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1 Introduction

To quantify the effects of rapid spatial oscillations on the solutions of hyper-

bolic wave equations, we consider the following specific scalar example

∂2
t u+ γε(x, x/ε)∂tu = ∆u− b(x, x/ε)f(u) + g(x, x/ε), (1.1)

u ∈ IR.Here x ranges in the bounded domain Ω ⊂ IRn, and Dirichlet boundary

conditions

u = 0 on ∂Ω (1.2)

are imposed. We assume the damping coefficient γε to converge rapidly of

the form

γε(x, z) = γ0(x) + εγ̃(x, z) (1.3)

Our quantitive homogenization estimates for individual trajectories will in-

clude the case of negative damping. Positive damping γ0 > 0 will be assumed

only for quantitive homogenization of global attractors.

Equation (1.1) arises, for example, in the context of relativistic quantum me-

chanics; see [Tem88], ch. IV. 3 and the references there. Below we will impose

Diophantine quasiperiodicity conditions on b = b(x, z) and g = g(x, z) in the

rapid spatial variable z = x/ε. More generally, in fact, we will only require

a divergence representation with respect to the fast variable z; see (1.16)

– (1.21) below. In the parabolic context of reaction-diffusion systems the

same divergence representations (1.16) – (1.19) have provided quantitative

homogenization estimates; see [FV00].

Although γ̃, b, f, g may also depend on ε explicitly, we suppress this depen-

dence for notational simplicity of presentation. For well-posedness we only

require

b = b(x, z) ∈ C0(Ω̄× IRn)

0 < β1 ≤ b ≤ β2 <∞
(1.4)

‖g(·, ·/ε)‖L2(Ω) ≤ C, (1.5)

‖γε(·, ·/ε)‖L∞(Ω) ≤ C, (1.6)
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uniformly for 0 < ε ≤ ε0, with generic constants C. Here g(·, ·/ε), γε(·, ·/ε)
denote the functions x 7→ g(x, x/ε), γε(x, x/ε), which are assumed to be well-

defined and of class L2(Ω), L∞(Ω), respectively. The positive lower bound

β1 on b is required to fix signs for the following dissipation condition on the

nonlinearity f = f(u). Let F denote the primitive function of f , that is

F ′(u) = f(u), and assume

F (u) ≥ −δu2 − Cδ (1.7)

for some δ > 0 small enough. Specifically δ < 1
2
λ1(Ω)/β1 will be sufficient,

where λ1(Ω) denotes the first eigenvalue of −∆ on Ω under Dirichlet bound-

ary conditions. Our growth condition on the C1-nonlinearity f = f(u) will

be

|f ′(u)| ≤ C(1 + |u|p−1), and 1 ≤ p ≤ n

n− 2
(1.8)

in case n = dim x ≥ 3. Note that the limiting Sobolev exponent p = n
n−2

for the embedding H1
0 ↪→ Ln(p−1) = L2n/(n−2) is included. Here and below,

polynomial growth exponents p are unconstrained for dimensions n = 1, 2.

Under the above conditions we obtain global solutions

u = uε(t, x), t ≥ 0, (1.9)

of the Cauchy problem with prescribed initial conditions

u = u0(x)

ut = v0(x)
(1.10)

at t = 0; see [Tem88], [BV83, BV89] and section 2 for further details. In

fact (1.1), (1.2) generate a solution semigroup yε = (uε, vε) = (uε, uεt) =

Sε(t)(u0, v0) in the Hilbert space

E = H1
0 (Ω)× L2(Ω). (1.11)

In the homogenization limit ε ↘ 0 of rapid spatial oscillations, and under

additional assumptions, we will quantitatively study convergence

yε → y0 (1.12)

of these solutions in the weaker spaces

E−α := H1−α ×H−α, (1.13)
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0 < α ≤ 1. We recall that H−α := D((−∆)−α/2), α ∈ IR, denotes the scale

of graph norm spaces, associated to fractional powers of −∆ with Dirichlet

boundary conditions. Note H0 = H = L2(Ω), H1 = H1
0 (Ω), E = E0, and

H2 = H2(Ω) ∩H1
0 (Ω), with duals H−1, etc..

To establish such a convergence result we introduce the homogenized equa-

tion

utt + γ0(x)ut = ∆u− b0(x)f(u)− g0(x) (1.14)

in Ω. Here the averages b0, g0 are assumed to exist in the following weak sense

∫

Ω
ϕ(x)γε(x, x/ε)dx −→

ε↘0

∫

Ω
ϕ(x)γ0(x)dx

∫

Ω
ϕ(x)b(x, x/ε)dx −→

ε↘0

∫

Ω
ϕ(x)b0(x)dx; (1.15)

∫

Ω
ψ(x)g(x, x/ε)dx −→

ε↘0

∫

Ω
ψ(x)g0(x)dx;

for all ϕ ∈ L1(Ω) and ψ ∈ L2(Ω). We denote solutions of the homogenized

problem (1.14) with the same initial conditions (1.10) by u0(t, x) and by

y0 = (u0, v0) = (u0, u0
t ) ∈ E.

To obtain a quantitative homogenization estimate on the difference yε(t)−
y0(t) we require the same divergence representation for b, g as in the parabolic

case, see [FV00]. Specifically we require that there exist functions Gk =

Gk(x, z) such that

g(x, z)− g0(x) =
n∑

i=1

∂ziGi(x, z) (1.16)

holds, for x ∈ Ω ⊂ IRn, z ∈ IRn. We assume bounds

‖Gi(·, ·/ε)‖L2(Ω) ≤ C

‖∂1
xi
Gi(·, ·/ε)‖L2n/(n+2)(Ω) ≤ C

(1.17)

uniformly for 0 < ε ≤ ε0. Here ∂1
xi

denotes the partial derivative with respect

to xi, at any (x, z). Of course, all expressions are assumed to be well-defined.

For b, we analogously assume a divergence representation by functions Bi =

Bi(x, z) such that

b(x, z)− b0(x) =
n∑

i=1

∂ziBi(x, z) (1.18)
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with ε-uniform bounds

‖Bi(·, ·/ε)‖L∞(Ω) ≤ C

‖∂1
xi
Bi(·, ·/ε)‖Ln(Ω) ≤ C.

(1.19)

In section 3 below, we will recall sufficient conditions for such divergence

representations to

hold for b(x, z), g(x, z) which are quasiperiodic in z, with Diophantine fre-

quencies. See also [FV00].

For the damping coefficients γε(x, z), γ0(x), finally, we require somewhat

stronger conditions to hold:

γε(x, z)− γ0(x) = εγ̃(x, z). (1.20)

Note that, unlike for b, g, we require the perturbation to be of order ε. How-

ever, we do not require a divergence representation for γ̃. We do assume

higher regularity of γ0 instead:

‖γ0(·)‖L∞ + ‖γ0(·)‖W 1,n ≤ C

‖γ̃(·, ·/ε)‖L∞ + ‖γ̃(·, ·/ε)‖W 1,n ≤ C.
(1.21)

In particular, the second inequality strengthens our previous L∞-bound (1.6).

Together, (1.20), (1.21) can be viewed as a quantitative version of the con-

vergence γε −→ γ0, for ε↘ 0.

Theorem 1.1 Let assumptions (1.4) – (1.8) hold. Assume weak convergence

(1.15), and divergence representations (1.16) – (1.19) on the rapidly oscillat-

ing coefficients b(x, x/ε), g(x, x/ε), as well as convergence (1.20), (1.21) of

the damping coefficient γε(x, x/ε). Consider solutions yε = (uε(t, u), uεt(t, x))

of (1.1), (1.2) and homogenized solutions y0 = (u0(t, x), u0
t (t, x)) of (1.14),

(1.2), with the same initial condition y0 = (u0(x), v0(x)) ∈ E = E0 =

H1
0 (Ω)× L2(Ω) at time t = 0. Fix ε0 > 0 small enough.

Then, for any 0 < α ≤ 1, there exist constants c0, c1, c2, % > 0, depending

only on α, ‖y0‖E0 , and the data, but independent of ε ∈ (0, ε0], such that yε

satisfies the doubly exponential estimate

‖yε(t)− y0(t)‖E−α ≤ εα exp(c2 exp(%t) + c1t+ c0), (1.22)
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uniformly for all t ≥ 0. This doubly exponential estimate also holds for damp-

ing functions γ0(x) which attain negative values.

If the damping coefficient γ0(x) ≥ γ > 0 possesses a strictly positive lower

bound, then this estimate can be sharpened to become singly exponential:

‖yε(t)− y0(t)‖E−α ≤ Cεα exp(%t), (1.23)

for a suitable constant C.

We address convergence of global attractors Aε → A0 next; of course Aε
is again associated to global solutions yε = (uε, uεt) of (1.1), (1.2) and A0

belongs to the homogenized counterpart (1.14), (1.2). See [BV92], [Tem88]

for a general background on global attractors: the minimal sets attracting

all bounded sets. To assert existence and uniform boundedness, as well as

relative compactness of
⋃

0<ε≤ε0 Aε in E = E0, we strengthen our assump-

tions (1.7), (1.8) on the nonlinearity f(u) and its primitive F (u); see [BV92],

[Tem88] for details. We require that

f(u)u ≥ −δu2 − Cδ, (1.24)

again for some δ < 1
2
λ1(Ω)/β1. Moreover we further restrict our growth

assumption (1.8) to be

|f ′(u)| ≤ C(1 + |u|p−1), and p <
n

n− 2
(1.25)

in case n = dim x ≥ 3. Note that we have only dropped the limiting case

p = n
n−2

here. As a simplifying (but non-essential) assumption, we also

impose the following Hölder condition on f ′(u):

|f ′(u1)− f ′(u2)| ≤ C(1 + |u1|β + |u2|β) · |u1 − u2|θ (1.26)

holds for some positive constants C, β, θ such that β + θ < 2/(n− 2).

We now require the damping coefficient γ0(x) > 0 to be strictly positive.

For the homogenized equation (1.14), (1.2) with global attractor A0, the

Hamiltonian energy

Φ(y0) :=
∫

Ω

(
1

2
|∂tu0|2 +

1

2
|∇u0|2 + b0F (u0)− g0u0)

)
dx (1.27)
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then provides a Lyapunov function. In addition we require all equilibrium

solutions (U, 0) ∈ E0 of (1.14), (1.2) to be hyperbolic. Specifically, equilibria

U satisfy

0 = ∆U − b0f(U) + g0 (1.28)

with Dirichlet boundary conditions. Hyperbolicity means that the lineariza-

tion

λ2u+ λγ0u = ∆u− b0f ′(U)u (1.29)

possesses only the trivial solution u = 0 in H1
0 (Ω), for Reλ = 0. It entails

finiteness of the number of equilibria, a saddle-point property near equilibria

Uj, the existence of finite-dimensional unstable manifolds W u
j ⊂ E0, and a

finite Morse decomposition

A0 =
⋃

j

W u
j (1.30)

of the global attractor A0. As was proved in [BV89], [EFNT94] the global

attractor A0 is then in fact exponentially attracting:

distE0(y0(t),A0) ≤ Ce−νt (1.31)

for some positive constants C, ν which only depend on ‖y0(0)‖E. For details

see also section 5.

Theorem 1.2 Let the assumptions of theorem 1.1 hold, strengthened by

(1.24) – (1.26). Let the damping coefficient γ0 > 0 be positive and inde-

pendent of x. Assume hyperbolicity (1.29) of all equilibria U . Fix ε0 > 0 and

0 < α ≤ 1.

Then there exists a constant C > 0 such that

distE−α(Aε,A0) := sup
y∈Aε

distE−α(y,A0) ≤ Cεα
′

(1.32)

holds, uniformly for 0 < ε ≤ ε0. Here the quantitative homogenization expo-

nent α′ is related to the exponential attraction rate ν of A0 in (1.31) and to

the exponential growth rate % of the homogenization estimate (1.23) by

α′ = α/(1 + %/ν). (1.33)
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Our proof of theorems 1.1 and 1.2 below will be based on an estimate of

Gronwall type, which can be formulated in a quite general setting of semi-

linear strongly continuous semigroups. As a basis for future investigations of

quantitative homogenization, for example of hyperbolic systems, we describe

this abstract setting next. For a background on the theory of strongly con-

tinuous semigroups see for example [Kat66], [Paz83], [Tan79]. At the end of

this introduction, after formulating our abstract result as theorem 1.3, we

will outline how our specific example of the hyperbolic wave equation (1.1),

(1.2) fits into this abstract framework; see also [Tem88]. For quantitative

homogenization estimates of analytic semigroups in fractional power spaces

see [FV01].

Consider a scale of Banach spaces E−α, 0 ≤ α ≤ 1. We assume an interpo-

lation estimate

‖y‖−α ≤ Cα‖y‖1−α
0 ‖y‖α−1. (1.34)

in terms of the norms ‖ · ‖−α on E−α. Let A generate a linear strongly

continuous semigroup exp(At), t ≥ 0, on each of the spaces E0, E−1. For

α = 0, 1 we also require semigroup estimates

‖ exp(At)‖L(E−α) ≤ M exp(%̃0t) (1.35)

for all t ≥ 0 and suitable constants M ≥ 1, %̃0 ∈ IR. Here L(E−α) =

L(E−α, E−α) is the Banach space of bounded linear operators from E−α to

E−α), with the usual operator norm.

For 0 ≤ ε ≤ ε0, let yε = yε(t) ∈ E0 denote the mild solution of the semilinear

equation

d

dt
yε = Ayε + Fε(yε) (1.36)

with initial condition

yε(0) = y0 ∈ E0. (1.37)

By a mild solution we mean the solution of the integral variations-of-constants

formulation

yε(t) = exp(At)y0 +
∫ t

0
exp(A(t− τ))Fε(yε(τ))dτ. (1.38)
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We assume that such mild solutions yε ∈ C0([0,+∞), E0) exist globally and

satisfy an exponential growth estimate

‖yε(t)‖0 ≤ M exp(%0t) (1.39)

for all t ≥ 0, and for suitable constants M ≥ 1, %0 ∈ IR which may depend

on ‖y0‖0 but not on 0 ≤ ε ≤ ε0.

We do not impose abstract conditions on the nonlinearity

Fε : E0 → E0 (1.40)

which guarantee the ε-uniform global exponential estimate (1.39). It allows

for greater flexibility to impose (1.39) directly, to be proved for example by an

energy estimate in our particular example (1.1) of hyperbolic wave equations;

see section 2 below. Instead, we impose the following two crucial assump-

tions concerning the “homogenized” nonlinearity F0 and the homogenization

difference Fε −F0, both viewed in the weaker space E−1 :

‖F ′0(y)‖L(E−1,E−1) ≤ C(1 + ‖y‖p1
0 ) (1.41)

‖Fε(y)−F0(y)‖−1 ≤ C(1 + ‖y‖p0
0 ) · ε. (1.42)

Here C, p0, p1 ≥ 1 are suitable constants, independent of both ε and

y ∈ E0. Note that condition (1.41), if imposed on Fε, L(E0, E0) instead

of F0, L(E−1, E−1) implies local existence of unique mild solutions yε in E0,

by the usual local Lipschitz estimate. See section 2 for details.

Theorem 1.3 Let assumptions (1.34), (1.35), (1.39) – (1.42) hold for the

semilinear equations

(1.36) and its mild solutions yε(t), 0 ≤ ε ≤ ε0, with initial condition yε(0) =

y0 ∈ E0.

Then there exist positive constants c0, c1, c2, independent of ε, α, such that

the following doubly exponential quantitative homogenization estimate holds:

‖yε(t)− y0(t)‖−α ≤ εα · exp(c2 exp(%t) + c1t+ c0), (1.43)

uniformly for 0 < ε ≤ ε0 and 0 ≤ α ≤ 1. Here % := %0p with p := max(p0, p1),

as given by estimates (1.39), (1.41), (1.42). The dependencies of cj on y0
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and α can be expressed explicitly by

c0 = (1− α) log(2M) + logCα

c1 = (1− α)%0 + α(MC + %̃0)

c2 = α%−1Mp+1C

(1.44)

in terms of the constants M, %̃0, %0, p0, p1, and C.

As a corollary to theorem 1.3 we note the special case % = %0 = 0 of an

estimate

‖yε(t)‖0 ≤M(y0), (1.45)

for all t ≥ 0. This includes the conservative undamped case, where solutions

remain bounded in forward time, as well as the dissipative case, where solu-

tions eventually enter a fixed large ball. The doubly exponential quantitative

homogenization estimate (1.43) then simplifies to the singly exponential es-

timate

‖yε(t)− y0(t)‖−α ≤ εα exp(c1t+ c0) (1.46)

with c0 as in (1.44) and c1 given explicitly by

c1 = α(MC(1 +Mp) + %̃0). (1.47)

For a proof see estimates (4.22), (4.23) in section 4.

The proof of theorem 1.3 is given in section 4 below. To outline the contents

of the remaining sections, and the proof of theorems 1.1, 1.2, we briefly s-

ketch the standard semigroup formulation of the hyperbolic wave equation

(1.1), (1.2). The ε-uniform exponential growth estimate (1.39) on ‖yε(t)‖0

in E0 will then be given in section 2. The crucial estimates (1.41) and (1.42)

on F ′0(y) and on the homogenization difference Fε(y)−F0(y) in E−1 will be

provided in section 3, for hyperbolic wave equations. Together, these esti-

mates will prove theorem 1.1. The proof of theorem 1.2 on the quantitative

homogenization of the global attractors Aε,A0 will be deferred to section 5.

We now recall the standard semigroup formulation (1.36) of the hyperbolic

wave equation (1.1). Let y = (u, v) ∈ E−α := H1−α × H−α. Note that the
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interpolation estimate (1.34) then follows from interpolation in the Sobolev

spaces Hα = D((−∆)α); see [Hen81], [Paz83], [Tan79], [Tem88]. We define

Ay = A(u, v) := (v,∆u) (1.48)

with domain D(A) = E−α+1 in E−α. Then A generates a strongly continuous

semigroup on E−α. In particular the linear semigroup estimate (1.35) then

holds, in fact with M = 1 and %̃0 = 0. For α = 0 this follows because

the linear semigroup exp(At) conserves the norm in E0, which is in fact the

energy norm; see [Paz83], [Tan79]. For other α ∈ IR this follows because

(−∆)α : E0 → E−α commutes with the semigroup exp(At) and defines a

bounded linear isomorphism – which we may even consider to be isometric

– between E0 and E−α.

The nonlinearity Fε(y) in (1.36) is given by

Fε(u, v) := (0,−bεf(u) + gε − γεv). (1.49)

Of course bε = b(x, x/ε), etc.. Definitions (1.48), (1.49) clearly provide the

semilinear abstract equation (1.36) as an equivalent formulation of the semi-

linear hyperbolic wave equation (1.1), rewritten as a first order system for

(u, v) = (u, ∂tu). We will therefore first prove the slightly tricky estimates

(1.41), (1.42) on the nonlinearities Fε and F0 in section 3, before we return in

section 4 to the abstract semigroup homogenization theorem 1.3. It is those

estimates (1.41), (1.42), where the divergence representations (1.16) – (1.21)

will be used.

Once again we recall that this abstract setting will prove the doubly expo-

nential quantitative homogenization estimate for hyperbolic wave equations,

including the case where the damping coefficient γ0(x) does attain negative

values. In the case of constant positive damping γ0 > 0 it will also provide

a quantitave homogenization estimate of the global attractor.
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2 Local and global growth estimates

In this section we recall some basic theory on local existence and uniqueness

of mild solutions

yε = (uε, ∂tu
ε) ∈ E0 = H1

0 × L2 for hyperbolic wave equations

∂2
t u+ γε(x, x/ε)∂tu = ∆u− b(x, x/ε)f(u) + g(x, x/ε), (2.1)

under Dirichlet boundary conditions. See section 1 for details of notation

and assumptions. In particular, we recall the semigroup formulation

d
dt
yε = Ayε + Fε(yε) (2.2)

with initial condition yε(0) = y0 ∈ E0. We will first prove that the local

Lipschitz estimate

‖F ′ε(y)‖L(E0) ≤ C(1 + ‖y‖p−1
0 ) (2.3)

holds for (2.1). This estimate is of course crucial to local existence and

uniqueness of solutions yε(t) of (2.2); see for example [Tan79], [Paz83]. We

then prove the global exponential growth estimate

‖yε(t)‖0 ≤ M exp(%0t) (2.4)

holds for (2.1), again under the assumptions of section 1. In particular,

we recall that negative damping values γε(x) are allowed here. For posi-

tive damping we obtain uniform asymptotic bounds and, in fact, a global

attractor.

To prove the local Lipschitz estimate (2.3), and for later reference, we first

observe the following basic estimates:

‖u‖L2n/(n−2) ≤ C‖u‖H1
0

‖f(u)‖L2 ≤ C(1 + ‖u‖p
H1

0
)

‖f ′(u)‖Ln ≤ C(1 + ‖u‖p−1
H1

0
).

(2.5)

These estimates are immediate from the growth estimate (1.8) on f ′(u) to-

gether with the standard Sobolev embedding H1
0 ↪→ L2n/(n−2).
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To prove estimate (2.3) in E0 = H1
0 × L2, we recall the particular form

Fε(u, v) := (0,−bεf(u) + gε − γεv) (2.6)

from (1.49). Therefore (2.3) will follow from the two separate, ε-uniform

estimates

‖bεf ′(u)ũ‖L2 ≤ C(1 + ‖u‖p−1
H1

0
) · ‖ũ‖H1

0

‖γεṽ‖L2 ≤ C · ‖ṽ‖L2 .
(2.7)

The second of these estimates is trivial by the ε-uniform L∞-bound (1.6) for

γε = γε(·, ·/ε). Similarly, by the ε-uniform positivity bounds β1, β2 imposed

on b in (1.4), the first estimate in (2.7) reduces to the simple Hölder estimate

‖f ′(u)ũ‖L2 ≤ ‖f ′(u)‖Ln · ‖ũ‖L2n/(n−2 . (2.8)

Indeed, invoking the basic estimates (2.5) proves our claim (2.7). Standard

theory of strongly continuous semigroups then settles the issue of local exis-

tence and uniqueness of mild solutions γε = (uε, ∂tu
ε) ∈ H1

0 × L2 = E0.

We now turn to the global exponential growth estimate (2.4), which implies

existence and uniqueness globally in time. The argument is based on an

exponential Gronwall type estimate of the Hamiltonian functional

Φ(u, ∂tu) =
∫

Ω

(
1

2
|∂tu|2 +

1

2
| 5 u|2 + bF (u)− gu

)
dx (2.9)

introduced in (1.27) above. (Weak) differentiation with respect to time t

provides

d

dt
Φ(u, ∂tu) = −

∫

Ω
γε|∂tu|2. (2.10)

along solutions (u, ∂tu). We write the time derivative of Φ in (2.10) for no-

tational simplicity. More precisely, this relation should be considered in its

time integrated form.

The quadratic lower estimate (1.7) on the primitive F of the nonlinearity f ,

on the other hand, implies

Φ(u, ∂tu) ≥
∫

Ω

1

2
|∂tu|2 + δ′| 5 u|2 − C (2.11)
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for some 0 < δ′ < 1
2
− β1δ/λ and some constant C > 0. Here we have also

used the ε-uniform boundedness (1.5) of g in L2.

Let γ be an essential, ε-independent lower bound of the damping coefficients

γε(·, ·/ε). We first consider the case γ ≤ 0, which allows for negative damping.

Then (2.10), (2.11) combined imply

d

dt
(Φ + C) ≤ −γ

∫

Ω
|∂tu|2 ≤ −2γ(Φ + C). (2.12)

The standard Gronwall argument therefore provides an ε-uniform exponen-

tial growth estimate

Φ(yε(t)) + C ≤M ′ exp(%0t). (2.13)

Here %0 := −2γ, and M ′ = Φ(y0)+C depends on ‖y0‖E0 , but not on ε. Since

Φ +C in (2.11) provides a bound for the squared energy norm ‖yε(t)‖2
0, this

proves the global exponential growth estimate (2.4).

It is worth mentioning the undamped Hamiltonian case γε ≡ 0, for which

γ = 0 and global bounds M = M(‖y0‖0) can be given in (2.4). In the

case of x- and ε-uniformly positive damping γε(·, ·/ε) ≥ γ > 0, in contrast,

the Hamiltonian functional Φ in fact becomes a Lyapunov function, which

decreases along trajectories. This provides asymptotic bounds for Φ and

implies dissipativeness in E0, in that case; see also [BV89] and section 5.

3 Homogenization estimate

In this section we prove the two crucial homogenization estimates (1.41),

(1.42), which read as follows

‖F ′0(y)‖L(E−1,E−1) ≤ C(1 + ‖y‖p1
0 ) (3.1)

‖Fε(y)−F0(y)‖−1 ≤ C(1 + ‖y‖p0
−1) · ε. (3.2)

We recall that these two estimates were indeed assumed to hold, in the semi-

group formulation

d

dt
yε = Ayε + Fε(yε) (3.3)
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of the abstract homogenization result of theorem 1.3. The proof of this

abstract theorem will be formulated in section 4 below. Here we only prove

that the homogenization assumptions (3.1), (3.2) are indeed satisfied in the

abstract setting

yε = (uε, vε)

E0 = H1
0 × L2

E−1 = L2 ×H−1

Fε(u, v) = (0,−bεf(u) + gε − γεv)

(3.4)

of the hyperbolic wave equation (1.1), (1.2). The proof of this fact will be

based on the assumptions of theorem 1.1, and in particular on the divergence

representations (1.16)–(1.19). By theorem 1.3 this then proves theorem 1.1.

We conclude the present section by recalling sufficient conditions for the

divergence representations (1.16)–(1.19) in terms of Diophantine frequency

estimates of KAM type, in the case of spatially rapidly quasiperiodic coeffi-

cients bε, gε.

We first prove estimate (3.1), which is an E−1-variant of our previous local

Lipschitz estimate (2.3), (2.7). Indeed (3.1) with p1 := p− 1 will follow from

the two separate estimates

‖b0f ′(u)ũ‖H−1 ≤ C(1 + ‖u‖p−1
H1

0
) · ‖ũ‖L2

‖γ0ṽ‖H−1 ≤ C · ‖ṽ‖H−1 .
(3.5)

It is sufficient to prove these estimates for smooth functions u, ũ, ṽ. The

H−1-norm is then given explicitly by

‖ṽ‖H−1 := sup
‖ϕ‖

H1
0

=1

∫

Ω
ṽϕ; (3.6)

in accordance with the L2-duality of H−1 and H1
0 . The second estimate in

(3.5) therefore follows from the estimate

| ∫Ω γ0ṽϕ| ≤ ‖ṽ‖H−1 · ‖γ0ϕ‖H1
0
≤

≤ ‖ṽ‖H−1 · C(‖γ0‖W 1,n + ‖γ0‖L∞)‖ϕ‖H1
0
,

(3.7)

for smooth ṽ, ϕ and for γ0 in the Sobolev space W 1,n ∩ L∞; see (1.21).

14



Similarly, the first estimate in (3.2) follows from the Hölder and Sobolev

estimate

| ∫Ω b0f ′(u)ũϕ| ≤ ‖b0‖L∞ · ‖f ′(u)‖Ln · ‖ũ‖L2 · ‖ϕ‖L2n/(n−2)

≤ ‖b0‖L∞ · C(1 + ‖u‖p−1
H1

0
) · ‖ũ‖L2 · ‖ϕ‖H1

0

≤ C(1 + ‖u‖p−1
H1

0
) · ‖ũ‖L2 · ‖ϕ‖H1

0

(3.8)

with generic constants C; see also (2.5). This proves (3.5) and estimate (3.1).

Similarly, estimate (3.2) with p0 := p reduces to estimating the three differ-

ences

‖(bε − b0)f(u)‖H−1 ≤ C(1 + ‖u‖p
H1

0
) · ε

‖gε − g0‖H−1 ≤ C · ε
‖(γε − γ0)v‖H−1 ≤ C · ‖v‖H−1 · ε

(3.9)

for smooth u, v and generic constants C. The last of the three differences

follows easily from assumptions (1.21):

| ∫Ω(γε − γ0)vϕ| = ε| ∫Ω γ̃vϕ| ≤ ε‖v‖H−1 · ‖γ̃ϕ‖H1
0
≤

≤ C(‖γ̃‖W 1,n + ‖γ̃‖L∞) · ‖v‖H−1 · ε · ‖ϕ‖H1
0
.

(3.10)

Here the two inequalities hold, similarly to (3.7) by assumption (1.21).

To prove the remaining two inequalities in (3.9) we use the divergence rep-

resentations (1.16)–(1.19) of bε − b0 and gε − g0. First consider

gε − g0 =
n∑

i=1

∂ziGi(x, z). (3.11)

By (1.17) we can estimate the second difference in (3.9) as follows

| ∫Ω(gε − g0)ϕ| = | ∫Ω
∑n
i=1 ϕ · ∂ziGi(x, x/ε)| =

= | ∫Ω
∑n
i=1 ϕ · (ε∂xiGi(x, x/ε)− ε∂x1

i
Gi(x, x/ε))|

≤ ε(| ∫Ω G · 5xϕ|+∑n
i=1 |

∫
Ω ∂x1

i
Giϕ|) ≤

≤ ε
(
‖G‖L2 · ‖ϕ‖H1

0
+
∑n
i=1 ‖∂x1

i
Gi‖L2n/(n+2) · ‖ϕ‖L2n/(n−2)

)

≤ C · ε · ‖ϕ‖H1
0
.

(3.12)

Here we have again used Hölder estimates, the Sobolev embedding H1
0 ↪→

L2n/(n−2), and the notations ∂x1G(x, z) for partial derivatives of G with re-

spect to the first x-components as well as ∂xiG for partial derivatives of

x 7→ G(x, x/ε) with respect to xi. This proves the second inequality in (3.9).
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To prove the first inequality in (3.9) we use (2.5) and the divergence repre-

sentation (1.18), (1.19) of bε − b0 to estimate quite similarly

| ∫Ω(bε − b0)f(u)ϕ| = | ∫Ω
∑n
i=1 ϕ∂ziBi(x, x/ε)f(u)| ≤

≤ ε
(
| ∫Ω B · 5x(f(u)ϕ

)
|+∑n

i=1 |
∫
Ω ∂x1

i
Bi · f(u)ϕ|) ≤

≤ ε
(
‖B‖L∞(‖f ′(u)‖Ln · ‖ 5x u‖L2 · ‖ϕ‖L2n/(n−2)+

+ ‖f(u)‖L2 · ‖ 5x ϕ‖L2)+

+
∑n
i=1 ‖∂x1

i
Bi‖Ln · ‖f(u)‖L2 · ‖ϕ‖L2n/(n−2)

)

≤ Cε(1 + ‖u‖p
H1

0
) · ‖ϕ‖H1

0
.

(3.13)

This completes the proof of estimates (3.9) and (3.2).

For the convenience of our readers we conclude this section with a few remarks

which relate the divergence representation (1.16)–(1.19) to standard KAM

Diophantine conditions, in the case of quasiperiodic coefficents bε, gε. See also

[FV00], for further details. We only specify the Diophantine conditions for

b; the omitted conditions for g are analogous. Specifically, let

b(x, z) = β(x, ω1z1, · · · , ωnzn) (3.14)

with frequency vectors ωj ∈ IR`j , where β is sufficiently smooth in all its

n + ` := n + `1 + · · · + `n components, and 2π-periodic in all but the x-

components. We then impose the standard KAM Diophantine condition

|kj · ωj| ≥ c|kj|−(`j−1+δ) (3.15)

for j = 1, · · · , n, some constants c, δ > 0 and all integer vectors kj ∈ ZZ `j\{0}.
We also recall that this condition is satisfied for a set of full Lebesgue mea-

sure in the space of frequency vectors (ω1, · · ·ωn) ∈ IR`; see for example

[Cas57]. In [FV100] an explicit divergence representation bε − b0 =
∑
∂ziBi

was constructed, based on the Fourier expansion

β =
∑

k

βk(x) exp(i
∑

j

(kjωj)zj) (3.16)

with k = (k1, · · · , kn), kj ∈ ZZ `j . A sufficient regularity condition for β in
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terms of the Fourier coefficents βk is given by the two conditions

∑ |βk|L∞ · |kjωj|−1 < ∞
∑ |∂x1βk|Ln · |kjωj|−1 < ∞. (3.17)

Here the sums extend over all integer vectors k = (k1, · · · , kn) ∈ ZZ ` and

j = 1, · · · , n for which kj 6= 0. In view of the Diophantine conditions (3.15),

an algebraic decay of the coefficients |βk|L∞ , |∂x1βk|Ln of order

(1 + |kj|)−(`j−1+δ)(1 + |k|)−`+δ′ (3.18)

for some δ′ > 0 is sufficient to guarantee this convergence. Of course this

condition amounts to regularity conditions for the original coefficients b(x, z)

and ∂x1b(x, z).

The conditions for the Fourier coefficients Γk(x) associated to a z-

quasiperiodic term g = g(x, z) read

∑ |Γk|L2 · |kjωj|−1 <∞
∑ |∂1

xΓk|L2n/(n+2) · |kjωj|−1 <∞
(3.19)

in complete analogy to (3.16), (3.17). Our algebraic decay remark (3.18) still

applies.

With the above remarks we have seen how spatially quasiperiodic coefficients

with KAM Diophantine frequencies provide a key example for quantitative

spatial homogenization estimates of hyperbolic wave equations.

4 Proof of theorems 1.3 and 1.1

In this section we prove theorem 1.3 on quantitative homogenization of mild

solutions yε(t) of equations

d

dt
yε = Ayε + Fε(yε), (4.1)

for 0 ≤ ε ≤ ε0, with identical initial conditions

yε(0) = y0 ∈ E0. (4.2)
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At the end of this section, we also complete the proof of theorem 1.1.

We recall from (1.38) that mild solutions satisfy the variations-of-constants

formula

yε(t) = exp(At)y0 +
∫ t

0
exp(A(t− τ))Fε(yε(τ))dτ. (4.3)

To prove the doubly exponential estimate of theorem 1.3 we consider the

difference

w(t) = yε(t)− y0(t), (4.4)

where y0(t) ∈ E0 satisfies the same variations-of-constants formula (4.3) with

ε = 0. The difference w(t), with w(0) = 0, therefore satisfies

w(t) =
∫ t

0
exp(A(t− τ))(Fε(yε(τ))−F0(y0(τ)))dτ (4.5)

in E0. To derive the doubly exponential homogenization estimate (1.43) of

order εα in the interpolation space E−α we prove the estimates

‖w(t)‖0 ≤ 2M exp(%0t) (4.6)

‖w(t)‖−1 ≤ (exp(c̃2 exp(%t) + c̃1t)− 1) · ε (4.7)

with explicit constants c̃1, c̃2 specified in (4.20) below. By interpolation (1.34)

in E−α these estimates will prove theorem 1.3, (1.43), with the explicit choices

(1.44) of the coefficients c0, c1, c2. Note that (4.7) is in fact slightly stronger

than (1.43), where we have omitted the post-exponential term −1 which

becomes irrelevant for large times.

Estimate (4.6) follows trivially from the separate exponential estimates (1.39)

on yε(t) and y0(t) in E0. Of course this estimate provides only a bound,

without any clue as to homogenization for ε↘ 0.

To prove the homogenization estimate (4.7) in E−1 we will use a Gronwall

argument for the variations-of-constants difference (4.5). To prepare this

estimate, we split the F -difference in the integrand as

Fε(yε)−F0(y0) = (Fε(yε)−F0(yε)) + (F0(yε)−F0(y0)). (4.8)

The first difference provides a homogenization term of order ε in E−1. Indeed,

we have assumed

‖Fε(y)−F0(y)‖−1 ≤ C(1 + ‖y‖p0
0 )ε (4.9)
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in (1.42). Combined with the exponential estimate (1.39) on yε(t), this pro-

vides the homogenization term

‖Fε(yε(τ))−F0(yε(τ))‖−1 ≤ C(1 +Mp0e%0p0τ ) · ε. (4.10)

Similarly, the estimate

‖F ′0(y)‖L(E−1,E−1) ≤ C(1 + ‖y‖p1
0 ) (4.11)

of (1.41) provides the Gronwall term

‖F0(yε(τ))−F0(y0(τ))‖−1 ≤ C(1 +Mp1e%0p1τ ) · ‖w(τ)‖−1. (4.12)

With the abbreviations p = max(p0, p1), % = %0p and

c(τ) := C(1 +Mpe%τ ) (4.13)

the splitting (4.8) and estimates (4.10), (4.12) above add up to

‖Fε(yε(τ))−F0(y0(τ))‖−1 ≤ c(τ)(‖w(τ)‖−1 + ε). (4.14)

Inserting this combined estimate into the variations-of-constants difference

(4.5) provides the Gronwall estimate

‖w(t)‖−1 ≤
∫ t

0
Me%̃0(t−τ)c(τ)(‖w(τ)‖−1 + ε)dτ. (4.15)

Along the lines of the Gronwall-Lemma we can conclude the homogenization

estimate

‖w(t)‖−1 ≤ C(t) · ε. (4.16)

Here we have used the abbreviation

C(t) = exp
(∫ t

0
(%̃0 +Mc(τ))dτ

)
− 1 (4.17)

with c(τ) defined by the exponential expression in (4.13). We have also as-

sumed %̃0 ≥ 0, without loss of generality.

To prove estimate (4.16), (4.17) we observe that ξ(t) := (1 +

ε−1‖w(t)‖−1) exp(−%̃0t) > 0 satisfies ξ(0) = 1 and

ξ(t) ≤ 1 +

t∫

0

Mc(τ)ξ(τ)dτ (4.18)
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by (4.14). This implies

ξ(t) ≤ exp(

t∫

0

Mc(τ)dτ),

by the standard Gronwall argument, and thus proves estimates (4.16), (4.17).

An elementary calculation implies

C(t) ≤ exp(c̃2e
%t + c̃1t)− 1 (4.19)

with constants c̃1, c̃2 given explicitly as

c̃1 = MC + %̃0

c̃2 = %−1Mp+1C
(4.20)

if % > 0. Combining estimates (4.16), (4.19) proves the E−1 homogenization

estimate

‖w(t)‖−1 ≤ (exp(c̃2 exp(%t) + c̃1t)− 1) · ε, (4.21)

as was claimed in (4.7) above. We explicitly mention the special conservative

or dissipative case %0 = % = 0, where c(τ) = C(1 +Mp) and (4.21) simplifies

to

‖w(t)‖−1 ≤ exp(c̃0
1t) · ε (4.22)

with the explicit choice

c̃0
1 = MC(1 +Mp) + %̃0. (4.23)

By interpolation (1.34) in E−α, of estimates (4.6) and (4.7), as was mentioned

before, this completes our proof of theorem 1.3, including corollary (1.46),

(1.47).

To prove theorem 1.1, by theorem 1.3, we recall the validity of the assump-

tions of theorem 1.3 in the strongly continuous semigroup setting (1.48),

(1.49) of the hyperbolic wave equation (1.1), (1.2). We have to check as-

sumptions (1.34), (1.35), (1.39)–(1.42) of theorem 1.3. The interpolation es-

timate (1.34) holds by our choice of spaces E−α = H1−α ×H−α. For growth

assumption (1.39) see section 2, (2.4). The exponential estimate (1.35) on
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the linear semigroup exp(At) in L(E0) also follows from section 2, putting

f ≡ 0, g ≡ 0, γ ≡ 0. In L(E−1) the same estimate holds, by conjugation

with the isomorphism (−∆)−1/2 : E0 → E−1. The homogenization estimate

(1.42), together with (1.41) has also been established in section 3. Therefore

theorem 1.3 indeed applies and proves the doubly exponential homogeniza-

tion estimate (1.22) of theorem 1.1.

In the case γ0 ≥ γ > 0 of strictly positive damping, we have claimed a

sharper, singly exponential homogenization estimate (1.23). To prove this,

we invoke the special case % = %0 = 0 of theorem 1.3 as specified in estimates

(1.45)–(1.47). The a priori bound ‖yε(t)‖0 ≤ M(y0), which is assumed in

(1.45), does hold for γ0 ≥ γ > 0 or even for γε ≥ 0; see assumptions (1.21)

and the remarks at the end of section 2. (Similarly, the linear semigroup

estimate (1.35) holds with growth rate %̃0 = 0.) Therefore (1.35) implies the

singly exponential estimate (1.23), which completes the proof of theorem 1.1.

5 Fractional homogenization of exponential

global attractors

In this section we first prove the fractional homogenization estimate

distE−α(Aε,A0) := sup
y∈Aε

distE−α(y,A0) ≤ Cεα
′

(5.1)

which was claimed in theorem 1.2. The proof is based on an exponential

rate of attraction for the global attractor A0 at ε = 0, as observed in (1.31)

and formulated in lemma 5.1. See [HR89], [FV00] for earlier statements of

this abstract principle. We then invoke earlier results by Babin and Vishik

to prove the required exponential attractivity of A0 for the hyperbolic wave

equation (1.1), (1.2) in E0 = H1
0 × L2. See also [EFNT94].

Our presentation of the abstract fractional homogenization estimate follows

the presentation in [FV00], Lemma 4.1. For each 0 ≤ ε ≤ ε0 let yε(t), t ≥
0 denote a family of semigroups on a Banach space E−α such that an ε-

independent estimate

‖yε(t)− y0(t)‖−α ≤ Cεαe%t (5.2)
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holds, uniformly for all 0 ≤ ε ≤ ε0, t ≥ 0. The constants C and % are allowed

to depend on α, and on the norm ‖y0‖0 of the initial condition y0 = yε(0) =

y0(0). The space E−α need not belong to a scale of interpolation spaces, here.

But we do do assume E−α to extend a reference subspace E0 ⊆ E−α with a

stronger associated norm ‖y0‖0 measuring the initial conditions y0 above.

Let Aε, 0 ≤ ε ≤ ε0, denote a family of negatively invariant subsets of

E0 ⊆ E−α : for each ỹ0 ∈ Aε and each t ≥ 0 there exists some initial

condition y0 ∈ Aε such that the solution yε in E0 with initial condition

yε(0) = y0 satisfies yε(t) = ỹ0. We assume an exponential rate of attraction

for A0 in E−α,

distE−α(y0(t),A0) ≤ Ce−νt, (5.3)

uniformly for all initial conditions

y0 ∈
⋃

0≤ε≤ε0
Aε ⊆ E0 ⊆ E−α. (5.4)

In E−α, finally, we assume the fractional homogenization estimate (5.2) to

hold, uniformly for all initial conditions y0 ∈ ⋃Aε as in (5.4). By assumption

(5.2), it is therefore sufficient to assume boundedness of
⋃Aε in the stronger

reference space E0.

Lemma 5.1 Under the above assumptions (5.2) and (5.3), there exists an ε-

independent constant C > 0 such that the fractional homogenization estimate

(5.1) holds, with fractional order

α′ := α/(1 + %/ν). (5.5)

The constants α, %, ν were introduced in (5.2), (5.3) above.

Proof [FV00]: The proof consists of just the triangle inequality. Let 0 <

ε ≤ ε0 < 1. For any ỹ0 ∈ Aε ⊆ E0 define t := −ν−1α′ log ε > 0. By backwards

invariance of Aε, choose y0 ∈ Aε such that yε(t) = ỹ0. Then (5.2), (5.3) and

the choice of t imply

distE−α(ỹ0,A0) = distE−α(yε(t),A0) ≤
≤ ‖yε(t)− y0(t)‖−α + distE−α(y0(t),A0) ≤
≤ C(εαe%t + e−νt) = 2Cεα

′
.

(5.6)
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This proves the fractional homogenization estimate (5.1), for a generic con-

stant C. ./

Let Aε be the global attractor in E0 = H1
0 × L2 of the semigroup Sε(t) of

solutions yε = (uε, uεt) ∈ E0 associated to the hyperbolic wave equation (1.1),

(1.2). Similarly, A0 is the global attractor of the homogenized semigroup

S0(t).

To prove theorem 1.2 it now remains to verify the assumptions of lemma

5.1 in our semigroup setting (1.48), (1.49) of the hyperbolic wave equation

(1.1), (1.2). The fractional homogenization assumption (5.2) was proved in

theorem 1.1, (1.23); see the end of section 4. The exponential attraction rate

(5.3) will be established below, in fact in the stronger norm of E0.

We summarize the necessary arguments. For earlier, technically more re-

strictive arguments along these lines see also [Tem88], [BV89], [EFNT94],

[Rau01], [CV01]. Using the topology of E0 = H1
0 × L2 we observe, and

partially comment below on,

(i) continuous dependence of y0(t; y0) on (t, y0) ∈ (0,∞)× E0;

(ii) existence of the global attractors Aε and A0;

(iii) precompactness of
⋃

0≤ε≤ε0 Aε in E0;

(iv) Lipschitz dependence in E0,

‖y1(t)− y2(t)‖0 ≤ Ce%̃t‖y1
0 − y2

0‖, (5.7)

of solutions y1, y2 for ε = 0 with respective initial conditions y1
0, y

2
0 in

⋃Aε;

(v) continuity of the decaying Hamiltonian energy Φ in E0, see (1.27);

(vi) finiteness and hyperbolicity of equilibria, at ε = 0

(vii) C1+θ-dependence in E0 of the solutions y0(t; y0), for ε = 0, on the

initial condition y0 at t = 0, near the above equilibrium set.

In [BV89], the above properties (i), (ii), (iv) – (vii) together have been shown

to imply an exponential rate of attraction in E0 of relatively compact sets
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K to the global attractor A0 for ε = 0. By property (iii), proved below,

K :=
⋃Aε is indeed precompact. This then proves the exponential attraction

property (5.3). To prove theorem 1.2 it is therefore sufficient to ensure the

validity of claims (i)–(vii) above.

We first address continuous dependence of solutions Sε(t)y0 = yε(t; y0) on

(t, y0) ∈ (0,∞)×E0, as claimed in (i). This is a general fact in the semigroup

setting (1.48), (1.49) of our hyperbolic wave equation, and follows from local

Lipschitz continuity of the abstract nonlinearity Fε(y) in E0; see (2.3) and

for example [Tan79], [Paz83], [BV89, Theorem 7.1].

We address existence and precompactness of global attractors, (ii), (iii) next.

The semigroups Sε(t) in E0 possess an ε-independent absorbing set B, which

is compact in E0, namely a closed ball of sufficiently large radius R in Eσ,

for σ := 1 − 1
2(p − 1)(n − 2) > 0. For n = 3 see [Tem88, pp. 204-206]. For

n ≥ 3 see also [Hal85], [Har85]. The proof in [Tem88] extends verbatim to

rapidly oscillating coefficients b(x, x/ε), g(x, x/ε), because it never uses any

differentiation with respect to x. Therefore the global attractors Aε exist

for 0 ≤ ε ≤ ε0. Their union is precompact in E0 being contained in the

ε-independent set B which is compact in E0. This proves properties (ii),

(iii).

Property (iv) follows from uniform boundedness in E0 of forward orbits star-

ting in
⋃Aε. The proof uses growth estimate (1.8) on f ′(u) and follows the

lines of section 2.

Continuity property (v) of the Hamiltonian energy Φ follows from growth

estimate (1.8), integrated twice with respect to u, and the Sobolev embedding

H1
0 ↪→ L2n/(n−2).

Property (vi) is already assumed to hold in theorem 1.2.

The Hölder condition (1.26) on f ′(u) entails a corresponding Hölder property

for the abstract nonlinearity F(u) on E0, and therefore provides a Hölder

property of the associated semigroup, as spelled out in (vii).

This completes our proof of properties (i)–(vii).

In conclusion, our proof of theorem 1.2 on quantitative homogenization of

global attractors Aε of damped hyperbolic wave equations (1.1), (1.2) can

be summarized as follows. By [BV89], properties (i)–(vii) above imply an
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ε-uniform exponential attraction rate

distH1
0×L2(S0(t)(

⋃

0≤ε≤ε
Aε) ≤ Ce−νt (5.8)

under the homogenized semigroup S0(t), for suitable constants C, ν > 0. This

proves assumption (5.3) of lemma 5.1. We also recall that the fractional

homogenization assumption (5.2) of lemma 5.1 follows from theorem 1.1,

(1.23). In terms of (u, ut) = y ∈ E−α = H1−α ×H−α this means

‖uε(t, ·)− u0(t, ·)‖H1−α + ‖uεt(t, ·)− u0
t (t, ·)‖H−α ≤ Cεαe%t, (5.9)

for all 0 ≤ α ≤ 1 and, again, for suitable constants C, α, % > 0. Both these

ingredients require positive damping. Lemma 5.1 now proves the fractional

homogenization estimate

distH1−α×H−α(Aε,A0),A0) ≤ Ceα
′

(5.10)

for a suitable constant C and

α′ := α/(1 + %/ν). (5.11)

This proves theorem 1.2, because (5.10) is equivalent to (1.32).

As a final remark we mention the open problem of quantitative homogeniza-

tion in the case of limiting exponent

p = n/(n− 2) (5.12)

which includes the case p = 3 of cubic f in n = 3 space dimensions. The

global attractor A0, as well as any single one of the attractors Aε, is known

to be still compact in E0, in this limiting case. See [BV89], [ACH92] and

[Rau01]. Because precompactness property (iii) of

⋃

0≤ε≤ε0
Aε (5.13)

in E0 is not known, however, our present homogenization proof does not

cover the case of limiting exponent p.
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