “spurious”. Near Takens-Bogdanov points, in contrast, all heteroclinic orbits with

asymptotic states near the Hopf line correspond to travelling waves with necessarily oscil-

latory tails. Near elliptic Hopf points, see case (C) of figure 3.1, both tails are oscillatory.

In all cases (A-C), any heteroclinic connection between the left and right side of the curve

y2 − 2(λ + 2)y + λ2 = 0 of vanishing discriminant, in figure 3.1, gives rise to a travelling

wave solution of (12.2) with only one oscillatory tail. These oscillations are generated

by the complex eigenvalues of the linearization (3.6) near the Hopf line. In figure 12.1 a
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Figure 12.1: oscillatory profile in the singular limit ε↘ 0.

travelling wave with oscillatory tails in the limit ε↘ 0 of the stiff source is sketched. The

oscillations near the shock layer resemble the Gibbs phenomenon, but in our case they

are an intrinsic property of the solution. Numerical schemes should therefore resolve this

“overshoot” rather than suppress it.

A second paradigm of strictly hyperbolic conservation laws is the Lax admissibility

criterion. An admissible shock must have a speed s, such that exactly one characteristic

family i is absorbed in the shock. In terms of the eigenvalues αi(u) of DF (u) the Lax

criterion reads

α1 < · · · < αi−1(u−) < s < αi (u−) < · · · < αn

α1 < · · · < αi (u+) < s < αi+1(u+) < · · · < αn
(12.11)

For weak shocks of hyperbolic conservation laws the Lax criterion is also a structural

stability criterion for the heteroclinic connection of the corresponding travelling wave

equation. See [Smo94] for more background on shock waves of hyperbolic conservation

laws. In our situation, in contrast, the shock speed is determined by the interaction of flux

F and source ε−1G. Specifically, the order of the eigenvalues α1, . . . , αn of the flux F and

the wave speed s turns out to be the same at both asymptotic states of all small-amplitude

heteroclinic orbits near the Takens-Bogdanov bifurcation. Takens-Bogdanov points can

be constructed for arbitrary relations of characteristic speeds αi and wave speed s.

In [Lie00] a PDE stability analysis for oscillatory connections near elliptic Hopf

points (along lines of equilibria) was carried out for systems of the form (12.1). It turned

out that oscillatory waves of extreme speed, i.e. of speeds faster or slower than all char-

acteristic speeds, are convectively stable: they are linearly stable in an appropriate expo-

nentially weighted space. Waves of intermediate speeds, in contrast, cannot be stabilized

by any exponential weight. Near Takens-Bogdanov points, however, the PDE stability

analysis of saddle-saddle and of saddle-center shock profiles remains open.
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13 Appendix: Derivation of the normal form

In this appendix we sketch a derivation of the normal form (4.13). Our derivation is

semi-elementary; we use the scalar product from [ETB+87] as presented in [Van89].

More sophisticated results on normal forms for nilpotent linear parts, based on SL(2, IR)-

representations are available in [CS86], [Mur98], [Mur01]. These methods have not yet

been adapted to the constraints imposed by equilibrium planes and will not be required

for our specific analysis.

We derive the normal form (4.13) in three consecutive steps. Based on the crucial

observation

(adA)T = ad(AT), (13.1)

which holds for the scalar product on polynomials, introduced in [ETB+87], we first derive

the normal form
ẋ1 = h1x1 + h2x2 + h3x

2
2

ẋ2 = x1 + h1x2 + h2,0y1 + 2h3x2y1

ẏ1 = x2 + h1,0y1 + 2h3,0y
2
1

ẏ2 = h4π

(13.2)

see (13.13)–(13.34). Here hj = hj(π,y), where π := x2
2−2x1y1, and hj,0(π,y) := hj(π,y)−

hj(0,y). Moreover h1(0, 0) = h2(0, 0) = 0 to avoid additional linear terms. In proposition

13.2 below we show that π, y are generating the ring of polynomials ψ(z) in z = (x,y)

which are invariant under exp(ATt). The nonlinear terms on the right-hand side of (13.2)

are now complementary to the range of ad(A).

In a second step, we add a suitable element of range ad(A) to convert the normal

form (13.2) to the normal form

ẋ1 = h1x1 + h2x2 + h3x
2
2

ẋ2 = x1

ẏ1 = x2

ẏ2 = h4π

(13.3)

see (13.35)–(13.44). Note how the third order structure in y1 appears, which was so crucial

to our analysis. Again hj = hj(π,y) and h1(0, 0) = h2(0, 0) = 0.

In a final step, we slightly massage the term h4 to obtain the form (4.13), which is

more suitable for the linear substitution (4.15), on the level of second order terms; see

(13.45)–(13.49).

As a prerequisite for our derivation of the normal form (13.2), related to ker adAT,
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we collect some elementary facts. Define the linear differential operators D, D∗ by

D := x2∂y1 + x1∂x2 ,

D∗ := x2∂x1 + y1∂x2 .
(13.4)

Then we can rewrite

(adA)g =


0

g1

g2

0

−Dg, (adAT)H =


H2

H3

0

0

−D∗H, (13.5)

with g = (g1, g2, g3, g4), H = (H1, H2, H3, H4). Note that y2 does not appear in D, D∗
neither as coefficient nor as differential. Since we are interested in kernels and ranges of

adA, adAT in certain subspaces of polynomials, we can therefore suppress the invariant

y2, notationally, and derive the normal form for the part z = (x1, x2, y1), only, which

exhibits the more interesting nilpotency of A of order 3.

Proposition 13.1

(i) Dy1 = x2, Dx2 = x1, Dx1 = 0,

(ii) D∗x1 = x2, D∗x2 = y1, D∗y1 = 0,

(iii) Dπ = D∗π = 0, for π = x2
2 − 2x1y1.

Proof. The proof is trivial, but benefits from the observation that an interchange of x1

and y1 converts D, D∗ into each other. ./

Proposition 13.2 Let ψ = ψ(x1, x2, y1) be a polynomial, π = x2
2 − 2x1y1.

(i) Euclidean algorithm: there exist polynomials ψ̃(x1, x2, y1), r0(x1, y1), r1(x1, y1) such

that

ψ = ψ̃π + r1x2 + r0 (13.6)

(ii) Let ψ be invariant under exp(ATt), that is ψ(exp(ATt)z) = ψ(z) for all z or, equiv-

alently, D∗ψ(z) = 0. Then

ψ(z) = h(π, y1), (13.7)

for some polynomial h. In particular, y1 and π generate the ring of exp(ATt)-

invariants (y2 is suppressed).

Proof. Claim (i) follows from the Euclidean algorithm with respect to x2. Note that

r0, r1, ψ̃ are indeed polynomials in (x1, x2, y1), rather than rational functions, because x2
2

appears with coefficient 1 in π.
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To proof claim (ii), let z(t) = (1
2
t2y1, ty1, y1) be the exp(ATt)-orbit of z(0) =

(0, 0, y1). Then
d
dt
ψ(z(t)) = D∗ψ(z(t)) = 0 (13.8)

and hence ψ0(z) := ψ(z)− ψ(0, 0, y1) satisfies

ψ0(z(t)) ≡ 0 (13.9)

for all t. We now apply the Euclidean algorithm (i) to ψ0 and obtain a polynomial identity

ψ0(z) = ψ̃0π + r1x2 + r0. (13.10)

Both ψ0 and π vanish for all z(t). Therefore

r1(1
2
t2y1, y1) · ty1 + r0(1

2
t2y1, y1) = 0 (13.11)

for all t, y1. Writing (13.11) as a polynomial in t with coefficients which are polynomials

in y1, we see that coefficients vanish for even and odd orders in t, alike. Hence r0 = r1 = 0,

and (13.10) implies

ψ(z) = ψ(0, 0, y1) + πψ̃0(z). (13.12)

Repeating this process, with ψ̃0 replacing ψ, proves (13.7) and claim (ii). ./

To derive normal forms we introduce the following spaces of vector polynomials in

z = (x,y)

W = {f(z) | f(0,y) = 0 for all y}
V = {g(z) | gx(0,y) = 0 for all y}
Vc = {c(y) | cy ≡ 0}.

(13.13)

Clearly V ⊕ Vc span all polynomials. By assumption, our original vector field f(z) ∈ W
fixes the equilibrium plane {x = 0}. Our normal form transformation g(z) is taken from

V ; see (4.12). Observe that

adA : V −→ W ⊆ V, (13.14)

either by direct calculation, or by contemplating that our normal form transformations

leave the equilibrium plane invariant. Normal forms are therefore given by a complement

to range(adA)|V within W . With respect to the scalar product of [ETB+87] we have

(range adA)⊥ = ker adAT (13.15)

in the total space V ⊕ Vc. In our restricted situation, an orthogonal complement to

range(adA)|V in W is therefore given by

H ∈
(
(adAT)|W

)−1
(Vc). (13.16)
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In coordinates H = (H1, . . . , H4) this means that

(adAT)H =


H2 −D∗H1

H3 −D∗H2

−D∗H3

−D∗H4

 =


c1(y)

c2(y)

0

0

 (13.17)

for H ∈ W and suitably polynomials c1, c2. For example, D∗H4 = 0 and proposition 13.2

(ii), applied to H4 instead of ψ, immediately implies the normal form

ẏ2 = H4(z) = h(π,y) = h4(π,y)π (13.18)

as was claimed in (13.3). Indeed, H ∈ W implies h(0,y) = H4(0,y) = 0 for all y.

With such encouragement around, we now return to suppressing y2 entirely. The

first three components of (13.17) imply

D3
∗H1 = 0 (13.19)

because D∗y1 = 0 and, henceforth suppressed, D∗y2 = 0. Conversely, any solution of

(13.19) generates a unique solution of (13.17) by

H2 := D∗H1 + c1(y1)

H3 := D∗H2 + c2(y1).
(13.20)

Indeed, c1(y1) and c2(y1) are determined by H ∈ W to be given by −D∗H1, −D∗H2,

respectively, evaluated at z = (0, 0, y1).

Lemma 13.3 Let ψ = ψ(x1, x2, y1) be any polynomial such that D3
∗ψ = 0. Then

ψ = h̃0 + h̃1x1 + h̃2x2 (13.21)

for some exp(ATt)-invariant polynomials h̃j = h̃j(π, y1), π = x2
2−2x1y1. Conversely, any

polynomial (13.21) satisfies D3
∗ψ = 0.

Proof. Since D∗y1 = D∗π = 0, by proposition 13.1, the converse part follows trivially

from

D3
∗x1 = D2

∗x2 = D∗y1 = 0. (13.22)

Now suppose D3
∗ψ = 0. With z(t) := (1

2
t2y1, ty1, y1) as before, and the abbreviation

ψ(t) = ψ(z(t)) we obtain
˙̇ψ̇(t) = D3

∗ψ(z(t)) = 0 (13.23)

and therefore

ψ(t) = ψ(0) + ψ̇(0)t+ 1
2
ψ̈(0)t2. (13.24)
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Obviously, the time-derivatives at t = 0 satisfy

ψ(0) = ψ,

ψ̇(0) = D∗ψ = y1∂x2ψ,

ψ̈(0) = D2
∗ψ = y1∂x1ψ + y2

1∂x2ψ,

(13.25)

with right-hand sides evaluated at (0, 0, y1). Inserting into (13.24) implies

ψ(t) = a0 + a2y1t+ a1
1
2
y1t

2 = a0 + a1x1(t) + a2x2(t) (13.26)

for suitable polynomials aj = aj(y1). Now consider

ψ0(z) := ψ(z)− a0 − a1x1 − a2x2 (13.27)

and apply the Euclidean algorithm of proposition 13.2, as in (13.9)–(13.12) above. Indeed

ψ0(z(t)) = 0 (13.28)

by construction, and

ψ0 = ψ̃0π + r1x2 + r0 (13.29)

imply r0 = r1 = 0, as before. This implies

ψ(z) = a0 + a1x1 + a2x2 + πψ̃0(z). (13.30)

Moreover, and most importantly

πD3
∗ψ̃0(z) = D3

∗ψ(z) = 0 (13.31)

for all z, and hence D3
∗ψ̃0(z) = 0 because aj = aj(y1). This enables us to repeat the

process, with ψ̃0 replacing ψ. This proves the form (13.21) of ψ, and the lemma. ./

We are now ready to prove the (ẋ1, ẋ2, ẏ1)-part of the normal form (13.2). Since

D3
∗H1 = 0, by (13.19), and since H ∈ W , lemma 13.3 applied to ψ := H1 implies

ẋ1 = H1 = h̃0π + h̃1x1 + h̃2x2

= (h̃1 − 2h̃0y1)x1 + h̃2x2 + h̃0x
2
2

= h1x1 + h2x2 + h3x
2
2

(13.32)

with obvious definitions of hj. Note that indeed h̃0 can be replaced by h̃0π, in (13.21),

because H ∈ W vanishes whenever x = 0. Moreover h1(0, 0) = h2(0, 0) = 0 to ensure

higher order of H1.
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With the abbreviation hj,0(π, y1) := hj(π, y1)−hj(0, y1), (13.20), (13.32), proposition

13.1 and H ∈ W together imply

H2 = D∗H1 + c1(y1)

= h1x2 + 2h3x2y1 + h2y1 + c1(y1)

= (h1 + 2h3y1)x2 + h2,0y1.

(13.33)

Note that in fact h2,0 = π · ĥ2,0, for some polynomial ĥ2,0, because we have h2,0(0, y1) = 0

for all y1. Similarly

H3 = D∗H2 + c2(y1) = h1,0y1 + 2h3,0y
2
1. (13.34)

Reinserting y2 in all hj the normal form (13.2) is proved.

To prove normal form (13.3), we add a suitable element (adA)g, g ∈ V , to H to

annihilate the terms H2 and H3. Specifically,

(adA)g +H =


−Dg1 +H1

g1 −Dg2 +H2

g2 −Dg3 +H3

−Dg4 +H4

 . (13.35)

With the choices g3 = g4 = 0, we obtain the conditions

g2 := −H3

g1 := −H2 +Dg2 = −H2 −DH3.
(13.36)

The new normal form then reads

ẋ1 = H1 −Dg1

ẋ2 = x1

ẏ1 = x2

ẏ2 = H4

(13.37)

To study the transition from (13.2) to (13.3), alias (13.37), we introduce the spaces

H1 := {H1(0, y1) = 0} ∩ kerD3
∗

H∗ := ((adAT)|W )−1(Vc)
(13.38)

see (13.19), (13.16). We conveniently restrict these spaces to homogeneous polynomials

of fixed degree N > 2 in the variables z = (x1, x2, y1), with y2 suppressed. Note the linear

lifting isomorphism

Λ : H1 −→ H∗, (13.39)
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Λ(H1) := (H1, H2, H3) with H2, H3 given by the construction (13.20) of the normal form

(13.2) from H1. We claim, and show below, that the map Γ(H1, H2, H3) := H1 − Dg1

with g1 given by the normal form transformation (13.36) above in fact defines another

linear isomorphism

Γ : H∗ −→ H1. (13.40)

This proves normal form (13.3), because indeed (13.37) then takes the form

ẋ1 = h1x1 + h2x2 + h3x
2
2

ẋ2 = x1

ẏ1 = x2

ẏ2 = h4

(13.41)

and all invariants hj = hj(π,y) are admissible.

It now remains to prove that Γ indeed maps H∗ to H1 and that Γ possesses trivial

kernel. The latter fact is obvious, because the normal form transformation is given by

H 7→ H + (adA)g (13.42)

with (adA)g orthogonal to H ∈ H∗, and Γ only omits components of the right-hand side

of (13.42) which are already zero by construction of g.

To prove Γ(H) = H1−Dg1 ∈ H1, we use (13.36) to explicitly compute the correction

Dg1 = −DH2 −D2H3. (13.43)

In view of definition (13.38) of H1 and the characterization of H1 by lemma 13.3 and

(13.32), it is sufficient to show that both DH2 and D2H3 are sums of monomials of the

form

πjyk1x1, πjyk1x2, πjyk−1
1 x2

2. (13.44)

Since Dπ = 0, by proposition 13.1, we may as well suppress π entirely, treating π as a

coefficient in this computation.

To treat the term DH2 in (13.43) we observe that H2 itself contains only monomials

yk+1
1 , yk1x2; see (13.33). Applying D = x2∂y1 + x1∂x2 only produces terms (13.44) from

these.

To treat the term D2H3 in (13.43) we observe that H3 itself contains only monomials

yk+1
1 ; see (13.34). Applying D once only produces terms yk1x2. The second application

of D generates terms yk1x1, y
k−1
1 x2

2 which are already in the list (13.44). These simple

observations complete our proof of normal form (13.3).



50 Bernold Fiedler and Stefan Liebscher

As a final step, we slightly massage the term

h4π = πh4(π, y1) (13.45)

in (13.3) to obtain the form

ĥ4x1y1 = x1y1ĥ4(x1y1, y1) (13.46)

which the ẏ2-term takes in (4.13). As in (13.5), (13.42), a massage is defined as addition

of −Dg4 such that

h4π −Dg4 = ĥ4x1y1. (13.47)

Clearly the spaces of polynomials of fixed degree N in z = (x1, x2, y1) which take the

forms (13.45), (13.46), respectively, are of equal dimension. Our construction of g will

depend linearly on h4 and, by orthogonality, will define a linear isomorphism between

spaces of equal dimension.

We construct g for each monomial xj1x
2k
2 y

`
1, separately. First note that D = x2∂y1 +

x1∂x2 implies

xj1x
2k
2 y

`
1 − 1

`+1
D(xj1x

2k−1
2 y`+1

1 ) = 2k−1
`+1

xj+1
1 x2k−2

2 y`+1
1 (13.48)

for j, ` ≥ 0 and k ≥ 1. Subtraction of a term Dg has thus reduced the x2-exponent by

two. Iterating this procedure k times, and starting at x1-exponent j = 0, we obtain g4

such that

x2k
2 y

`
1 −Dg4 = c0 (x1y1)ky`1. (13.49)

Since x2 occurs only in even powers in π = x2
2 − 2x1y1 and in h4π, this construction of

g4, which depends linearly on h4, allows us to eliminate all (even) powers x2k
2 and replace

them by terms (x1y1)k, as was required in (13.47). This finally proves our normal form

(4.13), to arbitrary finite order.
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