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1 Introduction

Searching for viscous shock profiles of the Riemann problem, we consider systems of

hyperbolic balance laws of the form

ut + f(u)x = ε−1g(u) + εδuxx, (1.1)

with u = (u0, u1, . . . , uN) ∈ IRN+1, f ∈ C3, g ∈ C2, δ > 0, and with real time t and space

x. We assume strict hyperbolicity, that is, the Jacobian A(u) = f ′(u) possesses simple

real distinct eigenvalues

σ0, σ1, . . . , σN ∈ spec A(u) (1.2)

The case of conservation laws, g ≡ 0, has been studied extensively. See, for example,

[Smo83] for a background. Viscous profiles are traveling wave solutions of the form

u = u
(

x− st

ε

)
(1.3)

with wave speed s. Here (1.3) provides a solution of (1.1) if

−su̇ + A(u)u̇ = g(u) + δü. (1.4)

Here A(u) = f ′(u) denotes the Jacobian and · = d
dτ

with τ = (x− st)/ε. Note that (1.4)

is independent of ε > 0. Any solution of system (1.4) for which

lim
τ→±∞

u(τ) = u± (1.5)

exists gives rise, for ε ↘ 0, to a solution of the Riemann problem of (1.1) with values

u = u± connected by a shock traveling with shock speed s. We call solutions u(·) of (1.4),

(1.5) viscous profiles.

We rewrite the viscous profile equation (1.4) as a second order system

u̇ = v,

δv̇ = −g(u) + (A(u)− s)v.
(1.6)

Note that any viscous profile must satisfy

g(u±) = 0. (1.7)

In other words, the asymptotic states u± must be equilibria of the reaction term g(u). In

the conservation law case, g ≡ 0, this condition does not impose any constraint on the

Riemann values u±. In the other extreme of a reaction term g with unique equilibrium,
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we obtain u+ = u− and traveling shock profiles of Riemann type do not exist. In the

case of one conservation law mixed with N balance laws, one expects curves of equilibria

g(u±) = 0. For example, reaction terms g(u) typically depend on concentrations or

temperature, but not on velocity.

Addressing a simple case, for demonstration purposes, we therefore assume that the

u0-component does not contribute to the reaction terms and still all reaction components

vanish, say at u = 0. Specifically, we assume throughout this paper that

g = g(u1, . . . , uN) =


g0

g1

...

gN

 (1.8)

is independent of u0 and satisfies

g(0) = 0. (1.9)

This gives rise to a line of equilibria

u0 ∈ IR, u1 = · · · = uN = 0, v = 0, (1.10)

of our viscous profile system (1.6).

The asymptotic behavior of viscous profiles u(τ) for τ → ±∞ depends on the lin-

earization L of (1.6) at u = u±, v = 0. In block matrix notation corresponding to

coordinates (u, v) we have

L =

 0 id

−δ−1g′ δ−1(A− s)

 . (1.11)

Here A = A(u), and g′ = g′(u) describes the Jacobi matrix of the reaction term g at u =

u±. In (1.11) we write s rather than s·id for brevity. In the case g ≡ 0 of pure conservation

laws, the linearization L possesses an (N+1)-dimensional kernel corresponding to the then

arbitrary choice of the equilibrium u ∈ IRN+1, v = 0. Normal hyperbolicity of this family

of equilibria, in the sense of dynamical systems [HPS77], [Fen77], [Wig94], is ensured for

wave speeds s not in the spectrum of the strictly hyperbolic Jacobian A(u):

s 6∈ spec A(u) = {σ0, . . . , σN}. (1.12)

Indeed, (1.12) ensures that additional zeros do note arise in the real spectrum

spec L = {0} ∪ δ−1 spec (A(u)− s). (1.13)
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In the present paper we investigate the failure of normal hyperbolicity of L along the

line of equilibria u = (u0, 0, . . . , 0), v = 0 given by (1.10). Although our method applies in

complete generality, we present just a simple specific example for which purely imaginary

eigenvalues of L arise when δ > 0 is fixed small enough. Specifically, we consider three-

dimensional systems, N = 2, satisfying

A(u0, 0, 0) = A0 + u0 · A1,

A0 =


α

1

−1

 , α 6= 0, A1 symmetric,

g′(0) =


0

γ 1

1 γ

 , |γ| < 1,

(1.14)

with omitted entries being zero. Note that these data can arise from flux functions f

which are gradient vector fields, still giving rise to purely imaginary eigenvalues. At the

end of this paper we present a specific example where the reaction terms u̇ = g(u) alone,

likewise, do not support even transient oscillatory behavior; see (3.12). The interaction

of flux and reaction, in contrast, is able to produce purely imaginary eigenvalues of the

linearization L, as follows.

Proposition 1.1 Consider the linearization L = L(u0) along the line u0 ∈ IR, u1 = u2 =

0 of equilibria of the viscous profile system (1.6) in IR3; see (1.11). Assume (1.14) holds.

For δ ↘ 0 and small |s|, |u0|, the spectrum of L then decouples into two parts:

(i) an unboundedly growing part spec∞ (L) = δ−1 spec (A − s) + O(1)

(ii) a bounded part specbd (L) = spec ((A− s)−1g′) + O(δ)

Here A, g are evaluated at u = (u0, 0, 0).

For δ = 0, s = 0, |γ| < 1, the bounded part specbd (L) at u0 = 0 limits onto simple

eigenvalues µ0 ∈ {0,±iω0}, ω0 =
√

1− γ2 with eigenvectors
(

ũ
ṽ

)
given by ṽ = µ0ũ and

ũ =


1

0

0

 for µ0 = 0,

ũ =


0

−γ − iω0

1

 for µ0 = +iω0.

(1.15)



Hopf bifurcation from lines of equilibria: II. Viscous hyperbolic balance laws 5

Proof :

Regular perturbation theory applies to the scaled block matrix

δL =

 0 0

−g′ A− s

+ δ

 0 id

0 0

 , (1.16)

which becomes lower triangular for δ = 0. This provides us with the unbounded part

spec∞ (L) of the spectrum, generated in v-space alone with u = 0.

Moreover, δL possesses three-dimensional kernel, at δ = 0, given by

g′u = (A− s)v. (1.17)

On this kernel, the eigenvalue problem for L reduces to

µ0u = v = (A− s)−1g′u. (1.18)

The characteristic polynomial of (1.18) at u0 = 0 is given by

p0(µ) =

(
µ2 − 2γs

1− s2
µ +

1− γ2

1− s2

)
µ. (1.19)

Direct calculation completes the proof. ./

Note that our choices of A0 and g′(0) are normalized, such that the bifurcation occurs

at a shock speed s = 0. For more general systems the Hopf point may occur at nonzero

values of the shock speed parameter.

For explicit calculations here and below, we have used and recommend assistance by

symbolic packages like Mathematica, Maple, etc.

Bifurcations from lines of equilibria in absence of parameters have been investigated

in [Lie97], [FLA98a] from a theoretical view point. We briefly recall that result for con-

venience. Consider C5 vector fields

u̇ = F (u) (1.20)

with u = (u0, u1, . . . , un) ∈ IRn+1. We assume a line of equilibria

0 = F (u0, 0, . . . , 0) (1.21)

along the u0-axis. At u0 = 0, we assume the Jacobi matrix F ′(u0, 0, . . . , 0) to be hyper-

bolic, except for a trivial kernel vector along the u0-axis and a complex conjugate pair
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of simple, purely imaginary, nonzero eigenvalues µ(u0), µ(u0) crossing the imaginary axis

transversely as u0 increases through u0 = 0:

µ(0) = iω(0), ω(0) > 0,

Re µ′(0) 6= 0.
(1.22)

Let Z be the two-dimensional real eigenspace of F ′(0) associated to ±iω(0). By ∆Z

we denote the Laplacian with respect to variations of u in the eigenspace Z. Coordinates

in Z are chosen as coefficients of the real and imaginary parts of the complex eigenvector

associated to iω(0). Note that the linearization acts as a rotation with respect to these

not necessarily orthogonal coordinates. Let P0 be the one-dimensional eigenprojection

onto the trivial kernel along the u0-axis. Our final nondegeneracy assumption then reads

∆ZP0F (0) 6= 0. (1.23)

Fixing orientation along the positive u0-axis, we can consider ∆ZP0F (0) as a real

number. Depending on the sign

η := sign (Re µ′(0)) · sign (∆ZP0F (0)), (1.24)

we call the “bifurcation” point u0 = 0 elliptic if η = −1 and hyperbolic for η = +1.

The following result from [FLA98a] investigates the qualitative behavior of solutions

in a normally hyperbolic three-dimensional center manifold to u = 0.

The results for the hyperbolic case η = +1 are based on normal form theory and

a spherical blow-up construction inside the center manifold. The elliptic case η = −1

is based on Neishtadt’s theorem on exponential elimination of rapidly rotating phases

[Nei84]. For a related application to binary oscillators in discretized systems of hyperbolic

balance laws see [FLA98b]. For an application to square rings of additively coupled

oscillators see [AF98].

Theorem 1.1 Let assumptions (1.21) – (1.23) hold for the C5 vector field u̇ = F (u).

Then the following holds true in a neighborhood U of u = 0 within a three-dimensional

center manifold to u = 0.

In the hyperbolic case, η = +1, all nonequilibrium trajectories leave the neighborhood

U in positive or negative time direction (possibly both). The stable and unstable sets of

u = 0, respectively, form cones around the positive/negative u0-axis, with asymptotically
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Case (a) hyperbolic, η = +1. Case (b) elliptic, η = −1.

Figure 1.1: Dynamics near Hopf bifurcation from lines of equilibria.

elliptic cross section near their tips at u = 0. These cones separate regions with different

convergence behavior. See Fig. 1.1 (a).

In the elliptic case all nonequilibrium trajectories starting in U are heteroclinic be-

tween equilibria u± = (u±0 , 0, . . . , 0) on opposite sides of u0 = 0. If F (u) is real analytic

near u = 0, then the two-dimensional strong stable and strong unstable manifolds of u±

within the center manifold intersect at an angle which possesses an exponentially small

upper bound in terms of |u±|. See Fig. 1.1 (b).

In the present paper, we apply theorem 1.1 to the problem of zero speed viscous

profiles of systems of hyperbolic balance laws near Hopf points as in proposition 1.1.

Nonzero shock speeds can be treated completely analogously, absorbing them into the

flux term.

Theorem 1.2 Consider the problem (1.5)–(1.7) of finding viscous profiles with shock

speed s = 0 to hyperbolic balance laws (1.1). Let assumptions (1.8)–(1.10), (1.14) hold,

so that a pair of purely imaginary simple eigenvalues occurs for the linearization L, in the

limit δ → 0.

Then there exist nonlinearities A(u) = f ′(u) and g(u), compatible with the above

assumptions, such that the assumptions and conclusions of theorem 1.1 are valid for the

viscous profile system (1.6). Both the elliptic and the hyperbolic case occur; see Fig. 1.1.

Since both conditions are open, the results persist, in particular, for small nonzero
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shock speeds s, even when f , g remain fixed.

Specific choices of flux f(u) and reaction terms g(u) are presented in corollary 3.3;

see (3.12). In the elliptic case η = −1, we nevertheless observe (at least) pairs of weak

shocks with oscillatory tails, connecting u− and u+. In the hyperbolic case η = +1,

viscous profiles leave the neighborhood U and thus represent large shocks. At u0 = 0,

their profiles change discontinuously and the role of the u0-axis switches from providing

the left to providing the right asymptotic state with oscillatory tail.

This paper is organized as follows. In section 2 we check transversality condition

(1.22) for the purely imaginary eigenvalues. We also compute an expansion in terms of δ

for the eigenprojection P0 onto the trivial kernel along the u0-axis. In section 3, we check

nondegeneracy condition (1.23) for ∆ZP0F (0), in the limit δ ↘ 0, completing the proof

of theorem 1.2 by reduction to theorem 1.1.
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2 Linearization and transverse eigenvalue crossing

In this section we continue our linear analysis of the linearization

Lδ(u0) =

 0 id

−δ−1g′ δ−1A

 , (2.1)

with A = A(u), g′ = g′(u) evaluated along the line of equilibria u = (u0, 0, 0). See

(1.11) with s = 0 and proposition 1.1. In the limit δ ↘ 0, we address the issue of

transverse crossing of purely imaginary eigenvalues in lemma 2.1. In lemma 2.2, we

explicitly compute the one-dimensional eigenprojection P δ
0 onto the trivial kernel of Lδ(0).
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Throughout this section we fix the notation

A(u0, 0, 0) = A0 + u0A1 =


α

1

−1

+ u0 · (a1
jk)0≤j,k≤2, (2.2)

with a1
jk = a1

kj symmetric; see (1.14). We also assume that the linearized reaction term

g′(u0, 0, 0) = g′(0) =


0

γ 1

1 γ

 , |γ| < 1, (2.3)

which is independent of u0 by assumption (1.8), possesses a vanishing g0-component.

By proposition 1.1, purely imaginary eigenvalues of Lδ(u0) arise from an O(δ) per-

turbation of the matrix

A−1g′ = (A0 + u0A1)
−1g′(0) (2.4)

with spectrum specbd (L). Let

µ(u0), µ̄(u0) (2.5)

denote the continuation of the simple, purely imaginary eigenvalues

µ(0) = iω0, µ̄(0) = −iω0

with u0-derivatives µ′(u0), µ̄
′(u0).

Lemma 2.1 In the above setting and notation,

Re µ′(0) = −γ

2
(a1

11 + a1
22) + a1

12. (2.6)

Proof :

Since the unit vector e0 in u0-direction is a trivial kernel vector of g′(0) and since the

remaining eigenvalues of A−1g′ remain conjugate complex for small |u0|, we have

Re µ(u0) =
1

2
trace (A−1g′). (2.7)

In particular, trace A−1
0 g′ = 0. With the u0-expansion

A−1 = (A0 + u0A1)
−1 = A−1

0 − u0A
−1
0 A1A

−1
0 + · · · (2.8)

we immediately obtain

Re µ′(u0) = −1

2
trace (A−1

0 A1A
−1
0 g′). (2.9)

Inserting A0, A1, g
′ proves the lemma. ./
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By regular perturbation of specbd (L), the result Re µ′(0) 6= 0 of lemma 2.1 extends

to small positive δ.

We now turn to an expansion for the eigenprojection P δ
0 onto the one-dimensional

kernel of the 6×6-matrix Lδ(u0) at u0 = 0; see (2.1), (2.2). Aligning the notations of

proposition 1.1 and of theorem 1.2, we decompose

u = (u, v) ∈ IR6 = IR3 × IR3.

Again, eT
0 = (1, 0, 0) denotes the first unit vector in IR3 and eT

0 = (eT
0 , 0) the first unit

vector in IR6.

Lemma 2.2 In the above setting and notation

P δ
0 = e0 · eT

δ , with

eT
δ = (1 + ( δ

α
)2)−1/2(eT

0 ,− δ
α
eT
0 ).

(2.10)

Proof :

Kernel and co-kernel of Lδ(u0) are one-dimensional, corresponding to the simple zero

eigenvalue of Lδ(u0). Obviously

ker Lδ(u0) = e0, (2.11)

because g′(u0, 0, 0)e0 = 0. At u0 = 0, the co-kernel of Lδ(u0) is given by

0 = eT
δ ·

 0 id

−δ−1g′ δ−1A0

 . (2.12)

Inserting A0 from (2.2) and g′ from (2.3) proves the lemma. ./

3 Higher order nondegeneracy

In this section we complete the proof of theorem 1.3. In view of theorem 1.2, we have

already checked transverse crossing of purely imaginary eigenvalues, assumption (1.22),

in lemma 2.1. Letting

F (u) = F (u, v) =

 v

−δ−1g(u) + δ−1A(u)v

 (3.1)

it remains to check the nondegeneracy assumption ∆ZP0F 6= 0; see (1.23). In lemma

3.1, we check this assumption in the limit δ ↘ 0. In corollary 3.2, we provide explicit
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expressions for the type determining sign η = ±1 defined in (1.24). In particular, we show

in corollary 3.3 that both the hyperbolic case η = +1 and the elliptic case η = −1 can

be realized by our nonlinear hyperbolic balance laws, even with gradient flux terms. This

then completes the proof of theorem 1.2.

To check nondegeneracy condition (1.23) on ∆ZP0F in the limit δ ↘ 0, we use

the following notation. By transverse eigenvalue crossing at δ = 0, lemma 2.1, we also

obtain purely imaginary eigenvalues ±iωδ at equilibria uδ = (uδ
0, 0, . . . , 0) = (uδ, 0) on

the u0-axis, for small δ > 0. Let Zδ denote the corresponding eigenspace. We recall our

expression for the eigenprojection P δ
0 onto the trivial kernel,

P δ
0 = (1 + ( δ

α
)2)−1/2 e0 · (eT

0 ,− δ
α
eT
0 ) (3.2)

with e0 = (eT
0 , 0)T , see lemma 2.2. Note that uδ, ωδ, P δ

0 , and Zδ vary differentiably with

δ.

Lemma 3.1 In the above setting and notation we have

∆ZδP δ
0 F (uδ) = (1 + ( δ

α
)2)−1/2 1

α
g′′0(u

δ)[ũδ, ¯̃u
δ
] e0 (3.3)

at the Hopf point uδ = (uδ, 0) with complex eigenvector (ũδ, ṽδ) of iωδ.

Consider in particular quadratic forms g′′0(0), which are strictly positive/negative def-

inite on (u1, u2)-space, with Γ = ±1 indicating the sign of definiteness. Then

sign ∆ZδP δ
0 F (uδ) = Γ · sign α, (3.4)

for all small δ > 0.

Proof :

By lemma 2.2 we have

(1 + ( δ
α
)2)1/2P δ

0 = e0 · eT
0 − δ

α
e0 · (0, eT

0 ). (3.5)

The explicit form (3.1) of the nonlinearity F implies

∆ZδP 0
0 F (uδ) = e0∆Zδv0 = 0 (3.6)

on any subspace Zδ and for any uδ, simply because the u-component of F is linear. With

P δ
0 instead of P 0

0 we obtain more generally

(1 + ( δ
α
)2)1/2eT

0 ∆ZδP δ
0 F (u) = −∆Zδ

(
0 , − δ

α
eT
0 δ−1(−g(u) + A(u)v)

)
= − 1

α
∆Zδ (−g0(u) + (A(u)v)0) .

(3.7)
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Here (A(u)v)0 denotes the zero-component of A(u)v. We treat this term first, using the

notation

ũδ =

 ũδ

ṽδ

 (3.8)

for the complex eigenvector of the purely imaginary Hopf eigenvalue µδ = iωδ at u =

uδ, v = 0. Then Zδ = span{Re ũδ, Im ũδ}. Denoting by ∆β = ∂2
β1

+ ∂2
β2

the standard

Laplacian, evaluated at β = 0, and inserting ṽδ = µδũδ yields

∆Zδ(A(u)v)0 = ∆β

(
A(uδ + β1Re ũδ + β2Im ũδ) (β1 Re ṽδ + β2Im ṽδ)

)
0

= 2
(
(A′(uδ)Re ũδ)Re ṽδ + (A′(uδ)Im ũδ)Im ṽδ

)
0

= 2 Re ((A′(uδ)ũδ)¯̃v
δ
)0

= 2 Re (µ̄δ) (f ′′(uδ)[ũδ, ¯̃u
δ
])0

= 2 Re (µδ) f ′′0 (uδ)[ũδ, ¯̃u
δ
] = 0

(3.9)

all along the Hopf curve u = uδ, v = 0. Here we have used A(u) = f ′(u) for the flux

function and the fact that the Hessian matrix f ′′0 (0) is symmetric.

Therefore, we can conclude from (3.7), (3.9) that

(1 + ( δ
α
)2)1/2eT

0 ∆ZδP δ
0 F (uδ) =

1

α
∆Zδg0(u) =

1

α
g′′0(u

δ)[ũδ, ¯̃u
δ
]. (3.10)

This proves (3.3) and the lemma. ./

Corollary 3.2 Combining lemmata 2.1 and 3.1, the sign η = ±1 distinguishing elliptic

from hyperbolic Hopf bifurcation along our line of equilibria is given explicitly by

η = sign Re µ′(0) · sign ∆ZP0F (0)

= sign(a12 − γ
2
(a11 + a22)) · sign α · Γ,

(3.11)

for δ > 0 small enough. Here derivatives are evaluated at u = 0 and are assumed to be

chosen such that η 6= 0. The sign Γ = ±1 indicates positive/negative definiteness of g′′0(0)

on (u1, u2)-space. Obviously, both signs of η can be realized.

Corollary 3.3 Theorems 1.1, 1.2 hold true for η = ±1 with the following specific choices

of a gradient flux term f(u) = ∇Φ(u) and a reaction term g(u):

g(u) =


u2

1 + u2
2

−1
2
u1 + u2

u1 − 1
2
u2

 ,

Φ(u) = u2
0 + 1

2
(u2

1 − u2
2) + ηu0u

2
1.

(3.12)

These choices correspond to α = 2, γ = −1
2
, Γ = +1.
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