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Abstract

Bifurcation theory studies dynamical systems depending on one or several real
parameters λ. Frequently, trivial equilibria or fixed points x = 0 are assumed to
exist. The constant parameter λ provides a trivial foliation, transverse to these
equilibria.

In contrast, we consider vector fields with lines and planes of trivial equilib-
ria in absence of any parameters. We address the failure of normal hyperbolicity,
due to transverse zero or purely imaginary eigenvalues. In particular we indicate
the resulting dissipative Hopf and Takens-Bogdanov bifurcations, along with some
reversible and integrable variants, in absence of parameters.

We illustrate our results by dynamic uncouplings of coupled oscillators, oscilla-
tory viscous shock profiles of stiff nonlinear hyperbolic balance laws, and spatially
non-periodic stationary waves in the Kolmogorov problem of fluid flows in planar
channels.

2000 Mathematics Subject Classification: 34C23, 34C29, 34C37.

Keywords and Phrases: bifurcation without parameters, manifolds of equi-

libria, normal form, blow up, averaging.
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1 Applied motivation

In this article we sketch and illustrate some elements of the nonlinear dynamics near

equilibrium manifolds. Denoting the equilibrium manifold by x = 0, in local coordinates

(x, y) ∈ Rn ×Rk, we consider systems

ẋ = f(x, y)

ẏ = g(x, y)
(1.1)

and assume

f(0, y) = g(0, y) = 0, (1.2)

for all y. For simplicity we will only address the cases k = 1 of lines of equilibria, and

k = 2 of equilibrium planes. Sufficient smoothness of f, g is assumed. The occurrence

of equilibrium manifolds is infinitely degenerate, of course, in the space of all vector

fields (f, g) – quite like many mathematical structures are: equivariance under symmetry

groups, conservation laws, integrability, symplectic structures, and many others. The

special case

g ≡ 0 (1.3)

in fact amounts to standard bifurcation theory, in the presence of a trivial solution x = 0;

see for example [5]. Note that condition (1.3), which turns the k-dimensional variable y

into a preserved constant parameter, is infinitely degenerate even in our present setting

(1.2) of equilibrium manifolds. Due to the analogies of our results and methods with

bifurcation theory, we call our emerging theory bifurcation without parameters. This

terminology emphasizes the intricate dynamics which arises when normal hyperbolicity

of the equilibrium manifold fails; see the sections below.

To motivate assumption (1.2), we present several examples. First, consider an “oc-

tahedral” graph Γ of 2(m + 1) vertices {±1, . . . ,±(m + 1)}. The graph Γ results from

the complete graph by eliminating the “diagonal” edges, which join the antipodal vertices

±j, for j = 1, . . . ,m+1. For m = 1 we obtain the square, for m = 2 the octahedron, and

so on. Consider the system
u̇j = fj(uj,

∑
k 6=±j

uk) (1.4)

of oscillators uj ∈ Rn′
on Γ, additively coupled along the edges by fj. We assume an

antipodal oddness symmetry of the individual oscillator dynamics

f−j(−uj, 0) = −fj(uj, 0). (1.5)

As a consequence, the antipode space

Σ := {u = (uj)j∈Γ; u−j = −uj} (1.6)
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is invariant under the flow (1.4). Moreover, the flow on Σ completely decouples into a

direct product flow of the m + 1 diagonally antipodal, decoupled pairs

u̇±j = f±j(u±j, 0). (1.7)

For the square case m = 1, this decoupling phenomenon was first observed in [2]. For

more examples see also [3].

An m-plane of equilibria arises from periodic solutions of the decoupled system

(1.7). Assume (1.7) possesses time periodic orbits uj(t + ϕj) of equal period Tj = 2π, for

j = 1, . . . ,m + 1. Choose arbitrary phases ϕj ∈ S1 and let u−j(t) := −uj(t), ϕ−j = ϕj.

Then

uϕ(t) := (uj(t + ϕj))j∈Γ ∈ Σ (1.8)

is a 2π-periodic solution of (1.4), (1.7), for arbitrary phases ϕ ∈ Tm+1. Eliminating one

phase angle ϕm+1 by passing to an associated Poincaré map, an m-dimensional manifold

of fixed points arises, parametrized by the remaining m phase angles. Assuming, in

addition to the diagonal oddness symmetry (1.5), equivariance of (1.4) with respect to an

S1-action, the Poincaré map can in fact be obtained as a time-2π map of an autonomous

flow within the Poincaré section. In suitable notation, y = {ϕ1, . . . , ϕm}, the fixed point

manifold then becomes an m-dimensional manifold of equilibria, as presented in (1.1),

(1.2) above. For more detailed discussions of this example in the context of bifurcations

without parameters see [15, 10, 9].

As a second example of equilibrium manifolds we consider viscous profiles u =

u((ξ − st)/ε) of systems of nonlinear hyperbolic conservation laws and stiff balance laws

∂tu + ∂ξF (u) + ε−1G(u) = ε∂2
ξ u. (1.9)

Viscous profiles then have to satisfy an ε-independent ODE system

ü = (F ′(u)− s · id)u̇ + G(u). (1.10)

Standard conservation laws, for example, require G ≡ 0. The presence of m conservation

laws corresponds to nonlinearities G with range in a manifold of codimension m in u-

space. Typically, then, G(u) = 0 describes an equilibrium manifold of dimension m of

pairs (u, u̇) = (u, 0), in the phase space of (1.10). For an analysis of this example in

the context of bifurcations without parameters see [8, 16]. For another example, which

relates binary oscillations in central difference discretizations of hyperbolic balance laws

with diagonal uncoupling of coupled oscillators, see [11].

We conclude our introductory excursion with a brief summary of some further exam-

ples. In [7], lines of equilibria have been observed for the dynamics of models of competing

populations. This included a first partial analysis of failure of normal hyperbolicity.
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A topologically very interesting example in compact three-dimensional manifolds

involves contact structures η(ξ) (i.e., nonintegrable plane fields and gradient vector fields

ξ̇ = −∇V (ξ) ∈ η(ξ). See [6] for an in-depth analysis. Examples include mechanical

systems with nonholonomic constraints. Notably, level surfaces of regular values of the

potential V consist of tori. Under a nondegeneracy assumption, equilibria form embedded

circles, that is, possibly linked and nontrivial knots.

For a detailed study of plane Kolmogorov fluid flows in the presence of a line of

equilibria with a degeneracy of Takens-Bogdanov type and an additional reversibility

symmetry, see [1].

As a caveat we repeat that lines of equilibria, which are transverse to level surfaces

of preserved quantities λ do not provide bifurcations, without parameters. Rather, ẏ = 0

for y := λ exhibits this problem as belonging to standard bifurcation theory; see (1.3).

2 Sample vector fields and resulting flows

In this section we collect relevant example vector fields (1.1), (1.2) with lines and planes of

equilibria x = 0; see [10, 9, 1] for further details. We illustrate and comment the resulting

flows.

Normally hyperbolic equilibrium manifolds admit a transverse C0-foliation with hy-

perbolic linear flows in the leaves. See for example [19], [20] and the ample discussion in

[4]. As a first example, we therefore consider

ẋ = xy

ẏ = x.
(2.1)

Note the loss of normal hyperbolicity at x = y = 0, due to a nontrivial transverse

eigenvalue zero of the linearization. Clearly dx/dy = y, and the resulting flow lines are

parabolas; see Figure 2.1. For comparison with standard bifurcation theory, where y = λ,

we draw the y-axis of equilibria horizontally.

As a second example, consider

ẋ = xy

ẏ = ±x2.
(2.2)

Again, a transverse zero eigenvalue occurs – this time with an additional reflection sym-

metry y 7→ −y. Dividing by the Euler multiplier x, the reflection becomes a time re-

versibility. See the left parts of Figure 2.2 for the resulting flows. Note the resulting

integrable, harmonic oscillator case which originates from the elliptic sign ẏ = −x2.
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y

x

Figure 2.1: A line of equilibria (y-axis) with a nontrivial transverse eigenvalue zero.

As a third example, we consider x = (x1, x2) ∈ R2, y ∈ R with a line x = 0 of

equilibria and a purely imaginary nonzero eigenvalue iω at x = 0. Normal-form theory, for

example as in [21], then generates an additional S1-symmetry by the action of exp(iωt) in

the x-eigenspace. This equivariance can be achieved, successively, up to Taylor expansions

of any finite order. In polar coordinates (r, ϕ) for x, an example of leading order terms is

given by
ṙ = ry

ẏ = ±r2

ϕ̇ = ω.

(2.3)

Since the first two equations in (2.3) coincide with (2.2), the dynamics is then obtained

by simply rotating the left parts of Figure 2.2 around the y-axis at speed w. The right

parts of Figure 2.2 provide three-dimensional views of the effects of higher-order terms

which do not respect the S1-symmetry of the normal forms. In the elliptic case (b), all

nonstationary orbits are heteroclinic from the unstable foci, at y > 0, to stable foci at

y < 0. The two-dimensional respective strong stable and unstable manifolds will split,

generically, to permit transverse intersections.
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Figure 2.2: Lines of equilibria (y-axis) with imaginary eigenvalues: Hopf bifurcation with-

out parameters. Case (a) hyperbolic; case (b) elliptic. Red: strong unstable manifolds;

green: stable manifolds.
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Our fourth example addresses Takens-Bogdanov bifurcations without parameters.

In suitable rescaled form it reads

˙̇ẏ + yẏ = ε((λ− y)ÿ + bẏ2) (2.4)

with fixed parameters b, λ and ε. The y-axis as equilibrium line is complemented by the

two transverse directions x = (ÿ, ẏ). Note the algebraically triple zero eigenvalue, double

in the transverse x-directions, for λ = y = 0. Two examples of the resulting dynamics for

small positive ε are summarized in Figure 2.3.

The coordinates τ and H̃ in Figure 2.3 are adapted to the completely integrable case

ε = 0. Indeed, obvious first integrals are then given by Θ = ÿ+ 1
2
y2 and H = 1

2
ẏ2−yÿ− 1

3
y3.

Coordinates are τ = log Θ and H̃ = Θ−3/2H, not drawn to scale. Parameters are ε, λ > 0

and, for the hyperbolic case, −17/12 < b < −1. For the elliptic case we consider b > −1.

The equilibrium y-axis, a cusp in (Θ, H) coordinates, transforms to the top (saddles)

and bottom (foci) horizontal boundaries H̃ = ±2
3

√
2, with y = 0 relegated to τ = −∞.

Since τ and H̃ are constants of the flow, for ε = 0, they represent slow drifts on the

unperturbed periodic motion, for small ε > 0 and | H̃ |< 2
3

√
2. The top value H̃ = +2

3

√
2

also represents homoclinics to the saddles, for ε = 0.

Along the focus line H̃ = −2
3

√
2 we observe Hopf bifurcations without parameters,

corresponding to y = λ > 0. The value of b distinguishes elliptic and hyperbolic cases. In

addition, lines of saddle-focus heteroclinic orbits and isolated saddle-saddle heteroclinics

are generated, for ε > 0, by breaking the homoclinic sheets of the integrable case. Note

in particular the infinite swarm of saddle-saddle heteroclinics, in the hyperbolic case.

As a final, fifth example we consider a reversible Takens-Bogdanov bifurcation with-

out parameters:

˙̇ẏ + (1− 3y2)ẏ = ayÿ + bẏ2. (2.5)

Here we fix a, b to be small. Again x = (ÿ, ẏ) denotes the directions transverse to the

equilibrium y-axis. Time reversibility generates solutions −y(−t) from solutions y(t). For

two examples of the resulting dynamics see Figure 2.4. Coordinates are the obvious first

integrals, for ε = 0, given by Θ = ÿ + y − y3 and H = −ÿy + 1
2
ẏ2 + 3

4
y4 − 1

2
y2. Note

the two Takens-Bogdanov cusps, separated by a Hopf point along the lower arc of the

equilibrium “triangle”. Compare Figures 2.2, 2.3. The elliptic Hopf point (b) arises for

a · (a− b) > 0, whereas a · (a− b) < 0 in the hyperbolic case (a). Also note the associated

finite and infinite swarms of saddle-saddle heteroclinics, respectively.



Bifurcations without parameters 9

h
y
p
.
H

op
f

1-
he

t

−
√

8 3√
8 3

H̃

τ

in
fi
n
it

e
h
et

er
o
cl

in
ic

sw
ar

m

el
l.

H
op

f

1-
he

t

−
√

8 3√
8 3

H̃

τ

H̃

τ

H̃

τ

F
ig

u
re

2.
3:

T
ak

en
s-

B
og

d
an

ov
b
if
u
rc

at
io

n
s

w
it

h
ou

t
p
ar

am
et

er
s.

C
as

e
(a

)
h
y
p
er

b
ol

ic
;

ca
se

(b
)

el
li
p
ti

c.
T
op

:
st

ab
le

an
d

u
n
st

ab
le

m
an

if
ol

d
s;

b
ot

to
m

:
in

va
ri

an
t

se
ts

.
F
or

co
or

d
in

at
es

an
d

fi
x
ed

p
ar

am
et

er
s

se
e

te
x
t.



10 Bernold Fiedler, Stefan Liebscher

(a) H

Θ

2
√

3/9−2
√
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hyp. Hopf

infinite
heteroclinic
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(b) H

Θ

2
√

3/9−2
√
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finite
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Figure 2.4: Reversible Takens-Bogdanov bifurcations without parameters. Case (a) hy-

perbolic; case (b) elliptic. For coordinates and fixed parameters see text.
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3 Methods

Pictures are not proofs. What has been proved, then, and how? We use ingredients

involving algebra, analysis, and numerical analysis, as we outline in this section. For

further details see [16, 10, 9, 1].

In a first algebraic step, we derive normal forms for vector fields with lines or planes of

equilibria, assuming spectral degeneracies of the linearization A in transverse directions.

The spectral assumptions on A in fact coincide with those established for parameter-

dependent matrix families in standard bifurcation theory. This is reflected in the naming

of the five examples of section 2.

There are more or less standard procedures to derive normal forms of vector fields.

By suitable polynomial diffeomorphisms, certain Taylor coefficients of the vector field are

eliminated, successively, for higher and higher order. See for example [21] for a systematic

choice of normal forms, particularly apt for introducing equivariance of the nonlinear

normal-form terms under the action of exp(AT t). Normal forms are, however, nonunique

in general and other choices are possible.

In the present cases, we adapt the normal-form procedure to preserve the locally

flattened equilibrium manifolds. Although the approach in [21] can be modified to ac-

commodate that requirement, it did not provide vector fields convenient for subsequent

analysis of the flow. A systematic approach to this combined problem is not known, at

present. All examples (2.1)–(2.5) represent truncated normal forms. For the derivation

of specific normal forms, for example of (2.4), to any order, and of example (2.5), to third

order, see [9], [1], respectively.

Subsequent analysis of the normal-form vector fields is based on scalings, alias blow-

up constructions. This is the origin, for example, of the small scaling parameter ε in

the Takens-Bogdanov example (2.4). In passing, we note a curious coincidence of two

view points for (2.4), concerning the roles of the equilibrium coordinate y ∈ R and the

“fixed” real parameter λ ∈ R. First, we may consider λ as a parameter, with a line of

equilibria y associated to each fixed λ. Then (2.4) describes the collision of a transverse

zero eigenvalue at y = 0, as in (2.1), with imaginary Hopf eigenvalues at y = λ > 0, as

in (2.3), as λ decreases through zero. Alternatively, we may consider normal forms for

a plane y = (y1, y2) of equilibria with a transverse double zero eigenvalue, at y = 0. It

turns out that the two cases coincide, after a scaling blow-up, up to second order in ε,

via the correspondence y = y1, λ = y2.

The core of any successful flow analysis in bifurcation theory is an integrable vector

field; see again section 2. The issues of nonintegrable perturbations, by small ε > 0, and
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of omitted higher order terms, not in normal form, both ensue. Since the underlying inte-

grable dynamics is periodic or homoclinic, in examples (2.3)–(2.5), averaging procedures

apply. Indeed, ε > 0 then introduces a periodically forced, slow flow on first integrals,

like (Θ, H), characteristic of ε = 0. We therefore derive an appropriate, but autonomous

Poincaré flows, on (Θ, H), such that the associated true Poincaré map can be viewed as a

time discretization of first order and step size ε. In the unperturbed periodic region, this

amounts to averaging, while the Poincaré flow indicates Melnikov functions at homoclinic

or heteroclinic boundaries. The exponential averaging results by Neishtadt [18], for ex-

ample, then imply that the separatrix splittings in the elliptic Hopf case (b), indicated in

Figure 2.2, are exponentially small in the radius r of the split sphere, for analytic vector

fields. See also [12].

Lower bounds of separatrix splittings have not been established, in our settings. This

problem is related to the very demanding Lazutkin program of asymptotic expansions for

exponentially small separatrix splittings. For recent progress, including the case of Takens-

Bogdanov bifurcations for analytic maps, see [13] and the references there. In absence of

rigorous lower bounds, our figures indicate only simplest possible splitting scenarios.

While the splitting near elliptic Hopf points are exponentially small, the discretiza-

tion of the Poincaré flow also exhibits splittings of the unperturbed saddle homoclinic

families, which are of first order in the perturbation parameter ε, in example (2.4), or in

the small parameters a, b, in example (2.5). Explicit expressions have been derived for the

Melnikov functions associated to these homoclinic splittings, in terms of elliptic function

in case (2.4), and even of elementary functions in case (2.5). Simplicity and uniqueness

of zeros of the Melnikov functions, however, has only been confirmed numerically. While

this does not, strictly speaking, match an analytic proof, it still at least supports the

validity of the scenarios summarized in Figures 2.3 and 2.4.

4 Interpretation and perspective

We indicate some consequences of the above results for the examples of coupled oscillators,

viscous shock profiles, and Kolmogorov flows indicated in section 1. We conclude with a

few remarks on the future perspective of bifurcations without parameters.

We first return to the example (1.4)–(1.8) of a coupled oscillator square, m = 1.

Equilibria y of the Poincaré flow then indicate decoupled antipodal periodic pairs, say

with phase difference y + c. The case of a transverse zero eigenvalue, (2.1) and Figure

2.1, then indicates a 50% chance of recovery of decoupling with a stable phase difference

y < 0, locally, even when the stability threshold y = 0 has been exceeded. The hyper-
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bolic Hopf case (2.2), Figure 2.2 (a), illustrates immediate oscillatory loss of decoupling

stability by transverse imaginary eigenvalues. A 100% recovery of decoupling stability, in

contrast, occurs at elliptic Hopf points; see (2.2), Figure 2.2 (b). The exponentially small

Neishtadt splitting of separatrices indicates a very delicate variability in the asymptotic

phase relations of this recovery, for t → ±∞. See [10]. The Takens-Bogdanov cases (2.4),

Figures 2.3 (a), (b) can then be viewed as consequences of a mutual interaction, of a

transverse zero eigenvalue with either Hopf case, for recovery of stable decoupling.

In the example (1.9), (1.10) of stiff balance laws, elliptic Hopf bifurcation without

parameters as in (2.4), Figure 2.3 (b), indicates oscillatory shock profiles u(τ), τ = (ξ −
st)/ε. Such profiles in fact contradict the Lax condition, being over-compressive, and

violate standard monotonicity criteria. For small viscosities ε > 0, weak viscous shocks in

fact turn out unstable, in any exponentially weighted norm, unless they travel at speeds

s exceeding all characteristic speeds. The oscillatory profiles can be generated, in fact, by

the interaction of inherently non-oscillatory gradient flux functions F (u) with inherently

non-oscillatory gradient-like kinetics G(u) in systems of dim ≥ 3. See [16].

The problem of plane stationary Kolmogorov flows asks for stationary solutions of

the incompressible Navier-Stokes equations in a strip domain (ζ, η) ∈ R × [0, 2π], under

periodic boundary conditions in η; see [17]. An η-periodic external force (F (η), 0), is

imposed, acting in the unbounded ζ-direction. Kolmogorov chose F (η) = sin η. The

Kirchgässner reduction [14] captures all bounded solutions which are nearly homogeneous

in ζ, in a center manifold spirit which lets us interpret ζ as “time”. The resulting ordinary

differential equations in R6 reduce to R3, by fixing the values of three first integrals. A

line of ζ-homogeneous equilibria appears, in fact, and Kolmogorov’s choice corresponds to

example (2.5) with a = b = 0, to leading orders. In particular note the double reversibility,

then, under y(t) 7→ ±y(−t) which is generated by

F (η) = −F (η + π), and

F (η) = −F (−η).
(4.1)

As observed by Kolmogorov, an abundance of spatially periodic profiles results. The

sample choice F (η) = sin η+ c sin 2η, in contrast, which breaks the first of the symmetries

in (4.1), leads to (2.5) with b = 0 < a, alias an elliptic reversible Takens-Bogdanov

point without parameters; see Figure 2.4 (b). In particular, the set of near-homogeneous

bounded velocity profiles of the incompressible, stationary Navier-Stokes system is then

characterized by an abundance of oscillatory heteroclinic wave fronts, which decay to

different asymptotically homogeneous ζ-profiles, for ζ → ±∞. The PDE stability of

these heteroclinic profiles is of course wide open.

As for perspectives of our approach, we believe to have examples at hand, from suf-
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ficiently diverse origin, to justify further development of a theory of bifurcations without

parameters. In fact, transverse spectra {0,±iω} and {±iω1,±iω2} still await investiga-

tion before we can claim any insight into nonhyperbolicity of even the simple case of an

equilibrium plane. This assumes the absence of further structural ingredients like sym-

plecticity, contact structures, symmetries, and the like. Certainly our example collecting

activities are far from complete, at this stage.

In addition, we have not addressed the issue of perturbations, so far, which could

destroy the equilibrium manifolds by small drift terms. Examples arise, for example, when

slightly detuning the basic frequencies 2π/Tj of our uncoupled oscillators or, much more

generally, in the context of multiple scale singular perturbation problems. Feedback and

input from our readers will certainly be most appreciated!

References

[1] A. Afendikov, B. Fiedler, and S. Liebscher. Plane Kolmogorov flows, spatial re-

versibilities, and bifurcation without parameters. in preparation, 2002.

[2] J. Alexander and G. Auchmuty. Global bifurcation of phase-locked oscillators. Arch.

Rational Mech. Anal., 93:253–270, 1986.

[3] J. Alexander and B. Fiedler. Global decoupling of coupled symmetric oscillators. In

C. Dafermos, G. Ladas, and G. Papanicolaou, editors, Differential Equations, volume

118 of Lect. Notes Math., New York, 1989. Marcel Dekker Inc.

[4] B. Aulbach. Continuous and discrete dynamics near manifolds of equilibria, volume

1058 of Lect. Notes Math. Springer, New York, 1984.

[5] S.-N. Chow and J. Hale. Methods of Bifurcation Theory. Springer, New York, 1982.

[6] J. Etnyre and R. Ghrist. Gradient flows within plane fields. Comment. Math. Helv.,

74:507–529, 1999.

[7] M. Farkas. ZIP bifurcation in a competition model. Nonlinear Anal., Theory Methods

Appl., 8:1295–1309, 1984.

[8] B. Fiedler and S. Liebscher. Generic Hopf bifurcation from lines of equilibria without

parameters: II. Systems of viscous hyperbolic balance laws. SIAM J. Math. Anal.,

31(6):1396–1404, 2000.



Bifurcations without parameters 15

[9] B. Fiedler and S. Liebscher. Takens-Bogdanov bifurcations without parameters, and

oscillatory shock profiles. In H. Broer, B. Krauskopf, and G. Vegter, editors, Global

Analysis of Dynamical Systems, Festschrift dedicated to Floris Takens for his 60th

birthday, pages 211–259. IOP, Bristol, 2001.

[10] B. Fiedler, S. Liebscher, and J. Alexander. Generic Hopf bifurcation from lines of

equilibria without parameters: I. Theory. J. Diff. Eq., 167:16–35, 2000.

[11] B. Fiedler, S. Liebscher, and J. Alexander. Generic Hopf bifurcation from lines of

equilibria without parameters: III. Binary oscillations. Int. J. Bif. Chaos Appl. Sci.

Eng., 10(7):1613–1622, 2000.

[12] B. Fiedler and J. Scheurle. Discretization of Homoclinic Orbits and Invisible Chaos,

volume 570 of Mem. AMS. Amer. Math. Soc., Providence, 1996.

[13] V. Gelfreich. A proof of the exponentially small transversality of the separatrices for

the standard map. Commun. math. Phys., 201:155–216, 1999.
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