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Abstract

We consider discretized systems of hyperbolic balance laws. Decoupling of the
flow, associated to a central difference scheme, can lead to binary oscillations — even
and odd numbered grid points, separately, provide time-evolutions of two distinct,
different, separate profiles.

Investigating the stability of this decoupling phenomenon, we encounter Hopf-
like bifurcations in the absence of parameters. With some computer algebra as-
sistance, we describe the qualitative behavior near these bifurcation points. In
particular we observe distinct even/odd profiles which oscillate periodically in time
and, for arbitrarily fine discretization, exhibit preferred, nonzero phase relationships
between adjacent discretization points.
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1 Introduction

Binary oscillations have been observed, both numerically and analytically, in certain dis-

cretizations of systems of nonlinear hyperbolic conservation laws; see [LL96]. More specif-

ically, we consider systems of hyperbolic balance laws of the form

ut + f(u)x = g(u). (1.1)

Semidiscretization of x ∈ IR with step size ε/2 > 0 can, for example, be performed by a

central difference scheme

u̇k + ε−1(f(uk+1)− f(uk−1)) = g(uk) (1.2)

As a cautioning remark we hasten to add that we do not recommend this particular

discretization for numerical purposes. Rather, it is our goal to investigate peculiar short

range oscillation phenomena of system (1.2). Rescaling time, we obtain the equivalent

system

u̇k = εg(uk)− f(uk+1) + f(uk−1) (1.3)

Note how this system decouples into a direct product flow, if uk+2 = uk, for all k ∈ ZZ .

Indeed, any solution u0(t) of u̇0 = εg(u0) gives rise to a solution of (1.3) satisfying

u1(t) = u0(t+ χ)

uk+2(t) = uk(t), for all k
(1.4)

for any fixed choice of χ ∈ IR.

It is the goal of our present paper to investigate loss of stability of this decoupling

phenomenon. In general, u2k and u2k−1 can define consistently smooth, but different

profiles x 7→ u(t, x). We consider only the simplest case

k (mod4) (1.5)

of uk defining the corners of a square. In this case, decoupling phenomena as above have

been discovered by [AA86] in the slightly different context of periodic orbits of linearly

coupled oscillators. For more intricate, nonplanar graphs of coupled oscillators supporting

such decoupling effects see [AF89].

For simplicity, we consider systems of two balance laws, ui ∈ IR2. To facilitate our

calculations further, we impose an S1 equivariance condition

f(Rϕu) = Rϕf(u),

g(Rϕu) = Rϕg(u)
(1.6)
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under all rotation matrices

Rϕ =

 cosϕ − sinϕ

sinϕ cosϕ

 . (1.7)

Denoting the Euclidean norm by |u|, we can therefore write

f(u) = a(|u|2)u
g(u) = b(|u|2)u.

(1.8)

where the values of a, b are scalar multiples of rotation matrices.

We assume that the decoupled vector field u̇ = g(u) of the reaction term alone

possesses an exponentially stable periodic orbit. Assuming

b(|u|2) =

 1− |u|2 −Ω

Ω 1− |u|2

 , (1.9)

we normalize the periodic orbit to |u| = 1, its frequency to Ω, and its exponential rate of

attraction to −2. On the slow time scale u̇ = εg(u) these latter values become εΩ and

−2ε, of course.

On the square (1.3), (1.5) decoupling produces an invariant 2-torus foliated by these

periodic orbits; see (1.4). Normalizing the time shift χ, these solutions are given explicitly

by

T 2 :

u0(t) := RεΩte1

u1(t) := u0(t+ (εΩ)−1χ) = Rχu0(t)

u2(t) := u0(t)

u3(t) := u1(t) = Rχu2(t)

(1.10)

Here χ ∈ S1 = IR/2πZZ , due to S1-equivariance, and e1 ∈ IR2 denotes the first unit

vector. Our investigation of binary oscillations will focus on the detailed dynamics near

the decoupled 2-torus (1.10).

Our assumption (1.6) on S1-equivariance allows us to eliminate one variable from our

eight-dimensional vector field (1.3), (1.5). Indeed, the flow of (1.3), (1.5) maps S1-orbits

onto S1-orbits, by equivariance under the S1-action

(Rϕu)i := Rϕui (1.11)

on u = (u0, . . . , u3) ∈ IR8. The induced flow on the space of group orbits can be computed

in explicit coordinates, representing a cross section to the group orbits; see (1.12) below.
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For specific calculations, we will use polar coordinates (rk, ϕk) for uk ∈ IR2; see sections 3

and 4.

Relating back to dynamics, consider the Poincaré return map to any Poincaré cross

section X through any of the periodic orbits on our 2-torus T 2. In particular, the section

X is also transverse to the S1-action (1.11) which is free near the 2-torus. We can therefore

rewrite the Poincaré map as the time t = 2π(εΩ)−1 map of a suitable associated flow

ẋ = F (x) (1.12)

representing the induced flow on the seven-dimensional Poincaré cross section X. The

fixed Poincaré return time can in fact be achieved by incorporating a scalar Euler multi-

plier into the induced flow on X. We will make an explicit choice for X later, based on

polar coordinates.

In the coordinates x ∈ X, the periodic 2-torus T 2 from (1.10) becomes a one-

dimensional curve of equilibria. Indeed, time action and S1-action coincide on T 2. There-

fore the fixed points of the Poincaré return map given by T 2 ∩X coincide with equilibria

of the induced flow ẋ = F (x) on X. In other words, the relative equilibria on T 2, relative

to the S1-action, become equilibria on the local space X of S1-orbits.

As long as the curve of equilibria remains normally hyperbolic, the local dynamics has

been clarified by [Sho75], [Fen77], [HPS77], and others; see also [Shu87], [Wig94]. Locally,

the dynamics is fibered into invariant leaves over each equilibrium, with dynamics in each

leaf governed by hyperbolic linearization.

Bifurcations from lines of equilibria in absence of parameter have been investigated

in [FLA98] from a theoretical view point. We briefly recall the pertinent result, for

convenience. As in (1.12), now consider general C5 vector fields ẋ = F (x) with x ∈ X =

IRn. We assume a one parameter curve of equilibria

0 = F (x(χ)) (1.13)

tangent to x′(χ0) 6= 0 at χ = χ0, x(χ0) = x0. At χ = χ0, we assume the Jacobi matrix

F ′(x0) to be hyperbolic, except for a trivial kernel vector along the direction of x′(χ0) and

a complex conjugate pair of simple purely imaginary eigenvalues µ(χ), µ(χ) crossing the

imaginary axis transversely as χ increases through χ = χ0 :

µ(χ0) = iω0, ω0 > 0

Reµ′(χ0) 6= 0
(1.14)
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Let E be the two-dimensional real eigenspace of F ′(x0) associated to ±iω0.

Coordinates in E are chosen as coefficients of the real and imaginary parts of the

complex eigenvector associated to iω0. Note that the linearization acts as a rotation with

respect to these not necessarily orthogonal coordinates. Let P0 be the one-dimensional

eigenprojection onto the trivial kernel along the direction x′(χ0). Our final nondegeneracy

assumption then reads

∆EP0F (x0) 6= 0. (1.15)

Here the Laplacian ∆E is evaluated with respect to the above eigenvector coordinates in

the eigenspace E of ±iω0. Fixing positive χ-orientation, we can consider ∆EP0F (x0) as

a real number. Depending on the sign

η := sign(Reµ′(χ0)) · sign(∆EP0F (x0)) (1.16)

we call the “bifurcation” point x = x0 elliptic if η = −1, and hyperbolic for η = +1.

The following result from [FLA98] investigates the qualitative behavior of solutions

in a normally hyperbolic three-dimensional center manifold to x = x0.

Theorem 1.1

Let assumptions (1.13)-(1.15) hold for the C5 vector field ẋ = F (x) along the curve x(χ)

of equilibria. Then the following holds true in a neighborhood U of x = x0 within a

three-dimensional center manifold to x = x0.

In the hyperbolic case, η = +1, all nonequilibrium trajectories leave the neighborhood

U in positive or negative time direction (possibly both). The stable and unstable sets

of x = x0, respectively, form cones around the positive/negative direction of x′(χ0), with

asymptotically elliptic cross section near their tips at x = x0. These cones separate regions

with different convergence behavior. See fig. 1.1a).

In the elliptic case, η = −1, all nonequiblibrium trajectories starting in U are hetero-

clinic between equilibria x± = x(χ±) on opposite sides of χ = χ0. If F (x) is real analytic

near x = x0, then the two-dimensional strong stable and strong unstable manifolds of x±

within the center manifold intersect at an angle which possesses an exponentially small

upper bound in terms of |x± − x0|. See fig. 1.1b).

Our main result is theorem 2.1 in section 2. It provides specific examples of flux

functions f and reaction terms g which realize the elliptic variant η = −1 of theorem 1.1
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Case a) hyperbolic, η = +1. Case b) elliptic, η = −1.

Figure 1.1: Dynamics near Hopf bifurcation from lines of equilibria.

in binary oscillation systems (1.3), (1.5), only. The result holds in the limit ε↘ 0 of small

discretization steps. Both the hyperbolic and the elliptic variants occur in viscous profiles

of systems of hyperbolic balance laws, see [FL98]. For applications to binary oscillations

in Ginzburg-Landau and nonlinear Schrödinger equations as well as a more global study

of decoupling in squares of additively coupled oscillators, see [AF98].

The proof of theorem 2.1 is spread over the remaining two sections. In section 3 we

present a detailed analysis of the linearization near the curve x(χ) of equilibria on X. In

particular, we verify assumptions (1.14) on transverse crossing of simple, purely imaginary

eigenvalues. The nondegeneracy condition (1.15) is verified in section 4, completing the

proof of theorem 2.1.
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2 Result

Setting up for our main result, theorem 2.1, we further specify our square binary oscillation

system

u̇k = εg(uk) + f(uk−1)− f(uk+1), k(mod4). (2.1)

In the S1-equivariant formulation (1.8), we have already completely specified

g(u) = b(|u|2)u =

 1− |u|2 Ω

Ω 1− |u|2

u; (2.2)

see (1.9). To avoid formula overkill by chain and product rules, we specify the derivative

A(u) = f ′(u) = (a(|u|2)u)′ (2.3)

at u = e1 = (1, 0) to be given by the symmetric indefinite matrix

A(e1) =

 c −1

−1 0

 (2.4)

In terms of a(|u|2); this choice corresponds to

a(1) =

 0 −1

1 0

 , a′(1) =

 1
2
c 1

−1 1
2
c

 (2.5)

To ensure transverse crossing (1.14) of purely imaginary eigenvalues in the limit ε ↘ 0,

we assume |c| < 1 is nonzero:

|c| < 1, c 6= 0 (2.6)

The nondegeneracy condition (1.15) on ∆EP0P (0) will hold due to the same assumption

(2.6).

Theorem 2.1

Consider the square binary oscillation system (2.1) with specific nonlinearities (2.2)-(2.6).

Then, for 0 < ε < ε0 small enough, Hopf points of elliptic type occur at the periodic

solution through u = u(χ) given by u0 = u2 = e1, u1 = u3 = Rχ(ε)e1.
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Here χ = χ(ε) ∈ (0, π/4) satisfies

cos(2χ(ε)) =
2− ε2

2 + c2
(2.7)

More precisely, the induced flow ẋ = F (x) on the space of S1-orbits, represented by a

Poincaré cross section X to the above periodic orbit, satisfies assumptions and conclusions

of theorem 1.1 for the hyperbolic / elliptic types η = ±1 in a neighborhood U = Uε of

u = u(χ(ε)). The type determining sign η is given by

η = −1, (2.8)

independently of the choice of c in (2.6). In particular the stability region of decoupling

into separate, phase-related periodic solutions on odd-labeled / even-labeled discretization

points includes a full neighborhood Uε of u(χ(ε)) with a preferred sign χ − χ(ε) for the

phase shift χ of decoupling periodic solutions u(χ).

The proof of this theorem consists of checking the transverse crossing assumption

(1.14) and the nondegeneracy condition (1.15) of theorem 1.1. In the limit ε ↘ 0, these

two conditions are checked in sections 3 and 4, respectively.

3 Eigenvalue crossing

In this section we provide the linear analysis for Hopf points of purely imaginary eigen-

values along the 2-torus T 2 of decoupled periodic orbits u(t) = (u0(t), ..., u3(t)) given

by

u2(t) = u0(t) = RεΩte1

u3(t) = u1(t) = Rχu0(t)
(3.1)

see (1.10). Passing to polar coordinates

uk = rkRϕk
e1 (3.2)

we explicitly factor out the S1−action

(Rϕu)k = rkRϕk+ϕe1 (3.3)

This explicitly converts the 2-torus T 2 into a line of equilibria x(χ) of ẋ = F (x) in

a Poincaré cross section X; see (1.12), (3.9). We compute the linearization along the
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equilibria x(χ) and determine the location of Hopf points at χ = χ(ε), in the limit ε↘ 0.

We then determine an explicit expression for the crossing direction

Re µ′(χ(ε)) (3.4)

of the Hopf eigenvalues. For later use, we also determine ε−expansions for the Hopf

eigenvalues µ = µ(χ(ε)) = iω(ε) and the Hopf eigenvectors v = v(ε).

Calculations in this and the following section were performed with Mathematica and

Maple; any other symbolic calculation package should also do.

We begin with a transformation to polar coordinates (3.2). In variables (rk, ϕk),

k(mod4), equations (2.1) for binary oscillations mod 4 read

ṙk = εrk(1− r2
k) +ρ(rk−1) cos(ϕk−1 − ϕk + ψ(rk−1))

−ρ(rk+1) cos(ϕk+1 − ϕk + ψ(rk+1)),

ϕ̇k = εΩ +r−1
k ρ(rk−1) sin(ϕk−1 − ϕk + ψ(rk−1))

−r−1
k ρ(rk+1) sin(ϕk+1 − ϕk + ψ(rk+1)).

(3.5)

Here the new nonlinearities ρ(r), ψ(r) are related to the flux function f(u) = a(|u|2)u by

a(r2) = r−1ρ(r)Rψ(r). In fact assumptions (2.5) on a(1), a′(1) translate as

ρ(1) = 1; ρ′(1) = −1;

ψ(1) = π/2; ψ′(1) = −c.
(3.6)

The 2-torus (3.1) of decoupled binary oscillations becomes

rk ≡ 1,

ϕ1 ≡ ϕ0 + χ,

ϕk+2 ≡ ϕk

(3.7)

in polar coordinates, with flow

ϕ̇k = εΩ. (3.8)

Note that the right hand side of (3.8) is proportional to the infinitesimal generator of the

S1–action (3.3). We choose an orthogonal section

X = {(r,ϕ) |ϕ0 + ...+ ϕ3 = 0} = < e >⊥ (3.9)

in coordinates r = (r0, ..., r3), ϕ = (ϕ0, ..., ϕ3), e = (0, ..., 0, 1, ..., 1). The vector field

ẋ = F (x) (3.10)
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of the induced flow on S1–orbits, represented by x ∈ X, is then given by orthogonal

projection of (3.5) onto the section X. In particular, the term εΩ disappears in this

projection and the line of equilibria is given by

x(χ) : rk = 1, ϕk = (−1)k+1χ/2. (3.11)

To simplify our calculations, we restrict the time shift χ to the interval

χ ∈ [0, 1
2
π]. (3.12)

This can be done without loss of generality due to the D2–symmetry of the square ring

coupling of our system (1.3),(1.5). Indeed, the D2–symmetry is generated by the rotation

α and reflection β

α : (0, 1, 2, 3) 7→ (1, 2, 3, 0)

β : (0, 1, 2, 3) 7→ (2, 1, 0, 3)
(3.13)

of the indices. This leads to an equivariance of the system (1.3),(1.5) under

α : uk 7→ uk+1, k (mod4)

β : u0 7→ −u2, u2 7→ −u0, u1 7→ u1, u3 7→ u3,
(3.14)

when we recall that f and g are odd by (1.6). In terms of the time shift χ these transfor-

mations are

α : χ 7→ 2π − χ and

β : χ 7→ χ+ π.
(3.15)

This immediately gives the fundamental domain (3.12).

The linearization of F at x(χ) is given by restriction and projection of the 8 ×
8 linearization L(χ) of the original polar coordinate vector field (3.5) at the relative

equilibrium x(χ). Rather than writing L(χ) out explicity, we recall equivariance of (3.5)

and invariance of x(χ) under the action k 7→ k + 2 of shifting indices k by 2. The four-

dimensional representation subspaces V ± under this action are given by

V ± := {rk+2 = ±rk, ϕk+2 = ±ϕk}. (3.16)

By equivariance, these are invariant subspaces of the linearization L(χ). Due to decou-

pling, V + is in fact also invariant under the nonlinear flow.
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Let L±(χ) denote the respective restrictions of L(χ); explicitly

L+(χ) = 2


−ε 0

0 0

−ε 0

0 0

 ,

L−(χ) = 2


−ε 0 −c cosχ− sinχ cosχ

0 0 −c sinχ+ cosχ sinχ

c cosχ− sinχ − cosχ −ε 0

−c sinχ− cosχ sinχ 0 0



(3.17)

with respect to coordinates (r0, ϕ0, r1, ϕ1) in V ±.

Obviously only L−(χ) can carry purely imaginary eigenvalues. In the following, we

therefore restrict our attention to V −. The characteristic polynomial p of L−(χ) on V −

is given by

0 = p(µ, ε, γ) :=

= µ4 + 4εµ3 + 2((c2 + 4)γ + c2 + 2ε2)µ2+

+16εγµ+ 8(2 + ε2(γ − 1))

(3.18)

with the abbreviation

γ = cos(2χ). (3.19)

Decomposing into real and imaginary parts, we immediately see that imaginary eigenval-

ues µ = iω satisfy

ω2 = 4γ > 0 (3.20)

and only occur for ε, γ satisfying

γ = γ(ε) =
2− ε2

2 + c2
. (3.21)

This proves (2.7) of theorem 2.1. Before computing the associated eigenspace, we address

the transverse crossing condition (3.4) for the eigenvalues µ = µ(ε, γ) near Hopf points.

Note that

Re µ′(χ) = −2
√

1− γ2 Re ∂γµ(ε, γ) (3.22)

at γ = γ(ε), by (3.19) and the chain rule. At ε = 0, γ = γ(0), µ = iω(0) we have

∂µp = 8
√

2ic2(4 + c2)(2 + c2)−3/2 6= 0. (3.23)

Hence the implicit function theorem applies:

∂γµ(ε, γ) = −∂γp/∂µp (3.24)
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At ε = 0 we obtain

∂γµ = −
√

2ic−2
√

2 + c2 (3.25)

with vanishing real part. Totally differentiating (3.24) with respect to ε along the path

ε ≥ 0, γ = γ(ε), µ = iω(ε), we obtain

d

dε

∣∣∣∣∣
ε=0

∂γµ = −∂ε(∂γp/∂µp) = −4
(c2 + 2)2

c4(c2 + 4)
. (3.26)

This yields the expansion

Re µ′(χ) = 8
c2 + 2

|c|3(c2 + 4)1/2
ε+O(ε2). (3.27)

In particular

sign Re µ′(χ) = +1 (3.28)

for small ε > 0.

For later use, we also provide an expansion

v(ε) = v0 + εv1 +O(ε2) (3.29)

for the complex eigenvector v(ε) associated to the imaginary eigenvalue

µ = iω(ε) = iω0 +O(ε2). (3.30)

Normalization of v(ε) will not be necessary. We decompose

L−ε (χ(ε)) = L0 + εL1 + ... (3.31)

where in fact L0 = L−0 (χ(0)), εL1 = L+. Comparing coefficients of ε0, ε1 in

(L0 + εL1 + ...)(v0 + εv1 + ...) = (iω0 + ...)(v0 + εv1 + ...) (3.32)

we immediately see

(L0 − iω0)v
0 = 0,

(L0 − iω0)v
1 = −L1v

0.
(3.33)

With the abbreviation c̃ :=
√
c2 + 4 and some substitutions c2 = c̃2− 4, explicit solutions

are given by

v0 =


−i(c2c̃+ c|c|)

−i(c3c̃+ cc̃− 2|c|)
c3 − |c|c̃+ 2c

c2(c2 + 3)



v1 =
√

2
4c
√
c2+2(c2+4)


−c6|c|+ 3c5c̃− 6c4|c|+ 6c3c̃− 20c2|c|+ 8cc̃− 16|c|

−c7|c| − 3c5|c| − 2c4c̃+ 6c3|c|+ 24c|c|
i(c5|c|c̃+ 3c6 + 4c3|c|c̃+ 10c4 + 8c|c|c̃+ 8c2)

i(c6|c|c̃+ c4|c|c̃− 4c5 − 6c2|c|c̃− 4c3 − 8|c|c̃+ 16c)



(3.34)
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Note that v0, v1 are complex orthogonal.

4 Nondegeneracy

In this section we check the nondegeneracy condition

∆EP0R(x) 6= 0 (4.1)

in the limit ε ↘ 0; see (1.15). Here the Hopf point x = xε, given in polar coordinates

(rεk, ϕ
ε
k), lies in the section X = 〈e〉⊥ = {ϕ0 + . . .+ ϕ3 = 0} and satisfies

rεk = 1

ϕεk = 1
2
(−1)k+1χε

γε = cos 2χε = 2−ε2
2+c2

(4.2)

see (3.9), (3.11), (3.21). The projection P0 is the eigenprojection onto the one-dimensional

kernel of the linearization in X. By our V ±− decomposition (3.16), (3.17), the full

linearization L(χε) possesses kernel only in V +. Indeed, the characteristic polynomial

p = p(µ, ε, γε) on V − does not possess zero eigenvalues; see (3.18). The two-dimensional

kernel of L+(χε) in V + is given by

rk = 0, ϕk+2 = ϕk (4.3)

for small ε > 0; see (3.17) again. By restriction and orthogonal projection to X, we see

that P0F (x) is given by

P0F (x) =
1

2
(−Fϕ

0 + Fϕ
1 − Fϕ

2 + Fϕ
3 ) ·


−1/2

1/2

−1/2

1/2

 (4.4)

Here we have written the polar coordinate components of the original vector field (3.5) in

the form

ϕ̇k = Fϕ
k (4.5)

Note that the unit vector in (4.4) points along the ϕ-components of the line x(χ) of

equilibria in positive χ-direction. Moreover P0 does not depend on ε. We can therefore

consider ∆EP0F (x) to be given by the real number

∆ε :=
1

2
∆Eε(−Fϕ

0 + Fϕ
1 − Fϕ

2 + Fϕ
3 )(xε), (4.6)
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with only the Hopf point xε and the Hopf eigenspace Eε depending on ε. Equivariance

with respect to index change k 7→ k + 2 further simplifies expression (4.6) for ∆ε. Indeed

Eε ⊂ V −, because the Hopf eigenspace Eε results from L−(χε); see (3.17). Restricted to

V −, the quadratic Hessian forms of Fϕ
k and Fϕ

k+2 at xε coincide. Therefore (4.6) simplifies

to

∆ε = ∆Eε(−Fϕ
0 + Fϕ

1 )(xε) (4.7)

Expanding ∆ε to including first order terms in ε, we immediately notice that

∆ε = ∆Eε(−Fϕ
0 + Fϕ

1 )(x0) +O(ε2) (4.8)

Indeed xε = x(χε) depends only to second order on ε, as does χε itself; see (3.19), (3.21).

Therefore we only have to consider dependence of the Hopf eigenspace

Eε = span {Re v(ε), Im v(ε)} (4.9)

on ε, to first order. We recall that a first order expansion

v(ε) = v0 + εv1 + . . . (4.10)

of complex eigenvectors v(ε) to the simple eigenvalue µ(ε) = iω(ε) near iω(0) was derived

in section 3; see (3.34). Also recall that v(ε) are not normalized.

Denoting second derivatives by D2, we abbreviate the Hessian by

H0 = −D2Fϕ
0 (x0) +D2Fϕ

1 (x0) (4.11)

and expand

∆ε = H0[v(ε), v̄(ε)] +O(ε2)

= H0[v0, v̄0] + 2 Re (H0[v1, v̄0])ε+O(ε2)
(4.12)

It is worth noting here that indeed ∆Eε has to be evaluated with respect to the eigenbasis

Re v(ε), Im v(ε) of Eε and not with respect to an orthonormal basis. This follows from the

proof of theorem 1.1 in [FLA98]. Indeed, the term ∆ε arises in the normal form process

after a linear transformation of the linearization to pure rotation in the Hopf eigenspace.

The length of v(ε) is irrelevant in that analysis: only the sign of ∆ε enters into the final

result.

After these preparations we find

H0[v0, v̄0] ≡ 0. (4.13)

The term of order ε can be considerably simplified to

2 Re (H0[v1, v̄0]) = −8c2((c2 + 1)
√
c2 + 4|c| − 2c) < 0. (4.14)
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From (4.12) - (4.14) we finally obtain

sign ∆ε = −1, (4.15)

for small ε > 0.

Proof of theorem 2.1:

Theorem 2.1 follows from theorem 1.1, proved in [FLA98]. The location (2.7) of Hopf

points was derived in (3.21). Transverse crossing (1.16) of purely imaginary eigenvalues

has been established in (3.27), (3.28) with

sign Reµ′(χ) = +1, (4.16)

for small ε > 0. Nondegeneracy condition (1.15) has been verified in (4.15) with

sign ∆EεP 0F (xε) = sign ∆ε = −1, (4.17)

again for small ε > 0. We therefore have shown that the assumptions of theorem 1.1 and

the conclusions of theorem 2.1 hold with elliptic type η determined by

η = −1. (4.18)

This completes the proof of theorem 2.1. ./

As a concluding remark, we note that the existence of hyperbolic Hopf points in

central difference schemes (1.2) has not been established yet. Further investigations of

more general nonlinearities are necessary to clarify the possibility of such bifurcation

points.
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