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Abstract. Based on an analytic semigroup setting, we first consider
semilinear reaction–diffusion equations with spatially quasiperiodic co-
efficients in the nonlinearity, rapidly varying on spatial scale ε. Under
periodic boundary conditions, we derive quantitative homogenization
estimates of order εγ on strong Sobolev spaces Hσ in the triangle

0 < γ < min(σ − n/2, 2− σ).

Here n denotes spatial dimension. The estimates measure the distance
to a solution of the homogenized equation with the same initial con-
dition, on bounded time intervals. The same estimates hold for C1

convergence of local stable and unstable manifolds of hyperbolic equi-
libria. As a second example, we apply our abstract semigroup result
to homogenization of the Navier–Stokes equations with spatially rapidly
varying quasiperiodic forces in space dimensions 2 and 3. In both exam-
ples, a Diophantine condition on the spatial frequencies is crucial to our
homogenization results. Our Diophantine condition is satisfied for sets
of frequency vectors of full Lebesgue measure. In the companion pa-
per [7], based on L2 methods, these results are extended to quantitative
homogenization of global attractors in near-gradient reaction–diffusion
systems.

1. Introduction

This paper investigates the behavior of solutions uε and of local invariant
manifolds, for example for scalar reaction diffusion equations

uεt = ∆uε + f ε(x, ωx/ε, uε), uε(t = 0) = u0 (1.1)
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in the limit ε↘ 0. The Navier–Stokes system in spatial dimensions n = 2, 3,
as treated in Section 5, will provide a more advanced example. For simplicity,
we consider (1.1) under periodic boundary conditions

x ∈ Tn = Rn/2πZn (1.2)

in dimensions n = 1, 2, 3. Our main interest is the rapid spatial oscillations
in the variable y = ωx/ε. We assume these rapid oscillations to be quasiperi-
odic; more specifically

f : [0, ε0)× Tn × TN × R→ R, (ε, x, y, u) 7→ f ε(x, y, u) (1.3)

for any fixed ε ≥ 0, and ω is an N × n frequency matrix with rationally
independent entries. Note however that we represent x ∈ Tn by compo-
nents in [0, 2π), when evaluating y. As a side effect, this produces spatial
discontinuities in (1.1).

An obvious candidate for a homogenized version of equation (1.1) is the
formally spatially averaged equation

u0
t = ∆u0 + f0(x, u0), where (1.4)

f0(x, u) := (2π)−N
∫
TN

f0(x, y, u) dy. (1.5)

Naively we might expect the local solutions of (1.1) to converge in a suitable
weak, or even strong sense:

uε(t)→ u0(t), 0 ≤ t ≤ T (u0) (1.6)

with u0 solving the homogenized equation (1.4), (1.5) under the same initial
values and boundary conditions. Not surprisingly this expectation proves
to be correct. See [3], [24] for a background on homogenization results,
in particular for the periodic case ω = id. Quantitative homogenization,
however, aims at determining a specific rate of convergence. Theorem 1.1
below asserts that

‖uε(t)− u0(t)‖Hσ ≤ Cεγ , (1.7)

where n/2 < σ < 2 specifies spatial regularity in terms of the fractional
Sobolev spaces Hσ, and γ is suitably chosen below.

Being interested in quantitative strong convergence not only of individual
trajectories but also of global attractors, in the dissipative case, we are also
providing fractional order homogenization estimates of type (1.7) for (local)
stable and unstable manifolds. In fact the global attractor of the infinite-
dimensional gradient dynamical system (1.1), consists entirely of equilibria,
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which we may assume to be hyperbolic, and of intersections of their sta-
ble and unstable manifolds. See [4], [8], [12], [18], and [21] for a general
background on global attractors for dissipative systems.

We now proceed to prepare and precisely state our results on fractional
homogenization for the scalar reaction diffusion case; see Theorems 1.1 and
1.2 below. We assume f to be polynomial in u with for simplicity of presen-
tation smooth coefficients

f ε(x, y, u) =
d∑

m=0

aεm(x, y)um

am : [0, ε0)× Tn × TN −→ R smoothly, (1.8)

(ε, x, y) 7−→ aεm(x, y).

For precise smoothness requirements on the coefficients am see Section 4, in
particular (4.10), (4.12)–(4.14). Note that f ε and (1.1), (1.4) are dissipative,
if d is odd and aεd < 0; in particular, regular solutions then exist for all
positive times.

As the homogenized nonlinearity f0(x, u) at ε = 0 we define

f0(x, u) :=
d∑

m=0

a0
m(x)um, a0

m(x) := (2π)−N
∫
TN

a0
m(x, y) dy (1.9)

as introduced in (1.5). For our results on local stable and unstable manifolds
we also assume that (1.1) possesses a trivial equilibrium u ≡ 0, for all ε, and
the linearization A of the homogenized equation (1.4) at u = 0 is hyperbolic:

aε0(x, y) ≡ 0, and 0 6∈ (spec A), where Au = ∆u+ a0
1(x)u. (1.10)

In addition, we require a Diophantine condition for the columns ω%, % =
1, . . . , n, of the frequency matrix ω = (ω1, . . . , ωn) of the rapid spatial oscil-
lations:

min
%=1,...,n

| kTω% | ≥ c|k|−(N−1)−ϑ (1.11)

for some c, ϑ > 0 and all k ∈ ZN \ {0}. Such Diophantine conditions are
ubiquitous in modern dynamical systems, and in particular in the small de-
nominator problems of KAM-theory in celestial mechanics and Hamiltonian
systems; see for example [14] and [1] and the references there. We recall
that Diophantine conditions (1.11) hold for a set of frequencies ω% of full
Lebesgue measure in RNn; see for example [5].
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As a final ingredient, we recall how fractional Sobolev spaces Hσ(Tn) ⊆
L2(Tn) measure spatial regularity. Let σ ≥ 0 and let

u(x) =
∑
j∈Zn

uje
ijT x (1.12)

denote the Fourier series of u ∈ L2(Tn). Then Hσ(Tn) consists of those
u ∈ L2 for which the Hσ norm

‖ u ‖Hσ :=
∑
j∈Zn

(1 + j2)σ/2 | uj |2 (1.13)

is finite. Here we abbreviate j2 = jT j. Note that Hσ coincides with the
classical Sobolev spaces, for σ ∈ N. Also note that Hσ ↪→ C0 for σ > n/2,
by Sobolev embedding.

Theorem 1.1. Let assumptions (1.8) on the nonlinearity f hold and fix
a frequency matrix ω satisfying the Diophantine condition (1.11). Choose
an initial condition u0 ∈ Hσ(Tn), where n

2 < σ < 2 and in particular the
dimension n is restricted to values n = 1, 2, 3. Choose σ, γ in the triangle

0 < γ < min(σ − n

2
, 2− σ). (1.14)

Denote by uε(t) and u0(t) the solutions of (1.1) and of the homogenized
equation (1.4), respectively, with the same initial condition u0(x) at time
t = 0. Let u0(t) exist for 0 ≤ t ≤ T. Then there exists ε0 > 0 and a constant
C, all depending on the data, on u0, and on N, c, ϑ, σ, and γ, such that the
following fractional estimate holds, uniformly for 0 < ε < ε0 and 0 ≤ t ≤ T :

‖ uε(t)− u0(t) ‖Hσ(Tn) ≤ Cεγ . (1.15)

We remark that by (1.14) the optimal fractional rate γ of convergence
towards the homogenized solutions allowed by our theorem is achieved for
the choice

σ = 1 + n/4. (1.16)
In fact the limiting fractional rate of convergence γ∗ = γ∗(n) allowed by our
result is then given by

0 < γ < γ∗(n) := 1− n

4
. (1.17)

We repeat that for any fixed Diophantine constant ϑ > 0 and some c =
c(ω) > 0, the Diophantine condition (1.11) is satisfied for almost every choice
of columns ω% ∈ RN of the frequency matrix ω, in the Lebesgue sense. In
other words, each column ω% ∈ RN can be chosen from a set of full Lebesgue
measure in RN .
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Going beyond mere initial value problems, we consider (local) stable and
unstable manifolds next. Summarizing loosely, we strongly recommend [9]
and [22] for a technical background. The unstable manifold W u

ε of a hyper-
bolic equilibrium, say u ≡ 0, of (1.1) consists of those u0 ∈ Hσ(Tn) which
possess an associated solution uε(t), defined for all negative times, such that

lim
t→−∞

uε(t) = 0. (1.18)

These u0 form W u
ε , a finite-dimensional C1 manifold immersed in Hσ(Tn).

The local unstable manifold, an embedded submanifold of a δ-neighborhood
of u ≡ 0, consists of those u0 for which the solution uε(t) stays near u ≡ 0 for
all negative times. By hyperbolicity of u ≡ 0 we have in particular u0 ∈W u.
Similarly, the local stable manifold W s

ε is given by u0 in a δ-neighborhood
of u ≡ 0, for which the forward solution uε(t), t ≥ 0 stays near u ≡ 0. In
particular, the forward solution is global and

lim
t→+∞

uε(t) = 0, (1.19)

by hyperbolicity of u ≡ 0. The dimension of W s
ε is infinite, with codimension

given by dimW u
ε .

Section 2 below can also be read as a rather complete technical exposition
proving existence and fractional-order convergence of local stable/unstable
manifolds for ε↘ 0.

For gradient systems, like (1.1), the unstable manifold is globally embed-
ded. Consider the dissipative case, where the polynomial nonlinearity f ε has
odd degree d in u and the highest-order coefficients aεd(x, y) are uniformly
negative. Moreover, assume all equilibria to be hyperbolic. Then the global
attractor Aε of (1.1) consists of the (finite) union of all unstable manifolds.
The global attractor is defined here as the maximal compact invariant set
or, equivalently, as the smallest set attracting all bounded sets. Upper semi-
continuity of the global attractor is known for regular perturbation families
Aε. Lower semicontinuity holds, provided the stable and unstable manifolds
intersect transversely. See [4], [8], and [18]. Fractional estimates for Aε,
in the context of quantitative homogenization, are our main motivation for
investigating the convergence behavior of stable and unstable manifolds in
Theorem 1.2 below. For further results in this direction see also the com-
panion paper [7].

Theorem 1.2. Let f satisfy (1.8) and hyperbolicity assumption (1.10) at the
trivial ε-independent equilibrium u ≡ 0. Again fix Diophantine frequencies
ω satisfying (1.11) and choose σ, γ in the triangle (1.14).
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Then there exists an ε-independent δ neighborhood of u ≡ 0 in the Sobolev
space Hσ(Tn) and local stable and unstable C1 manifolds W s

ε ,W
u
ε of equation

(1.1) in this neighborhood, which for ε ↘ 0 converge with fractional order
εγ to the corresponding local stable and unstable manifolds W s

0 ,W
u
0 of the

formally homogenized equation (1.4). Convergence of these manifolds in fact
occurs in the topology of C1 manifolds, that is, in the topology of uniform
convergence of both the manifolds and their tangent spaces.

More precisely, these manifolds are given as graphs of functions wsε, w
u
ε

over the tangent spaces of W s
0 ,W

u
0 at u ≡ 0, locally. The differences wsε−ws0

and wuε−wu0 , measured in the topology of Hσ(Tn), converge to zero uniformly
with fractal order εγ , together with their first derivatives. See Theorem 2.1
and Corollaries 2.2, 2.3, and 2.5 below.

We remark that fractional-order convergence of unstable manifolds, as
established in Theorem 1.2, was a crucial ingredient to an abstract result
on fractional-order convergence of global attractors of gradient systems in
pioneering work by Hale and Raugel, [10]. See also the recent survey [18].
Going beyond our fractional homogenization estimate (1.15) of Theorem 1.1,
which holds for bounded times only, an estimate

‖uε(t)− u0(t)‖Hσ(Tn) ≤ Cεγe%t (1.20)

was required to hold, uniformly for large t > 0. In our companion paper [7] we
in fact derive such an estimate for near-gradient reaction–diffusion systems
and establish fractional-order homogenization results for global attractors in
L2(Ω), dim Ω = 3, under Dirichlet boundary conditions.

The remaining sections are organized as follows. In Section 2 we rephrase
our motivating example (1.1), (1.4) in the language of analytic semigroups

ut = Au+ F ε(u) (1.21)

with not necessarily self-adjoint infinitesimal generator A on a Banach space
X. The crucial convergence assumption is phrased in terms of norms ‖ · ‖α
and ‖ · ‖−β in spaces Xα and X−β as

‖F ε(u)− F 0(u)‖−β ≤ h(‖u‖α) · εγ ; (1.22)

see (2.14), (2.42) and (2.49). The fractional-power spaces Xα are domains
of definition of fractional powers (−A0)α, where A0 = A−λ0 · id is a shifted
infinitesimal generator. Passing to negative exponents −β provides a regu-
larization of the rapid spatial oscillation, which lends itself to quantitative
homogenization. Under the abstract assumption (1.22), we prove the stable
and unstable manifold theorems which our proof of Theorem 1.2 is based on;
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see Theorem 2.1 and Corollaries 2.2, 2.3, and 2.5. In Corollary 2.4 we indi-
cate the simplifications and modifications for preparing a proof of Theorem
1.1.

Section 3 is devoted to a careful analysis of the convergence properties for
ε↘ 0 of functions bε(x) := B(x, ωx/ε). For suitable B(x, y), periodic in x, y
with zero y average, sufficiently smooth in y and of regularity Xα in x, with
X := L2(Tn), we prove an estimate

‖bε‖−β ≤ Cε2β (1.23)

in Proposition 3.1. This proposition forms a bridge between the abstract
semigroup results of Section 2 and our specific example (1.1), (1.4).

In Section 4, we cross this bridge and return to our original example. Using
estimates like (1.23), we prove estimates like (1.22), for γ := 2β. Translating
Hσ(Tn) = Xσ/2, α := σ/2, the technical constraints for α and β yield the
crucial εγ convergence in the Hσ(Tn) norm of Theorems 1.1 and 1.2, under
the triangle condition

0 < γ < min(σ − n/2, 2− σ) (1.24)

as stated in (1.14) above.
In Section 5, finally, we return to the case of the Navier–Stokes system

with spatially rapidly oscillating quasiperiodic external forces. In Theorem
5.1 and Corollary 5.3 we present quantitative homogenization results based
on the abstract semigroup results of Theorem 2.1 and Corollary 2.4.

Acknowledgment. This work was supported by several visits of the second
author to Berlin under an Alexander von Humboldt award, from which the
first author benefitted enormously. We are grateful to Jörg Schmeling for
helpful discussions on Diophantine approximation. For careful and efficient
typesetting of numerous versions, both authors are indebted to Regina Löhr.
This work was also supported by the Deutsche Forschungsgemeinschaft and
by the Russian Foundation for Fundamental Sciences.

2. Invariant manifolds

In this section we prove an abstract invariant-manifold theorem which
is adapted to the specific homogenization problem (1.1), (1.4) above. We
work in an analytic semigroup setting, largely following [9]. In particular,
we use Perron’s method to construct the local stable manifold W s

ε of a fixed,
uniformly hyperbolic equilibrium u = 0. The results for local unstable man-
ifolds W u

ε are completely analogous and will be stated briefly along with
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the considerably simpler issue of convergence of solutions of initial value
problems.

The analytic semigroup setting for our specific homogenization problem
(1.1), (1.4) will be

ut = Au+ F ε(u) (2.1)
with assumptions on the nonlinearity F ε(u) detailed below. The generator
A of the analytic semigroup exp(At), t ≥ 0, on a Banach space X is assumed
to be sectorial and independent of ε.

Fractional powers of A and their domains of definition will be an es-
sential tool of our quantitative result. See [9], [19], or [17] for a technical
background. We briefly digress to remind the reader of the basic defini-
tions. Since A is sectorial, we may fix λ0 ≥ 1 + Re(specA). Decomposing
A = A0 + λ0 · id, we have Re(spec(−A0)) ≥ 1. Integrating along a suitably
oriented complex sector Γ of opening angle less than ±π/2 centered around
the negative real axis, we may thus define the fractional powers

(−A0)α :=
1

2πi

∫
Γ
(−λ)α(λ−A0)−1 dλ (2.2)

for α < 0. Convergence holds by the resolvent estimate for A0. We take
principal values for the root (−λ)α. In particular,

(−A0)−α1(−A0)−α2 = (−A0)−(α1+α2) (2.3)

for α1, α2 > 0. Extensions to positive α can be defined via

(−A0)α :=
(
(−A0)−α

)−1
. (2.4)

All these fractional powers (−A)α are closable with maximal domains of
definition

Xα := D
(
(−A0)−α

)
, α ∈ R. (2.5)

With the norm
‖u‖α := ‖(−A0)αu‖X (2.6)

the completion spaces Xα become Banach spaces, isometrically isomorphic
to X = X0 with isomorphism (−A0)α. Also note the embeddings

Xα ⊆ Xα′ (2.7)

for α ≥ α′. The special case α = 1 reproduces A = A1, X1 = D(A), and
α = −1 indeed provides the inverse of A. More generally, (2.3) extends to
real α1, α2 on Xα1+α2 .

The use of Banach spaces X−β with norms ‖ · ‖−β , for suitable 0 < β < 1,
will be crucial for our quantitative analysis of homogenization. In specific
function spaces like X = L2(Tn) these spaces can be described in terms of
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distributions or in terms of weighted l2-spaces of Fourier coefficients. In our
abstract, more general situation, the above abstract definition by completion
spaces is just as viable. For example, (−A0)β extends canonically to a closed,
densely defined operator on the completion space X−β with domain X dense
in X−β , all with respect to the topology of ‖ · ‖−β of course. Similarly the
analytic semigroup exp(A0t), generated by A0 on X, extends to X−β .

Although we do not require A0 to be self-adjoint or normal, in our specific
example (1.1) we will choose A0 = ∆ − id to be the shifted Laplacian with
periodic boundary conditions onX = L2(Tn). In terms of Fourier coefficients

u(x) =
∑
j∈Zn

uj exp(ijTx) (2.8)

the norms ‖ · ‖α associated to X = L2(Tn) then take the explicit form

‖u‖α =
( ∑
j∈Zn

(1 + j2)2α|uj |2
)1/2

(2.9)

where we abbreviate jT j = j2. For example X1 = H2(Tn), X1/2 = H1(Tn),
and Hσ(Tn) = Xσ/2 for σ ∈ R. More generally, for X = Lp(Ω) and α > 0 we
note the Sobolev embeddings Xα ↪→W k,q(Ω) for k−n/q < 2α−n/p, q ≥ p
and the Hölder embeddings Xα ↪→ Ck,ϑ(Ω) for k + ϑ < 2α − n/p, when
Ω ⊆ Rn is a smooth domain.

In the abstract setting (2.1) we require regularity and continuous depen-
dence for the nonlinearities

F ε : Xα −→ X−β (2.10)

and for suitable choices

α, β ≥ 0, α+ β < 1. (2.11)

In specific examples, it is precisely the weaker norm of X−β which will
provide us with the Hölder estimates of F ε with respect to ε, as required
below. Indeed the isometric isomorphism (−A0)−β : X−β → X allows us to
formulate all assumptions on F in terms of

(−A0)−βF ε : Xα −→ X. (2.12)

The regularizing properties of (−A0)−β will then homogenize rapid spatial
oscillations of nonlinearities of the type

(F ε(u))(x) := f(ε, x, x/ε, u(x)), for ε > 0

(F 0(u))(x) := 〈f(0, x, ·, u(x))〉 , for ε = 0
(2.13)

in our specific examples.
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Abstractly, our assumptions on the nonlinearities F ε are the following,
uniformly for 0 ≤ ε < ε0 :

F ε(0) = 0;

‖F ε(u1)− F ε(u2)‖−β ≤ η · ‖u1 − u2‖α ;

‖F ε(u)− F 0(u)‖−β ≤ h(‖u‖α) · εγ
(2.14)

uniformly for all u, u1, u2 ∈ Xα, 0 ≤ ε < ε0, suitable positive constants
η, γ, and a nondecreasing function h > 0. The uniform global Lipschitz
constant η will be required to be small – an assumption to be achieved
by suitable local cut-off. This cut-off is the standard approach to proving
local invariant manifold theorems; see for example [22]. Although we do not
require differentiability of F 0, strictly speaking, the Lipschitz assumption
will in practice be achieved by subsuming the linearization of F 0 at u = 0
into the fixed generator A. See also Corollary 2.5 below for differentiability
issues. The Hölder rate of convergence γ will be related to the regularization
β by

γ = 2β < 2(1− α) (2.15)

in the specific quasiperiodic example of Section 1.
Uniform hyperbolicity of the equilibrium u = 0 can be expressed in terms

of the ε-independent generator A on our Hilbert space X, for small enough
Lipschitz constants η of the nonlinearity. Assuming the spectrum of A to
have nonzero real part, we have spectral projections P± onto subspaces X±
of X associated with the positive/negative part of spec(A). We decompose

idXα′ = P+ + P−, Xα′ = Xα′
+ ⊕Xα′

− , u = (u+, u−) (2.16)

accordingly, for all real α′. Indeed all spaces Xα′ are densely embedded into
each other, so that the projections P± are well-defined on each of them. Also
note that the norms of these projections are independent of α′ ∈ R, since
P± commute with A and all (−A0)α

′
.

We are now ready to state and prove the invariant manifold result of this
section.

Theorem 2.1. Let assumptions (2.10), (2.11), (2.14) and hyperbolicity as-
sumption (2.16) hold. For small-enough perturbations 0 ≤ ε < ε0 and small
enough Lipschitz constants 0 ≤ η < η0, the semilinear semigroup (2.1) then
possesses a unique stable manifold W s

ε of the trivial hyperbolic equilibrium
u = 0.
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In terms of the spectral projections P± of the linearization A, the manifold
W s
ε is given globally as the graph of a function

wsε : Xα
− −→ Xα

+ = X+ (2.17)

with small Lipschitz constant η′ proportional to η. As usual, W s
ε = graph

(wsε) is the set of all initial conditions u0 ∈ Xα such that there exists a
uniformly bounded global forward solution u(t) ∈ Xα, t ≥ 0, through u(0) =
u0 which satisfies

lim
t→+∞

‖u(t)‖α = 0. (2.18)

The manifolds W s
ε are uniformly close to W s

0 of order 0(εγ) : there exist
constants C > 0, η′ > 0 such that the fractional convergence estimate

‖wsε(u−)− ws0(u−)‖α ≤ Ch(η′‖u−‖α)εγ (2.19)

holds, uniformly for 0 ≤ ε < ε0 and u− ∈ Xα
−. Here γ is the regularized

Hölder exponent with respect to ε, as was specified in assumption (2.14).

Our proof below is only a slight adaptation of standard Perron-type proofs
of invariant (or inertial) manifold theorems for analytic semigroups as de-
tailed, for example, in [9], [2], [22] [6]. Typically, such theorems are formu-
lated for the case β = 0, which does not lend itself to our goal of quantitative
spatial homogenization for equations like (1.1), when we choose X = L2(Ω).
Before giving a detailed proof, for the convenience of the reader we sketch
the underlying idea, which is just a simple regularization by the fractional
operator (−A0)−β .

Indeed, the original semigroup equation (2.1) transforms into

ũt = Aũ+ F̃ ε(ũ) (2.20)

under the regularization

ũ := (−A0)−βu, F̃ ε(ũ) := (−A0)−βF ε((−A0)βũ). (2.21)

We consider (2.20) as an equation on the space X. Assumptions (2.14) then
translate into

F̃ ε(0) = 0
‖F̃ ε(ũ1)− F̃ ε(ũ2)‖X ≤ η · ‖ũ1 − ũ2‖Xα̃

‖F̃ ε(ũ)− F̃ 0(ũ)‖X ≤ h(‖ũ‖α̃) · εγ ,
(2.22)

where 0 ≤ α̃ = α + β < 1, by assumption (2.11) above. Except for the
slightly unusual fractional dependence on εγ , this is the standard setting
for an invariant manifold theorem on X,X α̃. The central importance of
this fractional dependence for our quantitative averaging result, however,
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motivates us to give a detailed proof from scratch, rather than backtracking
to ũ ∈ X.
Proof. We begin with an outline of the proof. Following Perron’s approach
to invariant manifolds, we solve the following fixed point problem:

u+(t) =
∫ +∞

t
eA(t−τ)P+F

ε(u+(τ), u−(τ)) dτ

u−(t) = eAtu0
− +

∫ t

0
eA(t−τ)P−F

ε(u+(τ), u−(τ)) dτ.
(2.23)

Abbreviating u(t) = (u+(t), u−(t)), and writing Φ = Φ(ε, u0
−, u(·)) for the

right-hand side of (2.23) as a function of time t, we have to solve

u(·) = Φ(ε, u0
−, u(·)) (2.24)

for u(·) = u(·; ε, u0
−) ∈ BC0([0,∞), Xα) =: Xα, by Banach’s fixed-point

theorem. By the variation-of-constants formula (2.23), the graph of

wsε(u
0
−) := u+(0; ε, u0

−) (2.25)

will be an invariant manifold under the analytic semigroup (2.20). Stan-
dard hyperbolicity estimates identify graph(wsε) as the stable manifold W s

ε

of the origin. With the fixed point u(·) ∈ Xα of (2.24) depending Lipschitz
continuously on u0

− and O(εγ) on ε, the same is true of wsε and W s
ε .

The proof is based on hyperbolicity estimates of the linear analytic semi-
group exp(At). Specifically, for any α′ ≥ −β′ there exist positive constants
M,ϑ such that

‖eAsP+‖α′,−β′ ≤Meϑs for s ≤ 0
‖eAsP−‖α′,−β′ ≤Ms−(α′+β′)e−ϑs for s > 0.

(2.26)

Here ‖ · ‖α′,−β′ denotes the operator norm from Xα′ to X−β
′
. We have also

used (−A0)−β
′
P± = P±(−A0)−β

′
, so that the norms of P± on X−β

′
are

independent of β′. These estimates follow from standard linear semigroup
estimates on the linearly invariant subspaces Xα′

± and the fact that exp(As)
commutes with all fractional powers (−A0)α

′
. Note that A is boundedly

invertible on the unstable eigenspace X+; hence all the spaces Xα′
+ = X+

coincide.
For the fixed point map Φ we now show that

Φ(ε, u0
−, ·) : Xα → Xα (2.27)

is a contraction for all 0 < ε < ε0, all u0
− ∈ Xα

− and sufficiently small
Lipschitz constant η. Since exp(A·)u0

− ∈ Xα, by exponential decay on Xα
−,
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and
Φ(ε, 0, 0) = 0, (2.28)

and since, by assumption (2.14), F ε(0) = 0, the range of the map Φ is then
automatically contained in Xα.

We estimate contraction only for the u− component Φ− of Φ = (Φ+,Φ−),
the X+ estimate being even more innocent. For any t > 0, and any pair
ui(·) = (ui+(·), ui−(·)) ∈ Xα we have

‖Φ−(ε, u0
−, u

2(·))(t) − Φ−(ε, u0
−, u

1(·))(t)‖α

= ‖
∫ t

0
eA(t−τ)P−

(
F ε(u2(τ)) − F ε(u1(τ))

)
dτ‖α

≤
∫ t

0
‖eA(t−τ)P−

(
F ε(u2(τ))− F ε(u1(τ))

)
‖α dτ

≤
∫ t

0
‖eA(t−τ)P−‖α,−β‖F ε(u2(τ))− F ε(u1(τ))‖−β dτ

≤M
∫ t

0
(t− τ)−(α+β)e−ϑ(t−τ)dτ · η · sup

τ≥0
‖u2(τ)− u1(τ)‖α

≤ κ · ‖u2 − u1‖Xα .

(2.29)

Here we have used the linear semigroup estimate (2.26) for α′ = α, β′ = β.
The integrals are finite because 0 ≤ α + β < 1, by assumption (2.11). Our
contraction constant κ is given explicitly by

κ := MΓ(1− (α+ β))ϑα+β−1η (2.30)

in terms of Euler’s gamma function Γ. We repeat that the estimate for
the difference of the Φ+ components proceeds analogously to (2.29) and is
omitted. Combining both estimates, we see that for small-enough Lipschitz
constants η > 0 we obviously obtain a contraction rate κ < 1, and hence a
fixed point u(·) = u(·; ε, u0

−) of Φ, as has been promised in (2.24) above.
The Lipschitz constant η′ of wsε(u

0
−) = u(0, ε, u0

−) can be estimated from
the fixed point equation (2.24). With the abbreviation ũ = u(·; ε, ũ0

−), we
obtain

‖ũ− u‖Xα = ‖Φ(ε, ũ0
−, ũ)− Φ(ε, u0

−, u)‖Xα
≤ sup

t≥0
‖ exp(At)P−(ũ0

− − u0
−)‖α + κ‖ũ− u‖Xα . (2.31)

Inserting the linear semigroup estimate (2.26) with α′ = −β′ = α then proves
the Lipschitz estimate

‖wsε(ũ0
−)− wsε(u0

−)‖α ≤ ‖ũ− u‖Xα ≤ η′ · ‖ũ0
− − u0

−‖α, (2.32)
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with η′ := M/(1 − κ). In other words, the fixed point of Φ depends on
Lipschitz parameters as Φ itself does.

Dependence on ε can be estimated analogously. Abbreviating the fixed
point u(·; ε, u0

−) ∈ Xα by uε, we immediately see

‖wsε(u0
−)− ws0(u0

−)‖α ≤ ‖uε − u0‖Xα

≤ 1
1− κ‖Φ(ε, u0

−,u
0)− Φ(0, u0

−,u
0)‖Xα .

(2.33)

Indeed, the term (1 − κ)−1 arises from the contraction estimate, if we use
the fixed-point properties of uε,u0 and insert the terms ±Φ(ε, u0

−,u
0) in the

resulting difference.
As in (2.29), we estimate the difference of the Xα

− components Φ− to be

1
1− κ‖Φ(ε, u0

−,u
0)(t)− Φ(0, u0

−,u
0)(t)‖α

≤ M

1− κ

∫ t

0
(t− τ)−(α+β)e−ϑ(t−τ)dτ sup

τ≥0
‖F ε(u0(τ))− F 0(u0(τ))‖−β

≤ Ch(‖u0‖Xα)εγ ≤ Ch(η′ · ‖u0
−‖α) · εγ . (2.34)

Here we have used assumption (2.14) to estimate the ε-dependence of F ε,
and the Lipschitz estimate (2.32) with ũ ≡ 0 at ũ0

− = 0, to estimate ‖u0‖Xα .
Our constant C is given explicitly as

C =
M

(1− κ)
Γ(1− (α+ β))ϑα+β−1 (2.35)

with contraction κ < 1 as in (2.30). This proves the Hölder estimate (2.19).
It remains only to prove that the manifold W s

ε = graph(wsε) is invariant
under the semiflow (2.1) and is characterized by the convergence property
(2.18), ‖u(t)‖α → 0 for t→ +∞. Convergence of the integrals (2.23) and the
variation-of-constants formula for the Lipschitz function F ε imply that the
fixed point t 7→ uε(t) is a strong solution of the differential equation (2.1) in
BC1([0,∞), Xα) satisfying uε−(0) = u0

−. Conversely, any uniformly bounded
strong solution u(t) of (2.1) inBC1([0,∞), Xα) satisfies the integral equation
(2.23) and therefore coincides with a fixed point uε(·) of (2.23) with

u0
− := P−u(0). (2.36)

In other words, W s
ε consists of all initial conditions u(0) = (u0

+, u
0
−) ∈ Xα

such that the solution u(t) ∈ Xα of (2.8) remains bounded for all t ≥ 0. This
characterization of W s

ε also proves forward time invariance. Moreover, W s
ε

trivially contains all solutions such that lim ‖u(t)‖α = 0 for t→ +∞.
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It remains to show, conversely, that

lim ‖uε(t)‖α = 0 (2.37)

for t → +∞ and any fixed point uε of (2.23). By forward invariance of
wsε = graph(wsε) and Lipschitz continuity (2.32) of wsε we have

‖uε+(t)‖α = ‖wsε(uε−(t))− wsε(0)‖ ≤ η′‖uε−(t)‖α, (2.38)

and therefore
‖uε(t)‖α ≤ (1 + η′)‖uε−(t)‖α. (2.39)

For any 0 < δ < ϑ, we can therefore estimate

‖uε−(t)eδt‖α ≤Me−(ϑ−δ)t‖u−0 ‖α

+M

∫ t

0
(t− τ)−(α+β)e−(ϑ−δ)(t−τ)dτ η(1 + η′) sup

0≤τ≤t
‖uε−(τ)eδτ‖α

≤M‖u−0 ‖α + κ′ sup
0≤τ≤t

‖uε−(τ)eδτ‖α.

(2.40)

For Lipschitz constants η0 > 0 and decay rates δ > 0 small enough such that
κ′ can be chosen to lie in (κ, 1), we immediately obtain the uniform bound

sup
0≤τ<∞

‖uε−(τ)eδτ‖α ≤
M‖u−0 ‖α

1− κ′ . (2.41)

In view of (2.38), this shows exponential decay of ‖uε(t)‖α and completes
the proof of Theorem 2.1. ¤

Corollary 2.2. Let assumptions (2.10), (2.11), (2.14), and hyperbolicity as-
sumption (2.16) of Theorem 2.1 hold, but strengthen (2.14) by the additional
differentiability requirements F ε ∈ C1(Xα, X−β) with

‖DuF
ε(u)‖α,−β ≤ η

‖DuF
ε(u)−DuF

0(u)‖α,−β ≤ h(‖u‖α)εγ
(2.42)

for all u ∈ Xα, 0 ≤ ε < ε0, suitable positive constants η, γ, and a nondecreas-
ing function h > 0. For small enough Lipschitz constants 0 ≤ η < η0 and
small enough perturbations 0 ≤ ε < ε0, the stable manifold W s

ε = graph(wsε)
constructed in Theorem 2.1 is then continuously differentiable with uniform
bounds

‖Du−w
s
ε(u−)‖α,α ≤ η′

‖Du−w
s
ε(u−)−Du−w

s
0(u−)‖α,α ≤ Ch(η′‖u−‖α)εγ .

(2.43)

As before, η′ is proportional to η.
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Proof. Differentiating the fixed point form (2.23), (2.24) with respect to
u0
−, the estimates of the proof of Theorem 2.1 apply. ¤

Corollary 2.3. Theorem 2.1 and Corollary 2.2 hold, likewise, for the unsta-
ble manifold W u

ε = graph(wuε ), which is characterized to consist of all solu-
tions u(t) of (2.1) which are defined for all t ≤ 0 and satisfy lim ‖u(t)‖α = 0
for t→ −∞.

Proof. The Perron fixed-point formulation for the unstable manifold

wuε (u0
+) := u(0; ε, u0

+) (2.44)

analogous to (2.23)–(2.25) is given by

u+(t) = eAtu0
+ +

∫ t

0
eA(t−τ)P+F

ε(u+(τ), u−(τ)) dτ

u−(t) =
∫ t

−∞
eA(t−τ)P−F

ε(u+(τ), u−(τ)) dτ
(2.45)

on the space u = (u+, u−) ∈ BC0((−∞, 0], Xα). The proof then proceeds
analogously to the proofs of Theorem 2.1 and Corollary 2.2 above. ¤

Corollary 2.4. Let assumptions (2.10), (2.11), and (2.14) hold with the
following modifications: we do not require F ε(0) = 0 and we drop the as-
sumption that the local Lipschitz constant η is small.

Then for any u0 ∈ Xα and for any time T = T (u0) > 0 not exceeding the
maximal time of existence for ε = 0, there exists ε0 > 0, and a constant C >
0 such that the solutions uε(t), u0(t) of (2.1) satisfy the fractional estimate

‖uε(t)− u0(t)‖α ≤ Cεγ (2.46)

uniformly for 0 ≤ t ≤ T (u0). As before, γ is the regularized Hölder exponent
with respect to ε, as was specified in assumption (2.14).

Proof. The proof is similar to, but simpler than, the invariant manifold
proofs given above. The fixed point form for mild and strong solutions of
(2.1) is

uε(t) = eAtu0 +
∫ t

0
eA(t−τ)F ε(uε(τ)) dτ, (2.47)

by the variation-of-constants formula. The proof then proceeds as before,
replacing the contraction constant κ in (2.30) by

κ := ηM

∫ T

0
τ−(α+β)dτ =

ηM

1− (α+ β)
T 1−(α+β). (2.48)
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Here we have assumed the semigroup exp(At) to be bounded by M , without
loss of generality. Indeed we may shift the spectrum of A by subtracting
a multiple of identity, adding this multiple to the nonlinearity F , instead.
Clearly κ < 1 becomes a contraction for small T > 0. Time stepping with
respect to T then proves the corollary. ¤

Conversely, Corollary 2.4 is a viable approach to proving invariant mani-
fold theorems. We chose to prove the slightly more involved invariant man-
ifold theorem directly, to avoid excessive hand waving.

We conclude this section by describing the necessary cut-off modifications
for local C1 versions of the invariant manifold results stated in Corollaries
2.2 and 2.3. Specifically, we replace assumptions (2.14) and (2.42) as follows.
Let F ε ∈ C1(Xα, X−β) be such that

F ε(0) = 0, DuF
0(0) = 0

‖F ε(u)− F 0(u)‖α,−β ≤ Cεγ

‖DuF
ε(u)−DuF

0(u)‖α,−β ≤ Cεγ
(2.49)

for 0 ≤ ε < ε0, all ‖u‖α ≤ δ0 and suitable positive constants C, γ. We also
fix a smooth scalar cut-off function χ ∈ C∞([0,∞), [0, 1]), identically 1 for
arguments in [0, 1] and identically 0 for arguments above 2. Then χ defines
a cut-off F̃ ε of F ε via

F̃ ε(u) := χ(‖u‖α/δ) · F ε(u). (2.50)

Finally, we require differentiability of the norm ‖ · ‖α on Xα. This holds, for
example, for spaces Xα based on Lp spaces X with 1 < p <∞, 2α > n/p.

Corollary 2.5. Consider the cut-off F̃ ε of a nonlinearity F ε satisfying
(2.49) and (2.50) above. Then for any η > 0 there exists δ > 0 and ε0 > 0
such that the cut-off nonlinearity F̃ ε satisfies assumptions (2.14) and (2.42),
globally for all u0 ∈ Xα and all 0 ≤ ε < ε0. In particular, Corollaries 2.2
and 2.3 hold true for F̃ ε, giving rise to local stable and unstable manifolds
of the trivial equilibrium u = 0 of (2.1) with the original nonlinearity F ε.

Proof. We have to prove (2.14) and (2.42) for prescribed small η > 0
and all u ∈ Xα. Since F̃ ε(u) ≡ 0 for ‖u‖α ≥ 2δ, it is sufficient to consider
‖u‖α < 2δ. We only address the derivative estimates in (2.42), the remaining
claims being obvious. In other words, we have to prove that

‖DuF̃
ε(u)‖α,−β ≤ η (2.51)

‖DuF̃
ε(u)−DuF̃

0(u)‖α,−β ≤ Cεγ (2.52)
for ‖u‖α < 2δ and suitably chosen δ.
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We prove (2.51) first. By the product rule,

DuF̃
ε(u) = χ′(‖u‖α/δ) · δ−1Du‖u‖α · F ε(u) + χ(‖u‖α/δ) ·DuF

ε(u). (2.53)

The second term is small, for δ small and 0 ≤ ε < ε0. Indeed, χ is bounded
and

‖DuF
ε(u)‖α,−β ≤ ‖DuF

ε(u)−DuF
0(u)‖−β + ‖DuF

0(u)−DuF
0(0)‖−β

≤ Cεγ + o(1) (2.54)

is arbitrarily small for ε0, δ small enough. Here we have used assumption
(2.49).

The first term in (2.53) features uniformly bounded χ′ and Du‖u‖α, for
‖u‖α < 2δ. Concerning the X−β norm of the remaining factor δ−1F ε(u), we
use F ε(0) = 0 and estimate

δ−1‖F ε(u)‖−β = δ−1‖F ε(u)− F ε(0)‖−β
≤ δ−1 · 2δ · sup

‖u‖α≤2δ
‖DuF

ε(u)‖α,−β , (2.55)

which is small by the above uniform estimate (2.54). This proves estimate
(2.51).

To prove (2.52), we expand DuF̃
ε(u) and DuF̃

0(0) as in (2.53) above. By
assumption (2.49) and boundedness of χ, χ′, Du‖u‖α it is then sufficient to
estimate

δ−1‖F ε(u)− F 0(u)‖−β = δ−1‖(F ε(u)− F ε(0))− (F 0(u)− F 0(0))‖−β

= δ−1‖
∫ 1

0
(DuF

ε(θu)−DuF
0(θu)) dθ · u‖−β (2.56)

≤
∫ 1

0
‖DuF

ε(θu)−DuF
0(θu)‖α,−β dθ · δ−1‖u‖α ≤ 2Cεγ .

This proves (2.52), for generic constants C, and the corollary. ¤

3. Diophantine estimates

The crucial assumptions for the construction of local invariant manifolds,
in the preceding section, are the estimates (2.14), (2.42) and (2.49) in the
fractional power spaces Xα and X−β introduced in (2.5) and (2.6). As
a bridge to our motivating example (1.1), (1.4), we now provide related
estimates for sufficiently smooth functions bε(x) := B(x, ωx/ε) which are
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quasiperiodic in the rescaled variable x/ε and satisfy a Diophantine condition
for the frequency matrix ω. Specifically, we assume

B : Tn × TN → R, (x, y) 7→ B(x, y) (3.1)

is 2π-periodic in each component of x ∈ Rn and y ∈ RN . In Fourier series,

B(x, y) =
∑
j∈ZN

Bj(y) exp(ijTx), Bj(y) =
∑
k∈Zn

Bjk exp(ikT y). (3.2)

For regularity we assume

‖B‖α,s :=
( ∑

j∈Rn
k∈RN

(1 + j2)2α(1 + k2)s|Bjk|2
)1/2

<∞ (3.3)

where we abbreviate j2 = jT j and k2 = kTk. Thinking of y-averages as
having been subtracted, we require zero y-average

(2π)−N
∫
TNB(x, y) dy = 0, for all x, alias

Bj0 = 0, for all j ∈ Zn. (3.4)

For the N×n frequency matrix ω we use the notation ω = (ω1, . . . , ωn) with
columns ω% ∈ RN .

The main result of this section is

Proposition 3.1. Let B : Tn × TN → R satisfy assumptions (3.2)–(3.4)
above. Assume the frequency matrix ω satisfies the Diophantine condition

min
%=1,...,n

|kTω%| > c|k|−(N−1)−ϑ (3.5)

for some c, ϑ > 0 and all k ∈ ZN\{0}. Fix α, β, and s such that

0 < β ≤ 1/2; β < α− n/4; s > 2(N − 1 + ϑ)β +N/2. (3.6)

Then bε(x) := B(x, ωx/ε), for 0 ≤ x% < 2π, satisfies

‖(−A0)−βbε‖L2(Tn) ≤ C‖B‖α,s ε2β , (3.7)

where A0+id = ∆ denotes the Laplacian (with periodic boundary conditions)
on the standard n-torus Tn = Rn/2πZn. The constant C = C(n,N, c, ϑ,
α, β, s) is independent of B and ε > 0.

We repeat that the set of frequencies ω% satisfying the Diophantine con-
dition (3.5) is a set of full Lebesgue measure in RNn; see [5]. The proof of
Proposition 3.1 will be prepared by Lemmas 3.2–3.4. We first consider the
special case where B(x, y) = B0(y) is independent of x and bε(x) = B0(ωx/ε)
is just a rescaled quasiperiodic function.
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Lemma 3.2. If B(x, y) = B0(y) is independent of x, then Proposition 3.1
holds for any β ∈ (0, 1/2], with

‖B‖α,s = ‖B0‖Hs :=
( ∑
k∈ZN

(1 + k2)s|B0k|2
)1/2

. (3.8)

We prepare for the proof of Lemma 3.2 with an elementary estimate.

Lemma 3.3. Let µ, η ∈ R and p ≥ 1. Then

(1 + η2)1/p(1 + (µ− η)2) ≥ (1 + (µ/2)2)1/p(1 + min(η2, (µ− η)2)). (3.9)

Proof. Fix µ and η. Since the quotient ((1 + η2)/(1 + (µ/2)2))1/p is a
monotone function of p ∈ [1,∞), it is sufficient to prove (3.9) for the extreme
cases p = 1 and p =∞.

The case p =∞ is trivial. The case p = 1 follows from the fact that

(µ/2)2 ≤ max(η2, (µ− η)2),

as is to be expected for the arithmetic mean µ/2 of η and µ− η. This proves
Lemma 3.3. ¤
Proof of Lemma 3.2. We expand

B(x, y) = B0(y) =
∑
k∈ZN

B0k(y) exp(ikT y).

Recall the y-average B00 = 0, by assumption (3.4). Restricting attention to
a single Fourier term, we will prove an estimate

‖(−A0)−β exp(ε−1ikTω·)‖2L2(Ω) ≤ C(1 + k2)4β(N+ϑ)ε4β , (3.10)

uniformly in k ∈ ZN \ {0} and ε > 0. Summing over k will then prove the
lemma.

To prove (3.10), we first compute the j-th Fourier coefficient eε,−βk,j , j ∈ Zn,
of the fractional power. Since −A0 = −∆+ id acts on the j-th Fourier mode
of Tn as multiplication by 1 + j2, we obtain

eε,−βk,j := ((−A0)−β exp(ε−1ikTω·))∧j = (1 + j2)−β(exp(ε−1ikTω·))∧j

= (1 + j2)−β(2π)−n
∫
Tn

exp(i(−jT + kTω/ε)x) dx (3.11)

= (1 + j2)−β
n∏
ρ=1

(sinπ(−j% + kTωρ/ε)
π(−jρ + kTωρ/ε)

exp(πi(−jρ + kTωρ/ε))
)
.

Here jρ denote the components of j ∈ Zn, and ωρ ∈ RN is the ρ-th column
of the N × n frequency matrix ω.
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We abbreviate µρ := kTω%/ε and use sin2 πx ≤ π2x2/(1 + x2) to estimate

|eε,−βk,j |
2 ≤ (1 + j2)−2β

n∏
ρ=1

(1 + (µρ − jρ)2)−1. (3.12)

Using (3.12) and summing over j ∈ Zn, we obtain an estimate of the L2-norm

‖(−A0)−β exp(ε−1ikTω·)‖2L2 =
∑
j∈Zn
|eε,−βk,j |

2 (3.13)

for 0 < β ≤ 1/2 as follows. We regroup the factors in (3.12) and apply
Hölder’s inequality with p = 1/2β, p′ = 1/(1− 2β) to obtain

‖(−A0)−β exp(ε−1ikTω·)‖2L2 ≤∑
j∈Zn

( n∏
ρ=1

(1 + j2
ρ)

1
n (1 + (µρ − jρ)2)

)−2β( n∏
ρ=1

(1 + (µρ − jρ)2)
)−(1−2β)

≤

(3.14)( ∑
j∈Zn

n∏
ρ=1

(1 + j2
ρ)
−1
n (1 + (µρ − jρ)2)−1

)2β( ∑
j∈Zn

n∏
ρ=1

(1 + (µρ − jρ)2)−1
)1−2β

.

A majorant sum for the second factor is in fact given by C(1−2β)n
1 with

C1 := max
µ0∈R

∑
j0∈Z

(1 + (µ0 − j0)2)−1 <∞. (3.15)

Note that the sum is convergent, because it runs over the one-dimensional
“lattice” j0 ∈ Z, only. Also, the estimate is uniform with respect to µ0 ∈ R,
by continuous dependence and 1-periodicity in µ0.

The first factor in (3.14) will provide the ε2β estimate. We apply Lemma
3.3 and (3.9), with p = n, µ = µρ, and η = jρ, and obtain

∑
j∈Zn

n∏
ρ=1

(1 + j2
ρ)−1/n(1 + (µρ − jρ)2)−1

≤
∑
j∈Zn

n∏
ρ=1

(1 + (µρ/2)2)−1/n(1 + min(j2
ρ , (µρ − jρ)2))−1

=
n∏
ρ=1

(∑
j0∈Z

(1 + (µρ/2)2)−1/n(1 + min(j2
0 , (µρ − j0)2))−1

)
(3.16)
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≤
( n∏
ρ=1

(2/µρ)2
)1/n

·
n∏
ρ=1

(1
2

∑
j0∈Z

( 1
1 + j2

0

+
1

1 + (µρ − j0)2

))
≤ 1
n

( n∑
ρ=1

4/µ2
ρ

)
· Cn1 =

4
n
Cn1 ·

( n∑
ρ=1

(kTωρ)−2
)
ε2.

Here C1 is the same constant as in (3.15), and we have restored kTωρ/ε for
µρ. Combining estimates (3.14)–(3.16) with the Diophantine condition (3.5)
for k ∈ ZN \ {0} we obtain

‖(−A0)−β exp(ε−1ikTω·)‖2L2(Tn) ≤ C
( n∑
ρ=1

(kTωρ)−2
)2β

ε4β

≤ C|k|4(N−1+ϑ)βε4β (3.17)

with generic constants C > 0.
We sum over k ∈ ZN \ {0} next. By Fourier expansion of B(x, y) =

B0(y) =
∑
B0k exp(ikT y) and bε(x) = B0(x/ε), we have

‖(−A0)−βbε‖L2(Tn) ≤
∑

k∈ZN\{0}
|B0k| · ‖(−A0)−β exp(ε−1ikTω·)‖L2(Tn)

≤ C
∑
k

|B0k| · (1 + |k|2)2(N−1+ϑ)βε2β (3.18)

≤ C
(∑

k

|B0k|2(1 + |k|2)s
)1/2(∑

k

(1 + |k|2)2(N−1+ϑ)β−s
)1/2

ε2β

for generic constants C, by Cauchy–Schwarz. The first factor equals ‖B0‖Hs .
The second sum is bounded because we have assumed sufficient B-regularity
in Proposition 3.1:

s > 2(N − 1 + ϑ)β +N/2. (3.19)
This proves the lemma. ¤

We have now proved Proposition 3.1 for the special case B(x, y) = B0(y).
Next we aim at the special case

B(x, y) = ej(x)Bj(y), (3.20)

where we abbreviate ej(x) = exp(ijTx) and j ∈ Zn \ {0} is fixed.

Lemma 3.4. Let B(x, y) = ej(x)Bj(y) consist of only the j-th Fourier
component, j∈Zn. As before, let bεj(x) := B(x, ωx/ε). Then Proposition 3.1
holds for any 0 < β ≤ 1/2, with

‖(−A0)−βbεj‖L2(Tn) ≤ C‖ej‖β‖Bj‖Hs ε2β (3.21)
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and ‖Bj‖Hs as defined in (3.8). The constant C does not depend on j or ε.

Proof. Using the special case j = 0 of Lemma 3.2, we obtain

‖(−A0)−βbεj‖L2(Tn) = ‖(−A0)−β(ej(·)Bj(ε−1ω·))‖L2(Tn)

= ‖(−A0)−βej(·)(−A0)β(−A0)−βBj(ε−1ω·)‖L2(Tn)

≤ |‖(−A0)−βej(−A0)β‖| · ‖(−A0)−βBj(ε−1ω·)‖L2(Tn) (3.22)

≤ |‖(−A0)−βej(−A0)β‖| · C‖Bj‖Hs ε2β .

It is therefore sufficient to estimate the L2 operator norm of the operator
(−A0)−βej(−A0)β by C‖ej‖β ; note that ej denotes the multiplication oper-
ator here.

Let ϕ(x) =
∑

m∈Zn ϕm exp(imTx) ∈ Xβ . We have to prove an estimate

‖(−A0)−βej(−A0)βϕ‖L2(Tn) ≤ C‖ej‖β ‖ϕ‖L2(Tn). (3.23)

This is sufficient because Xβ is dense in X = L2(Tn). It is elementary to see
that

0 < qmj :=
1 + (m− j)2

(1 +m2)(1 + j2)
≤ 2 (3.24)

holds for all m, j ∈ Zn. Therefore,

‖(−A0)−βej(−A0)βϕ‖L2(Tn) (3.25)

= ‖
(

(1 +m2)−β(1 + (m− j)2)βϕm−j
)
m∈Zn

‖`2

= ‖
(

(1 + j2)βqβmj ϕm−j
)
m
‖`2 (3.26)

≤ 2β(1 + j2)β‖(ϕm−j)m‖`2 = 2β‖ej‖β · ‖ϕ‖L2 .

This proves (3.23) and the lemma.
Proof of Proposition 3.1. In view of Lemma 3.4 it remains only to
consider the Fourier decomposition

B(x, y) =
∑
j∈Zn

Bj(y)ej(x). (3.27)

With the notation bj(x) := Bj(x/ε)ej(x), estimate (3.21) implies

‖(−A0)−βbε‖L2(Tn) ≤
∑
j∈Zn

‖(−A0)−βbεj‖L2(Tn) ≤ Cε2β
∑
j

(
‖ej‖β · ‖Bj‖Hs

)
≤ Cε2β

∑
j

(
(1 + j2)β−α ·

(
(1 + j2)α‖Bj‖Hs

) )
(3.28)
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≤ Cε2β
(∑

j

(1 + j2)2(β−α)
)1/2(∑

j

(1 + j2)2α‖Bj‖2Hs

)1/2
≤ C‖B‖α,sε2β .

Here we have again used generic constants C, the Cauchy–Schwarz inequal-
ity, and summability of (1 + j2)2(β−α) for α > β + n/4. This completes the
proof of Proposition 3.1. ¤

4. Example: Proof of Theorems 1.1 and 1.2

In this section we prove Theorems 1.1, 1.2 on quantitative homogenization
for the reaction–diffusion equation

ut = ∆u+ f ε(x, ωx/ε, u). (4.1)

In view of Theorem 2.1 and Corollaries 2.2–2.5 on fractional homogenization
of invariant manifolds, it remains only to check assumptions (2.49) for

(F ε(u))(x) := fε(x, ωx/ε, u(x))− f0
u(x, 0)u(x). (4.2)

Here we have subtracted the linearization f0
u(x, 0) at u = 0 of the spatial y

average f0(x, u) of f ε(x, y, u) over y ∈ TN at ε = 0.We recall f0(x, 0) = 0, by
assumption (1.10). Moreover, the linearization f0

u(x, 0) = a0
1(x) is subsumed

in the sectorial operator A; see (1.10) again. With the obvious notation
F 0(u) := f0(x, u) − f0

u(x, 0)u we therefore have achieved F 0(0) = 0 and
DuF

0(0) = 0, as has been anticipated in (2.13) and (2.14).
Specifically, we have to show F ε ∈ C1(Xα, X−β) and local fractional

order convergence of F ε(u), DuF
ε(u), for ε ↘ 0. Since fε is polynomial in

u, the necessary fractional estimates are completely analogous for F ε(u) and
DuF

ε(u). We therefore address only the estimate

‖F ε(u)− F 0(u)‖−β ≤ Cεγ , (4.3)

for 0 ≤ ε < ε0 and ‖u‖α ≤ 2δ0.
Because f ε(x, y, u) are smooth functions, polynomial in u, and because

Xα ↪→ C0(Tn) is an algebra for α > n
4 , we obviously have F ε∈ C1(Xα, X−β),

for all β ≥ 0 and
α > n/4. (4.4)

In view of assumption (2.11), α+β < 1, this limits our example to dimensions

n ≤ 3. (4.5)

To prove (4.3) we choose

0 < 2β = γ < γ∗(n) := 1− n/4, n

4
< α < 1− β. (4.6)
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Inserting (4.2) into (4.3), we estimate

‖F ε(u)− F 0(u)‖−β = ‖f ε(·, ε−1ω·, u)− f0(·, u)‖−β (4.7)

≤
α∑

m=1

‖(aεm(·, ε−1ω·)− a0
m(·)) · um‖−β =

α∑
m=1

‖bm(·)‖−β

if we define bm(x) := Bm(x, ωx/ε), where

Bm(x, y) := (aεm(x, y)− a0
m(x))um(x). (4.8)

Invoking the fractional-order homogenization estimate (3.7) of Proposition
3.1, we only have to show that

‖Bm‖α,s ≤ C (4.9)

is uniformly bounded for ‖u‖α ≤ 2δ0, our choice (4.6) of α, and some

s > 2(N − 1 + ϑ)β +N/2. (4.10)

Recalling the definition (3.3) of ‖B‖α,s, we choose s to be an even integer,
A0 := ∆x − id and observe

‖Bm‖α,s = ‖(−A0)α(−∆y + id)s/2Bm(x, y)‖L2(Tn×TN ). (4.11)

Since aεm are assumed to be smooth, all y-derivatives of Bm take the same
form as (4.8):

Dr
yBm(x, y) = ãεm,r(x, y)um(x) (4.12)

with smooth coefficients ãεm,r of zero y-average, r = 0, . . . , s. It is therefore
sufficient to show bounds

‖(−A0)α(ãεm,r(x, y)um(x))‖L2(Tn) ≤ C, (4.13)

uniformly in y. Such a bound follows because all ãεm,r are smooth, u ∈ Xα,
and Xα is an algebra for α > n/4; see [16]. As was pointed out in our dis-
cussion of smoothness assumption (1.8), estimates (4.10), (4.12), and (4.13)
specify the smoothness assumptions on the coefficients aεm(x, y). Specifically
the required x smoothness is

‖(−A0)αãεm,r(x, y)‖L2(Tn) ≤ C (4.14)

for m = 0, . . . , d, 0 < ε < ε0, r = 0, . . . , s.
By Corollary 2.4 and Proposition 3.1, this proves Theorem 1.1. By Corol-

laries 2.2, 2.3, 2.5 and Proposition 3.1, this also proves Theorem 1.2.
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5. Example: The Navier-Stokes equation

In this section we apply our main abstract result, Theorem 2.1, to derive
a quantitative homogenization result for invariant manifolds of the incom-
pressible Navier–Stokes equation, both in dimensions 2 and 3. Specifically
we consider the system

ut = ν∆u− (u · 5)u+ bε(x)−
∫
Tn b

ε(x) dx+5p
0 = 5 · u (5.1)

for u ∈ Rn, n = 2 or 3, with periodic boundary conditions x ∈ Tn =
Rn/2πZn. We require the usual mean velocity condition∫

Tn
u dx = 0 (5.2)

which eliminates uniform drift. The time-independent external force bε(x)−∫
Tn b

ε also satisfies (5.2), to eliminate mean acceleration. As in Section 2,
we assume

bε(x) = B(x, ωx/ε) (5.3)

to be quasiperiodic, due to periodicity of B in the rescaled variable y = ωx/ε
with N×n frequency matrix ω = (ω1, . . . , ωn). For regularity of B we assume

‖B‖σ/2,s′ ≤ C (5.4)

to be bounded, where the respective regularities σ, s′ in the slow, rapid
variables x, y will be chosen below. See (3.3) for our definition of the norm
‖ · ‖α,s. Following Proposition 3.1, (3.5), we also assume the Diophantine
condition

min
%=1,...,n

|kTω%| > c|k|−(N−1)−ϑ (5.5)

for some c, ϑ > 0 and all k ∈ ZN \ {0}.
The formally homogenized Navier–Stokes equation, for ε = 0, reads

ut = ν∆u− (u · 5)u+ b0(x)−
∫
Tn
b0 +5p

0 = (5 · u) (5.6)

with the spatial average

b0(x) := (2π)−N
∫
TN

B(x, y) dy. (5.7)
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For b0 ≡ 0, the dynamics of (5.6) are given by a globally attracting trivial
equilibrium u = U0 ≡ 0. Existence and smoothness problems about equi-
libria of the stationary Navier–Stokes equation are studied in [11], [13], and
[20], for example.

We assume that for the forcing term b0(x)−
∫
Tn b

0 there exists a hyperbolic
equilibrium U0(x) of the averaged system (5.6), and U0 ∈ H2(Tn). For
rectangle domains (n = 2) with large aspect ratio and periodic boundary
conditions, equilibria with arbitrarily high unstable dimension do in fact
exist; see [15], [23], and [4].

For a more precise formulation, it is useful to rewrite the Navier–Stokes
system (5.1) as an abstract semigroup amenable to the setting of Section 2.
See for example [9] for a background. We first orthogonally decompose

X = L2(Tn) ∩
{∫

Tn
u dx = 0

}
= Hs ⊕Hp (5.8)

into the L2 closures Hs of divergence-free velocity fields and Hp of gradient
velocity fields. Let P denote a projection onto Hs. Since the Laplacian com-
mutes with this decomposition, we only have to solve the projected system

ut = ν∆u− P (u · 5)u+ P
(
bε −

∫
Tn
bεdx

)
(5.9)

for u ∈ Hs. We abbreviate A := ν∆|Hs , N(u) := −P (u · 5)u, gε = P (bε −∫
Tn b

εdx) and rewrite (5.9) as an abstract equation

ut = Au+N(u) + gε. (5.10)

The self-adjoint invertible Stokes operatorA possesses compact resolvent and
defines the scale Xα

s , α ∈ R, of fractional power spaces as outlined in Section
2; for example X0

s = Hs. As before ‖ · ‖α denote the associated graph norms,
which can be identified with the restriction to Hs of the Fourier norms used
in Section 1:

‖u‖α = ‖u‖H2α(Tn), Xα = H2α
s . (5.11)

We summarize our assumptions next. We consider the incompressible Navier
–Stokes system (5.1) on x ∈ Tn, for n = 2 or 3, and with rapid quasiperiodic
forcing bε as in (5.3). Assume the Diophantine frequency condition (5.5)
holds. Concerning the (formally) homogenized system (5.6), (5.7), we as-
sume existence of a hyperbolic smooth equilibrium solution u = U0(x). In
other words, the imaginary axis belongs to the resolvent set of the (compact)
resolvent of the linearization of (5.6), (5.7) at U0. We now choose real values
σ, γ in the triangle

0 < γ < min(σ − n

2
, 2− σ), (5.12)
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as in Theorem 1.1 and (1.14). Finally, as in assumption (4.10) of Section 4,
let

s′ > 2(N − 1 + ϑ)β +N/2 (5.13)

be the smoothness required for the quasiperiodic dependence of the external
forces bε; see (5.3) and (5.4).

Theorem 5.1. Let assumptions (5.3)–(5.5), (5.12), and (5.13) hold, as sum-
marized above. Let U0 denote a hyperbolic equilibrium of the homogenized
Navier–Stokes system (5.2), (5.6), (5.7), in dimension n = 2 or 3.

Then there exist C and ε0 > 0 such that for all 0 < ε < ε0 the Navier-
Stokes system (5.1) possesses an equilibrium U ε ∈ Hσ

s with

‖U ε − U0‖Hσ
s
≤ Cεγ . (5.14)

Moreover, U ε is hyperbolic with the same unstable dimension as U0, and the
local stable and unstable manifolds W s

ε and W u
ε of class C1 converge in Hσ

s

to their homogenized counterparts W s
0 ,W

u
0 with that same fractional order

εγ . See Theorem 2.1 and Corollaries 2.2, 2.3, and 2.5 for a complete technical
formulation.

We prepare for the proof of Theorem 5.1 with a technical observation for
the quadratic nonlinearity N(u) = P (u · 5)u.

Lemma 5.2. Let n
4 < α < 1 with n = 2 or 3. Then the quadratic term

N : Xα → X0 := X = Hs(Tn)
u 7→ N(u) (5.15)

is twice continuously differentiable with constant second derivative. In par-
ticular

‖N ′(u)‖α,0 ≤ C · ‖u‖α (5.16)

holds for the operator norm ‖ · ‖α,0 from Xα to X0 = X.
At the hyperbolic equilibrium U0 of the homogenized Navier–Stokes system

(5.6), (5.7), the linearization

A0 = A+N ′(U0) : Xα → Xα−1 (5.17)

is bounded with bounded inverse.

Proof of Lemma 5.2. Since α > 1/2 we have the continuous embedding
Xα ↪→ H1

s (Tn). Since α > n/4, we also have Xα ↪→ C0(Tn) ↪→ L∞(Tn).
Therefore the map (u1, u2) 7→ P (u1 · 5)u2 is bounded and bilinear from
Xα ×Xα to X = Hs. This proves claims (5.15) and (5.16).
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The remaining claim (5.17) holds for α = 1, by our hyperbolicity as-
sumption. Moreover, (5.17) holds for any α, by definition, if we replace the
linearization A0 = A+N ′(U0) by the unperturbed invertible Stokes operator
A itself. The perturbation N ′(U0) : Xα → X0 ↪→ Xα−1 is bounded and, in
fact, compact for n/4 < α < 1. Therefore A0 in (5.17) is bounded and, in
fact, Fredholm of Fredholm index zero. To show bounded invertibility of A0

in (5.17), not only for α = 1 but likewise for n/4 < α < 1, it is therefore
sufficient to show injectivity of A0. But injectivity of A0 for n/4 < α < 1
is clearly inherited from injectivity of A0 for α = 1, because any kernel el-
ement A0u = 0 in Xα satisfies u = −A−1N ′(U0)u ∈ X1. This proves the
lemma. ¤
Proof of Theorem 5.1. Let α := σ/2, β := γ/2 so that Xα = Hσ

s and

α > β + n/4, 0 < β <
1
2
, α+ β < 1. (5.18)

Here we recall n = 2 or 3.
We first prove the existence of equilibria U ε near U0, together with a

quantitative estimate

‖U ε − U0‖1−β ≤ Cε2β . (5.19)

We then subtract U ε ∈ X1−β ↪→ Xα from the solutions u, defining

v := u− U ε. (5.20)

The corresponding semigroup equation for v reads

vt = A0v + F ε(v) (5.21)

with A0 = A+N ′(U0) and the nonlinearity

F ε(v) := N(U ε + v)−N(U ε)−N ′(U0)v. (5.22)

In view of Theorem 2.1 and Corollary 2.5 we only have to check assumptions
(2.10), (2.11), (2.14), and (2.49), for F ε. Assumption (2.10) holds because
N : Xα → X ↪→ X−β is in fact continuously differentiable by Lemma 5.2.
Assumption (2.11), α+β < 1, holds by (5.18). Obviously F ε(0) = 0, as was
required in (2.14). To complete our proof of (2.14), and (2.49), it is therefore
sufficient to show the estimates

‖F ε(v)− F 0(v)‖−β ≤ Cε2β (5.23)

‖DvF
ε(v)−DvF

0(v)‖α,−β ≤ Cε2β , (5.24)
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locally for small ‖v‖α, together with the ε2β estimate (5.19) on the equilibria
U ε. To show estimate (5.19) we use the implicit function theorem to solve

Φ(U, g) := AU +N(U) + g = 0 (5.25)

for U near the given hyperbolic solution

U = U0, g = g0 = Pb0. (5.26)

By Lemma 5.2, (5.17), the map Φ : X1−β×X−β → X−β is twice continuously
differentiable with invertible linearization

A+N ′(U0) : X1−β → X−β . (5.27)

Indeed 1 − β < 1 and 1 − β > 1 − α + n/4 > n/4, by (5.18). The implicit
function theorem therefore provides a local solution U = U(g) near U0 =
U(g0). Defining U ε := U(gε), and invoking estimate (3.7) of Proposition 3.1,
we obtain

‖U ε − U0‖1−β ≤ C · ‖gε − g0‖−β (5.28)

≤ C‖P (bε − b0)‖−β + C‖P
∫
Tn

(bε − b0)‖−β

≤ C‖bε − b0‖−β ≤ C‖B‖α,s′ε2β .

Here C denotes generic constants and s′ is the high regularity of the quasi-
periodic dependence as required in (5.13) above. We also recall α = σ/2, so
that ‖B‖α,s′ is in fact bounded, by assumption (5.4).

Because of the continuous embedding X1−β ↪→ Xα, induced by α+β < 1,
this proves the quantitative homogenization estimate (5.19).

To show the local estimate (5.23), we compute

‖F ε(v)− F 0(v)‖−β ≤ ‖N(U ε + v)−N(U0 + v)‖−β + ‖N(U ε)−N(U0)‖−β
≤ 2
(

sup
‖u‖α≤‖U0‖α+1

‖N ′(u)‖α,−β
)
· ‖U ε − U0‖α

≤ 2
(

sup
‖u‖α≤‖U0‖α+1

‖N ′(u)‖α,0
)
· ‖U ε − U0‖1−β ≤ Cε2β . (5.29)

Here we have used the ε2β estimate (5.19) for U ε − U0 and Lemma 5.2,
(5.16). To show the local estimate (5.24), we compute

‖DvF
ε(v)−DvF

0(v)‖α,−β = ‖DvN(U ε + v)−DvN(U0 + v)‖α,−β
≤ ‖N ′′‖α,−β · ‖U ε − U0‖α ≤ Cε2β . (5.30)

Here we have used (5.19) together with Lemma 5.2 and the fact that N
′′
(u) =

N ′′ is independent of u. Recalling β := γ/2, this proves Theorem 5.1. ¤
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Corollary 5.3. Let assumptions (5.3)–(5.5), (5.12), and (5.13) hold in di-
mension n = 2 or 3, as in Theorem 5.1. Consider any initial condition
u0 ∈ Hσ

s (Tn) and any finite time T (u0) > 0 such that the corresponding
solution u0(t) of the homogenized Navier–Stokes system (5.2), (5.6), (5.7)
exists for 0 ≤ t ≤ T (u0).

Then there exists ε0 > 0 and a constant C > 0 such that the solution
uε(t) of (5.1), (5.3) with the same initial condition uε(0) = u0 exists for
0 ≤ t ≤ T (u0) and satisfies the quantitative homogenization estimate

‖uε(t)− u0(t)‖Hσ
s (Tn) ≤ Cεγ , (5.31)

uniformly for 0 ≤ t ≤ T (u0) and 0 < ε < ε0.

Proof. The proof follows from Corollary 2.4 together with the estimates
given in the proof of Theorem 5.1 as based on Lemma 5.2. ¤
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