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The centralizer of a group element g is the group of elements commuting with g. Powers and, if
existent, roots of g are contained in the centralizer. We call a centralizer trivial if it consists of

the integer powers of g, only.

In the group of torus homeomorphisms, we study the centralizer of torus diffeomorphisms
of hyperbolic Anosov type. As a result, the centralizer can be calculated, isomorphically, in the
much smaller group of affine torus automorphisms. In particular, Anosov diffeomorphisms of the
2-torus with a unique fixed point possess trivial centralizer, up to a trivial involution.

The identification of individual reactors from data on reactor cascades, for example in chem-
ical engineering, is one source of motivation for the study of roots of diffeomorphisms. Another
possible source is the study of commuting diffeomorphisms in finite-dimensional spatially or

spatio-temporally chaotic systems.
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1. Introduction

Let G denote a group and let ¢ € G denote any
element of G. The centralizer C(g) or, more pre-
cisely, Ci(g) consists of all group elements v € G
commuting with g:

Cclg) ={r € G;rg =g} (1)
Obviously C(g) is a subgroup of G. In fact, C(g)
is the isotropy group, or stabilizer, of g under the
conjugation action of v € G on itself: vgy~! = g.

We call v € G a power of g € G, if vy = ¢g"
for some integer exponent n € Z. We call vy € G a
root of g € G, if g = 4™ for some integer exponent
m € Z. Clearly, powers and roots of g commute
with ¢ and hence are contained in the centralizer
C(g).

In the present note we compute the centraliz-
ers, and in particular, the roots of C! Anosov dif-
feomorphisms ¢ on the 2-torus TV = RN /ZV . See
[Hasselblatt & Katok, 2002] for a broad survey

of Anosov maps and the contemporary theory of
hyperbolic dynamics. In a C* genericity context,
which we do not pursue here, Smale has raised
the centralizer question because “...it gives some
focus in the dark realm, beyond hyperbolicity, where
even the problems are hard to pose clearly.” See
[Smale, 1967, 1991, 2000]. More precisely, Smale
asked whether centralizers of diffeomorphisms ¢ of
compact manifolds are trivial, for generic ¢. Here
trivial means that the centralizer of ¢ consists of
the integer powers of ¢, only. For further discussion
of this question and some more existing literature
see Sec. 4.

We lift the Anosov diffeomorphism ¢ to a C!
map @ on the covering space RY. Then

Bz +n) = B(z) + Agn (2)

for all n € ZN. The period matrix A, has inte-
ger entries, determinant +1 by invertibility of ¢,
and is the map induced by ¢ on first homology. In
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2 B. Fiedler

other words, A, € Ly(Z), where the group Ly(Z)
of integer N x N matrices with integer inverse coin-
cides with SLy(Z) except for admitting determi-
nants 1.

Due to the hyperbolic structure of Anosov dif-
feomorphisms ¢, their period matrix A, is also
hyperbolic: the spectrum of A, is disjoint from
the complex unit circle [Franks, 1970]. It has been
proved by [Franks, 1970; Manning, 1974] that any
C! Anosov diffeomorphisms ¢ is in fact C° conju-
gate by a C° homeomorphism H of TV to its “lin-
earization” A:

A, =HopoH™ L (3)
It is therefore worthwhile to consider linear auto-
morphisms B of TV commuting with A, in the lin-

ear group Ln(Z), that is B € Cp,(A,). We also
consider the finite fixed point set

Fix(Ap):= {z € TV; Az = z(mod Z)} (4)

as a finite Abelian group with respect to addition
(mod Z). We will then view the semidirect product

Cry(z)(Ayp) x Fix(Ay) (5)
as a subgroup of the semidirect product
ALN(Z):= Ln(Z) x TN (6)

of affine linear torus maps. Composition of elements
(Bj,7;) in ALN(Z) is defined by

(By,11)(B2,12): = (B1Ba, 71 + Bimy). (7)

We can now state our main result.

Theorem 1.1. In the group H(TV) of torus
homeomorphisms, the centralizer of any C' Anosov
diffeomorphism @: TN — TN is isomorphic to the
centralizer of its period matriz (A,,0) in the affine
linear torus group ALN(Z). More precisely

Corrny(p) = Caryz)((Ay, 0))
= CLN(Z)(Atp) X FiX(A(p). (8)

For centralizers in SLy(Z) see [Plykin, 1998].
For the 2-torus it is particularly easy to describe the
centralizer Cp,(z)(Ay) in the group L3(Z) of integer
period matrices of determinant +1.

Proposition 1.2. Let A € Ly(Z) be hyperbolic.

Then

Cr,z)(A)
{+id}

1%

zZ (9)

In particular, we see that the centralizer is gener-
ated by powers of a single “primitive” root of A, up
to the trivial involution —id. Note that the central-
izer in SLoZ also satisfies (9), being a subgroup of
the centralizer in Lo(Z).

We now exclude nontrivial orientation preserv-
ing roots for orientation preserving Anosov dif-
feomorphisms ¢ of the 2-torus with unique fixed
points. Let SH(T?), in analogy to SLy(Z), denote
the orientation preserving homeomorphisms of the
2-torus. Note Ay € SLy(Z) for the period matrix of
any ¥ € SH(T?). In view of Proposition 1.2 we lift
—id back to SH(T?), via the linearization H of ¢
in (3), as a unique involution

k:= H Yo (—id) o H € SH(T?). (10)

Absence of roots of ¢ can then be formulated as
follows.

Corollary 1.3. Let ¢ be an orientation preserving
C! Anosov diffeomorphism of the 2-torus with a
unique fized point. Let the orientation preserving
torus homeomorphism v commute with ¢. Then ¥
commutes with the involution k associated to p, and
either v itself or ki is an integer power of .

The orientation condition on %) is necessary for
this result. Indeed the standard Anosov matrix, ¢
possesses a unique fixed point. But ¢ = 1 also
possesses a root: choose v to be the Fibonacci

generator
1 1
Y= (11)
1 0

of determinant —1.

In Sec. 2 we prove Theorem 1.1. Proposition 1.2
and Corollary 1.3 are proved in Sec. 3. We conclude
with some remarks including possible applications
of the root problem, in Sec. 4. In particular, we
contrast the Anosov case, as discussed here and
elsewhere in the literature, with previous results
by Belitskii and Tkachenko concerning diffeomor-
phisms of the interval.

2. Proof of Theorem 1.1

Conjugate group elements possess conjugate cen-
tralizers. To prove Theorem 1.1 we therefore fol-
low [Franks, 1970; Manning, 1974] and linearize the
Anosov diffeomorphism ¢ to be given by its integer
invertible period matrix A = A, € Ly(Z); see (3).

A prioriit is not sufficient to determine the cen-
tralizer of A in ALx(Z) itself. We still claim, and
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show below, that additional centralizing elements
of A, in H(T") do not arise. In [Palis & Yoccoz,
1989a], a similar observation has been made under
the additional assumption that iy and ¢ share a
common fixed point. We do not impose any such
restriction: let i be any torus homeomorphism.

Passing to the covering space, as in (2), and
skipping bars (!) we write

Y(x +n) = ¢Y(z) + Bn (12)

with period matrix B = Ay € Ln(Z). In other
words,

Y(x) = Bx + h(x) (13)

with a continuous function A, periodic under all
lattice vectors n € Z%:

h(z + n) = h(z), (14)

for all z € RY.
Now suppose the torus homeomorphism ¢ com-

mutes with the Anosov diffeomorphism ¢ = A.
Then there exists some ng € Z" such that
Y(Az) = Ay(z) + no, (15)

for all z. In terms of A from (13) this is equivalent
to the homologous equation

BAzx + h(Azx) = ABx + Ah(x) + ng. (16)

The periodic continuous function % is bounded.
Letting |z] — oo in (16) therefore implies
commutativity

AB = BA 17)

for the period matrices. Since A is hyperbolic, we
can invert (id — A) and define

&:= (id — A)"Ing € Fix(A) (18)

Indeed &(mod Z) defines a fixed point of A: TV —
TN, Returning to the covering space RY, we note
that A(z): = h(x) — £ satisfies

h(Az) = Ah(z). (19)

The periodic continuous function A is bounded and
the linear Anosov map A is hyperbolic. Therefore
h =0 and h(z) = £ € Fix(A) is a pure translation.
In particular (13) implies

Y = (B,§) € Cp,z)(Ay) x Fix(Ay). (20)

Conversely, any such (linearized) ¢y commutes with
. The isomorphism (8) claimed in Theorem 1.1 is
simply defined by conjugation with the linearizing
homeomorphism H of p = H~1(A,,0)H.
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Repeating the above arguments in the affine lin-
ear group ALN(Z) it is obvious that Cy , (z)(A,) ¥
Fix(A,) is indeed the centralizer of (Ay,0) in
ALN(Z).

This proves Theorem 1.1.

3. Linear Centralizers and
Unique Fixed Points

In this section we prove Proposition 1.2 and
Corollary 1.3.

Proof of Proposition 1.2. Although our argument
essentially follows [Plykin, 1998], where the higher-
dimensional case was also addressed, we include
a completely elementary proof “from scratch”, at
least for the case det A = +1. We leave the case
det A = —1 as an exercise to the reader.

Let A € SLy(Z) be hyperbolic. Any matrix
B commuting with A shares its eigenvectors with
A. Let A(B) denote the eigenvalue of B along the
expanding eigendirection of A. Then the logarithm

IOgZ CLz(Z)(A) - R

B v log A(B) @

is a group homomorphism to the additive reals. To
complete the proof it only remains to show that the
image of the log homomorphism (21) is discrete, and

ker log = {+id}. (22)

To show the image is discrete let 74 (A):= A £ 1/A.
Then the eigenvalues \(B) satisfy

Tdet B(’\(B) = tr(B) € Za (23)

for any B € Lg(Z). Therefore log|A\(B)| €
log|731(Z)) is indeed discrete-valued.

To show the kernel is given by (22) we note
that the expanding eigenvalue A(A) of the hyper-
bolic matrix A € SLy(Z) is irrational. Indeed

AA) = %(trA FVIEAP D ¢Q  (24)

because |tr A| > 3 for real |A\| # 1. Because A is
integer, this implies n € Q for the associated eigen-
vector (1,7) of A. Now suppose B € kerlog. Then

o()-(o ) ()-2(;) @

with integer b;; and irrational 5. This implies
bip = by = 0 and b;; = by = %1, proving the
proposition. W
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4 B. Fiedler

Unlike the two-dimensional result of Propo-
sition 1.2, centralizers of hyperbolic matrices in
Ln(Z) may contain components Z @& Z in dimen-
sions N > 3; see [Plykin, 1998].

To prove Corollary 1.3 we first formu-
late a lemma counting fixed points of Anosov
diffeomorphisms.

Lemma 3.1. Let A = A, € LN(Z) denote the
period matriz of a C' Anosov diffeomorphism ¢ of
TN . Then the number of fized points of ¢ is given by

# Fix(p) = # Fix(A) = |det(id — A)|. (26)
For 2-tori, N = 2, we have
# Fix(p) = [tr A — 2], (27)

in the orientation preserving case det A = +1.

Proof. Part 2, (27), follows from (26) in the planar
case because # Fix(p) = [pa(1)| for the character-
istic polynomial

pa(A):=det(A — A) = A\? — (tr A)X + det A. (28)

This proves (27), up to sign. As in (24), we have
[tr(A)| > 3 for hyperbolic A € SLy(Z). This proves
the choice of sign in (27).

To count fixed points, as in (26), we note that
the fixed point equation

(id — A)¢ =ng € ZN (29)

from (18) associates to each fixed point £ € TV =
RN /ZN a fundamental volume cell of size |det(id —
A)|7! in the lattice (id — A)"'Z". Since these vol-
umes add up to fill the N-torus of volume 1, the
Anosov diffeomorphism ¢ possesses |det(id — A)|
fixed points. This proves (26) and the lemma. W

As an aside we note that det(id — A) coincides
with the Lefschetz number of ¢ and |det(id — A)] is
the Nielsen number; see [Brooks et al., 1975).

Proof of Corollary 1.8. Let ¢ be orientation preserv-
ing, C1, and Anosov on T? with hyperbolic period
matrix A = A, € SLy(Z). By Theorem 1.1 any
commuting orientation preserving homeomorphism
¢ € Cy(12)(¢p) linearizes to (B,0), where B = Ay, €
Csi,(z)(A) is the period matrix of . Indeed, the
translation component in Fix(A,) = {0} vanishes,
because ¢ and A, possess only one fixed point. It
only remains to show that B, or — B, is a power of A.
By Proposition 1.2, we have Cgy,(z)(A)/{%id} X Z

via the log homomorphism (21). In (23)~(25) we
have observed that the lower bound for nonzero
[log[A(B)|| is attained at trace = 3. It is therefore
sufficient to show

trA=3 (30)

This follows from Lemma 3.1, (27), because hyper-
bolicity of A implies |tr A| > 3, and because ¢ was
assumed to possess only one fixed point. This proves
Corollary 1.3. B

4. Remarks and Applications

We compare the above simple results on C® cen-
tralizers and roots of Anosov diffeomorphisms with
some previous resuits in the literature. We also
discuss differentiability issues for Anosov results
and their connection with Belitskii linearization.
We conclude by indicating how the root problem
is related to an inverse problem arising in chem-
ical engineering, and how the centralizer problem
might pertain to the analysis of spatially chaotic
two-dimensional patterns.

A pioneering result by Kopell [1970], asserts
that generic C! circle diffeomorphisms ¢ possess
trivial centralizers: only integer powers of ¢ com-
mute with p. We consider, instead, the even simpler
case of an interval. Let ¢ be a C? diffeomorphism
of the unit interval fixing, for simplicity, 0 and 1.
Let D?([0,1]) denote the group of such orientation
preserving diffeomorphisms. The C? case of orienta-
tion preserving homeomorphisms is denoted, anal-
ogously, by D°([0,1]). The C* and C™ cases are
denoted by D, D*°. For simplicity we also assume
that Fix (p) = {0, 1} are the only fixed points of ¢
and are both hyperbolic.

Fix any m € N. Then any ¢ € D>([0,1]) pos-
sesses a large class of roots 1 € D° which satisfy

P (z) = p(z)- (31)

Indeed fix any z¢p € (0,1), zm:= @(zo). Subdi-
viding the interval from zy to z,, by a strictly
monotone sequence Ig,Xy,...,Tm—1,Tm, arbitrar-
ily, we may choose any homeomorphism 1 which
maps each subinterval i to subinterval i + 1, for
i=0,...,m — 2. We can then use (31) to uniquely
extend v, not only to the last subinterval m — 1,
between z,,_; and x,, but to all of (0,1), such that
(31) holds. Extending % continuously to fix 0 and 1
then ensures ¢ € HO is a root (31).

For diffeomorphisms ¢ the situation changes
drastically. Let 0 < ag: = ¢'(0) < 1. Following
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[Belitskii & Tkachenko, 2003] we may C* linearize
@ € D" k> 2, at x =0 by a diffeomorphism

H(): [0, 1) - [OOO) Ho(O) = 0,
such that

(32)

HopHy ' (y) = aoy (33)
for all y > 0. Note that Hy € C* is unique, up
to a positive factor op multiplying Hp. At z = 1,
¢'(1}) = a; > 1 we linearize analogously by o1 H;
such that

H]t (0 1] - (~O0,0], Hl(l) = 0,
HipH; (y) = ary.

We then define the Belitskii invariant p = p,(7) by

(34)
(35)

po(r):= =7 + o log(Hyo Hy )~ ). (36)

Note that p € C* is unique up to constants

co+ (T —a1) (37)

given by the scaling factors o; of the linearizations
at ¢; = log i/ loga;. Moreover

po(T + 1) = pp(7) (38)

is periodic. It is therefore easy to eliminate the
constants ¢;, for example, by requiring fol uw =20
and p(0) = 0. With these normalizations we easily
observe

prom(r) = () (39)
Happyp~1 (1) = ,Ucp(T) (40)
fo-1(T) = —pp(—T7) (41)

for all 7 € R, ¢ as above, ¢ € D*. In particular y is
a conjugation invariant. More precisely, orientation
preserving interval diffeomorphisms in D" are C*
conjugate if, and only if, their invariants coincide.
Reversible diffeomorphisms ¢ possess odd invari-
ants p. By (39) applied to roots ™ = ¢, periodicity
of yy, immediately implies that

(42)

po(8) = prge(5) = — pry(ms)

possesses a period 1/m, rather than just 1. This
shows that interval diffeomorphisms ¢ rarely pos-
sess roots. In fact, ¢ possesses an mth root in D?
if, and only if, 1/m is a (not necessarily minimal)
period of p,. Similarly, ¢ can be written as a time-1
map of a flow ®* on the interval z € [0,1] if, and
only if, u, = 0. In particular, u, = 0 if, and only
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if, ¢ is conjugate to the time-1 map ®! of the flow
of the standard model

i=az(1-2z) (43)

See [Belitskii & Tkachenko, 2003] for further details,
as well as the tutorial [Fiedler, 2005].

It is also easy to determine the centralizer
Cp(o,1)) (). If py = 0, the centralizer is given by
some C* flow conjugate to ®!. The conjugator itself
is determined by ¢ and ®!. In particular,

CD;:([()]])(\'O) = R, for M= 0. (44)
If 1, is nonconstant, then
Cpn(jo,1) () = Z. (45)

A generator is given by an mth root ¢ € C* of ¢,
where 1/m is the minimal period of . The central-
izer only consists of integer powers of ¢ if, and only
if, 1'is the minimal period of u,,. See [Fiedler, 2005]
for details. Similar arguments apply to circle dif-
feomorphisms and recover, after decades, Kopell’s
result on generic triviality of centralizers [Kopell,
1970].

In contrast to the two-dimensional Anosov case
where CY roots are scarce and centralizers are
finitely generated, with only one Z component, the
very nonchaotic interval case possesses an abun-
dance of C? roots. In class C? and higher, roots
are scarce on the interval.

For the centralizer question in the context of C3
Morse-Smale diffeomorphisms ¢ on compact man-
ifolds see [Anderson, 1976]. See [Shilnikov et al.,
2001] for a background on Morse-Smale systems.
Generically, centralizers are then discrete: CV neigh-
borhoods of id in the centralizer contain id, only.
Moreover, absence of roots is a C°° dense property,
and hence C* dense for any « > 1. From our view
point, the above results on the interval case can
be used in this context: we simply restrict ¢ to a
one-dimensional C? heteroclinic orbit in the Morse~
Smale system.

We now return to the Anosov case ¢ € C?(T?)
and ask for centralizers ¥ of ¢ in the group D?(T?)
of C? torus diffeomorphisms. Suppose % is a root
of p = ™. Also suppose, for simplicity, that both
¥ and ¢ fix x = 0. By continuous global lineariza-
tion (3) on T2, the homoclinic points to z = 0 of
¥ are dense in T2 and coincide with those of (.
More precisely, the homoclinic set W* N W* of the
intersections of the C? stable and unstable mani-
folds W* W?® of x = 0 under ¢, is dense both
in W* and W*. The Belitskii invariants p,(7) and
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6 B. Fiedler

py(T) are therefore defined on a dense homoclinic
subset

1

0g ay

rel:= 1 log(— H,(W"* NnW?3{0})), (46)
by (36). Here we replace ag, a1, Hy, Hy by eigen-
values 0 < a; < 1 < a, and the Belitskii lineariza-
tions H,, Hs; on W*, W%, respectively. As in (38),
the existence of a C? root ¢ = ™ then requires
pe to possess period 1/m, rather than just 1. In
addition to this obstacle which, generally, excludes
the presence of nontrivial C? roots, it now becomes
a nontrivial geometric requirement that the dense
domain I' C R of definition of x in (46), (36) has
to be invariant under shift by 1/m. Typically then,
along these lines, we see how roots are excluded
and centralizers reduce to mere trivial powers in the
C? case.

For smooth Anosov diffeomorphisms ¢ on the
N-torus, Palis and Yoccoz have in fact answered
Smale’s question affirmatively: for an open dense
set of such ¢, smooth centralizers C(ip) are trivial,
[Palis & Yoccoz, 1989a]. Generic smooth Anosov
diffeomorphisms on compact manifolds, likewise,
posses only trivial smooth centralizers. Moreover,
for an open dense set of smooth Anosov ¢, all
solutions ¢ in C(yp) of the generalized root equa-
tion ™ = " are trivial; see [Palis & Yoccoz,
1989b]. Katok excludes such roots for sufficiently
smooth ¢ on 2-manifolds with hyperbolic invari-
ant measures, [Katok, 1996]. Hyperbolicity condi-
tions which ensure discrete centralizer, generically,
have been derived and surveyed by Burslem [2004].
This includes some results on trivial centralizers
C(y) = R for time 1 maps ¢ of Anosov flows. We
note, however, that all these very general and beau-
tiful results only address centralizers with high reg-
ularity. Qur above results, in contrast, determine
centralizers in the much larger group H(TV) of
torus homeomorphisms.

Even more degenerate, of course, is the rare
case of global C! linearizability H € C! in (3).
In this case the analysis of roots and centralizes
of the preceding chapters applies verbatim. This
case, however, requires all Floquet exponents on
the dense set of periodic orbits to coincide with the
eigenvalues of the period matrix. Such a constraint
imposes so much rigidity that we barely dare men-
tion it.

In between the two extreme cases of sim-
ply heteroclinic Morse-Smale dynamics and, on
the other hand, uniformly hyperbolic Anosov

diffeomorphisms the pioneering work of Leonid P.
Shilnihov and his school, as well as a broad inter-
national community, have partially untangled the
enormously rich and complex phenomena associ-
ated with homoclinicity and its many variants. See
[Shilnikov et al., 1998, 2001] for a most comprehen-
sive survey.

To be more specific, consider a planar dif-
feomorphism ¢ with hyperbolic fixed point
©(0) = 0 and everywhere transverse stable/unstable
manifolds

w* m W (47)

Homoclinic orbits zx € W* N W43\{0} can then be
classified as I-homoclinic, 2-homoclinic, etc. as fol-
lows. Consider the open segment (0,z¢)* C WH
from 0 to zp in W* and, similarly, (zo,0)°> C W*
from x4 to 0 in W2, For zy to be 1-homoclinic, or of
(homoclinic) type 1, we require the open segments
to possess empty intersection. For 2-homoclinic
orbits we require all intersection points to be of
type 1, that is, 1-homoclinic. If the homoclinic point
zg is not of any type less than n, but

types ((0, zo)" N (xg,0)°) <n —1, (48)

then we call z¢ and its orbit n-homoclinic. Apply-
ing the diffeomorphism ¢, or ™!, we see that this
definition does not depend on the choice of the rep-
resentative zg of the homoclinic orbit. Denoting
n-homoclinic points by [y, with To:= {0}, we
obtain a decomposition

W NnW?®=Toul'TU---. (49)

Any homeomorphism ¢ commuting with ¢ and fix-
ing O also respects each of the n-homoclinic sets I',.
Indeed 1) respects W* and W¥. Since the sets them-
selves are ordered canonically, along W*¢ or W¥, the
number of (k—)homoclinic points between xo and
w(xo) indicates which roots of ¢ may be present.
Since the orderings of these k-homoclinic points
may differ along W* and W* by some permutation
7 we obtain further invariants which homeomorphic
1) must respect. In the differentiable case, of course,
unique Belitskii linearization produces further con-
straints on the location of these intersections.
Even in the case of planar linear Anosov dif-
feomorphisms A € SLy(Z) with positive irrational
eigenvalues 0 < A < 1 < A" it is a geometri-
cally amusing exercise to determine all n-homoclinic
orbits. The eigenvector lines W* and W? then
divide the lattice Z2? into four “quadrants”. Let
C: denote the convex hull of the lattice points,
separately in any of the four eigenquadrants. Let
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E;:= 0Ci N Z? denote the lattice points in the
boundary of C;. (Note, in passing, how the ratio-
nal slopes associated to the elements of F; provide
the continued fraction expansions of the eigenvec-
tor slopes.) The eigenprojections of E; onto the
eigenspaces then provide the 1-homoclinic orbits.
Indeed, translate the eigenspaces to run through
any element ng of F;. The resulting closed paral-
lelogram with the original eigenspaces then does
not contain any other lattice points, except 0
and ng. Therefore the eigenprojections of ng are
1-homoclinic.

Removing the extreme points E from the lat-
tice and taking the convex hull C5 of the remain-
der in each quadrant, we obtain Cy:= conv((C; N
Z?)\E). Let

Ey:=98C, N 72 (50)

Proceeding like this, we successively decompose the
lattice points

CanQIEIUEQU"‘ (51)

in each eigenquadrant into pairwise disjoint sub-
sets, F. The n-homoclinic points I';, are given by
the eigenprojections of the sets F,, by construc-
tion. The recursive construction of the sets F,, can
in fact be abbreviated by noting that C,, = nCj.
Indeed there are no lattice points left over between
the boundaries of nC; and (n + 1)C;. Therefore

E, = d(nCy) NZ? (52)

are simply the lattice points on the scaled continued
fractions boundary of the eigenvector slopes.

The rigidity results of Corollary 1.3 are then
essentially a consequence of the density of the homo-
clinic set and its decomposition ' =1y U Ty U---
into n-homoclinic points, which is preserved under
centralizers 1. Density does not hold, however, in
the vast expanses of homoclinic phenomena covered
in Shilnihov’s work [Shilnikov et al., 1998, 2001].
But ¢ € Cx(p) or Cpx(yp) will preserve the non-
wandering set £2(¢), and will have to satisfy severely
restrictive constraints there. In particular, we may
speculate, the size of the centralizer could serve to
measure some aspects of dynamic complexity in the
nonwandering set. We have seen how these con-
straints depend very much, indeed, on the regular-
ity requirements of the underlying group G = H or
D" in which the centralizer is considered. In pres-
ence of C? differentiability, Belitskii linearization
imposes severe constraints. For homeomorphisms
‘H constraints can arise from density properties of
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— [¢m] — #(2)

- s ¥m convert-

e [o] ]

Fig. 1. A reactor cascade of m reactors ¢, ..
ing the input z into an overall output ().

periodic, homoclinic, or other trajectories. Perhaps
a combination of such monitors can be used, sepa-
rately for basic sets of the nonwandering set and for
their heteroclinic connections. At present, however,
this direction remains largely unexplored.

Reactor cascades in chemical enginecring are
one applied source of our root problem ¢ = ™.
Schematically, a reactor cascade consists of m indi-
vidual reactors such that, sequentially, the output
of each reactor is fed forward as input into the
next reactor. See Fig. 1. Let ¢ = p(z) denote the
overall output of the last reactor in the cascade,
depending on the input z to the first reactor. Let
1; denote the input—output map of reactor i. Then
clearly

p=vYmo oot

is the composition of the maps 1); which represent
the individual reactors of the cascade. In appli-
cations we may typically assume v; € C?. The
frequent and industrially relevant case ¥; =
Yo = --- = ¢, = 1 leads to our original C? root
problem ¢ = ¢¥™.

The task to determine the root ¢ from infor-
mation on the overall input—output relation ¢,
only, amounts to an identification of the individ-
ual input-output relation i without any addi-
tional costly measurements taken inside the reactor
cascade.

In practice, we cannot expect the individual
reactors ¢; € C! to be strictly identical. We are
therefore also interested in quantitative monitors
which measure the deviation of the reactor cascade
1; from the ideally identical situation ¥; = 1, but
depend only on .

In the one-dimensional case of an interval with
two fixed points and ¢’ > 0, the deviation of the
Belitskii invariant g, in (36) from period 1/m pro-
vides such a monitor.

Even in the chaotic Anosov case, we have seen
in Chapters 1-3 how to determine C° roots after
global C? linearization (3) of ¢. A monitor u for C!
roots is then also given on the dense homoclinic set
I’ C R defined in (46).

We conclude with a speculation on the possi-
ble role of centralizers in the analysis of spatially
chaotic patterns in dimension two or higher. We

Ist Reading



8 B. Fiedler

consider systems which are invariant under a lat-
tice action, Z? for simplicity.

One class of such systems are lattice dynamical
system, where some nonlinear dynamics at each lat-
tice point couples to the neighboring points, at finite
or infinite range, in a translation invariant man-
ner. Although spatio-temporal dynamics may arise,
spatial chaos asks for complicated actions of lattice
translations on the set of bounded stationary, that
is, time-independent solutions. Elliptic partial dif-
ferential equations on R? with spatially doubly peri-
odic coefficients are another class of systems which
are a source of potentially interesting Z? actions.
A spatio-temporal example arises, even in one spa-
tial dimension, when we consider time-periodically
forced systems. One component Z of Z?> = Z @ Z
then corresponds to a spatial shift, as before, and
the other component Z is generated by the time
period. See [Bunimovich & Sinai, 1988; Mielke &
Zelik, 2004] for this circle of ideas.

Decomposing Z? = Z @ Z, we may speak of
horizontal (spatial) translations (n,0) and of verti-
cal (spatial or temporal) translations (0, m). Spatial
chaos expresses the phenomenon, already present
in one-dimensional systems, that horizontal trans-
lations act in some complicated “chaotic” manner
on the space of all bounded solutions.

We now ask whether genuinely two-dimensional
chaos is possible on finite-dimensional sets of
bounded solutions. For a simplistic example, we
hypothesize that the set of bounded solutions con-
stitutes some finite-dimensional differentiable torus
TN. Further, suppose that the horizontal transla-
tion (1,0) by a single lattice cell acts differentiably
on TN by an Anosov map .

Let v denote the action by vertical translation
(0,1} o the torus 7 of bounded solutions, and
only assume continuity of . Clearly our results in
Secs. 1-3 then apply. These results indicate, how-
ever, how the very hyperbolicity of the horizon-
tal shift ¢ imposes such strong constraints on the
vertical shift 1) that both maps must be viewed
as strongly dependent. For example, suppose 1 =
(id, &) on TV is equivalent to a translation by a fixed
point £ of the period matrix A,. Then the result-
ing pattern will be periodic in the vertical direc-
tion and chaos is purely horizontal. If, on the other
hand, ¥ = (Ay,€) € CL,z)(A,) x Fix(4,) on T2,
then there exist m, n, such that ¥y™ = ¢™. The pat-
tern can therefore be thought of as being gener-
ated by a single rational shift. We therefore hope
that our elementary analysis of Anosov centralizers

may contribute to an improved understanding
of finite-dimensional spatial and spatio-temporal
chaos, eventually.
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