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Abstract

Based on a Morse-Smale structure we study planar global attractors Af of the scalar
reaction-advection-diffusion equation ut = uxx + f(x, u, ux) in one space dimension. We
assume Neumann boundary conditions on the unit interval, dissipativeness of f , and hy-
perbolicity of equilibria. We call Af Sturm attractor because our results strongly rely on
nonlinear nodal properties of Sturm type.

The planar Sturm attractor consists of equilibria of Morse index 0, 1, or 2, and their
heteroclinic connecting orbits. The unique heteroclinic orbits between adjacent Morse levels
define a plane graph Cf which we call the connection graph. Its 1-skeleton C1

f consists of the
unstable manifolds (separatrices) of the index-1 Morse saddles.

We present two results which completely characterize the connection graphs Cf and their
1-skeletons C1

f , in purely graph theoretical terms. Connection graphs are characterized by
the existence of pairs of Hamiltonian paths with certain chiral restrictions on face passages.
Their 1-skeletons are characterized by the existence of cycle-free orientations with only one
maximum and only one minimum. Such orientations are called bipolar in [FMR95].

In the present paper we show the equivalence of the two characterizations. Moreover
we show that connection graphs of Sturm attractors indeed satisfy the required properties.
In [FiRo07a] we show, conversely, how to design a planar Sturm attractor with prescribed
plane connection graph or 1-skeleton of the required properties. In [FiRo07b] we describe
all planar Sturm attractors with up to 11 equilibria. We also design planar Sturm attractors
with prescribed Platonic 1-skeletons.



1 Introduction

Based on a Morse-Smale structure we look at the simplest class of parabolic partial differen-
tial equations from a global dynamical systems point of view. More specifically we study the
global spatio-temporal dynamics of the following scalar reaction-advection-diffusion equation
in one space dimension

ut = uxx + f(x, u, ux).(1.1)

Here t ≥ 0 denotes time, 0 < x < 1 denotes space, and we seek solutions u = u(t, x) ∈ R.
To be completely specific we also fix Neumann boundary conditions

ux = 0 at x = 0, and x = 1.(1.2)

1-gon Our results will hold analogously, though, for other separated boundary conditions.
For nonlinearities f = f(x, u, p) of class C2, standard theory provides a local solution

semigroup u(t, ·) = T (t)u0, t ≥ 0, on initial conditions u0 ∈ X. For the underlying Banach
space X we choose the Sobolev space H2, intersected with the Neumann condition (1.2).
See for example [Ta79, He81, Pa83] for a general background.

Starting with Ladyzhenskaya, the global attractor A = Af of the semigroup T = Tf has
developed into a central object of study. Assume

f ∈ C2 is dissipative.(1.3)

Here dissipativeness requires that there exists a fixed large ball in X, in which any solution
u(t, ·) = T (t)u0 stays eventually, for all t ≥ t(u0). In particular solutions exist globally for all
t ≥ 0. Since our dissipative semigroup T (t) is also compact the global attractor A possesses
the following three equivalent characterizations

A = the smallest set attracting all bounded sets(1.4)

= the largest compact invariant set

= the set of all bounded solutions u(t, ·), t ∈ R.

Attractivity requires that for every δ > 0 and any bounded subset B of X there exists a time
t0 = t0(δ,B) such that T (t)B remains in a δ-neighborhood of A for all t ≥ t0. Invariance
is understood in both positive and negative time direction. Negative time invariance of A
requires the existence of a past history u(−t) ∈ A, t ≥ 0, for any u0 = u(0) ∈ A, such that
T (t)u(−t) = u0, for all t ≥ 0. Similarly, the set of all bounded solutions is understood to
consist of all u0 ∈ X with uniformly bounded forward orbit u(t) and some uniformly bounded
past history u(−t), for all t ≥ 0. For broad surveys on the theory of global attractors we
refer to [BaVi92, ChVi02, Ed&al94, Ha88, Ha&al02, La91, Ra02, SeYo02, Te88] and the
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many references there. The specific attractors arising from our setting (1.1), (1.2) we call
Sturm attractors. An explicit sufficient, but not necessary, condition for f = f(x, u, p) to
be dissipative is a sign condition f(x, u)0 · u < 0, for large |u|, together with subquadratic
growth of f(x, u, p) in the gradient variable p.

Zelenyak [Ze68] first noted the gradient-like structure of the semigroup T (t); see also
[Ma78, Ma88]. In fact there exists a Lyapunov function V of the form

V(u) =

∫ 1

0

a(x, u, ux)dx(1.5)

which is strictly decreasing with time t along all solutions u(t, ·) = T (t)u0, except at equi-
libria. For nonlinearities f = f(x, u) which do not contain advection terms ux a well-known
explicit form of a is a(x, u, p) = 1

2
p2 − F (x, u) with primitive Fu: = f .

To exclude degenerate cases we assume hyperbolicity of all equilibria

0 = vxx + f(x, v, vx)(1.6)

of (1.1) with Neumann boundary conditions vx = 0 given by (1.2). As usual hyperbolicity
of v means that the linearized Sturm-Liouville eigenvalue problem

λu = uxx + fp(x, v(x), vx(x))ux + fu(x, v(x), vx(x))u,(1.7)

again with Neumann boundary (1.2), possesses only the trivial solution u ≡ 0 for λ = 0. We
call the number of positive eigenvalues λ the unstable dimension or Morse index i = i(v) of
the equilibrium v. We number eigenvalues λ = λk such that

λ0 > . . . > λi−1 > 0 > λi > λi+1 > . . .(1.8)

Hyperbolic equilibria v come equipped with local unstable and stable manifolds W u(v) and
W s(v) of dimension and codimension i(v), respectively. As a consequence of the Lyapunov
function (1.5), the Sturm attractors A of (1.1), (1.2) consist of just all unstable manifolds,

A =
⋃
v∈E

W u(v),(1.9)

where E = {v1, . . . , vN} denotes the set of all equilibria. Note that E is finite by dissipa-
tiveness of f and hyperbolicity of equilibria. Morse inequalities, Leray-Schauder degree, or
a shooting argument in fact show that N is odd. To prove (1.9) just observe that the α-
limit set of any bounded past history in A must consist of a single equilibrium, due to the
gradient-like structure and hyperbolicity. For the same reason, but now going forward in
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time, the ω-limit set of any forward bounded solution is a single equilibrium. Therefore the
global attractor A consists entirely of equilibria and heteroclinic orbits u(t, ·) which converge
to different equilibria for t→ ±∞.

The Morse-Smale property requires transverse intersections of all stable and unstable
manifolds of equilibria in addition to hyperbolicity and the gradient-like structure. It was a
celebrated result of Angenent and Henry, independently, that this Morse-Smale transversality
is, not an additional requirement but, a consequence of hyperbolicity of equilibria; see [He85,
An86]. Surprisingly this fact is based on a generalization of the Sturm nodal property, first
observed by [St1836] and very successfully revived by [Ma82]. Let z(u) ≤ ∞ denote the
number of strict sign changes of u ∈ X \{0}. Let u1(t, ·), u2(t, ·) denote any two nonidentical
solutions of (1.1), (1.2). Then

t 7→ z(u1(t, ·)− u2(t, ·))(1.10)

is finite, for any t > 0, nonincreasing with t, and drops strictly whenever multiple zeros
u1 = u2, u1

x = u2
x occur at any t0, x0. See [An88]. See [Fi94, FiRo96, FiRo99, FiRo00,

FiSche03, Ga04, Ra02] for aspects of nonlinear Sturm theory. It is for this property, central
to the entire analysis in the present paper, that we use the term Sturm attractor for the
global attractors of (1.1), (1.2).

The main goal of the present paper is a description of all two-dimensional Sturm attractors
A, i.e., of all global attractors Af of (1.1), (1.2), for dissipative nonlinearities f such that all
equilibria are hyperbolic of Morse index at most two.

Our description will be based on the connection graph Cf of the global attractor Af .
Vertices of Cf are the N equilibria v1, . . . , vN ∈ Ef of Af . An edge of Cf between vj, vk

indicates the existence of a heteroclinic orbit between equilibria vj, vk of adjacent Morse
index i(vj) = i(vk) ± 1. By Morse-Smale transversality of stable and unstable manifolds,
heteroclinic orbits can only run from higher to strictly lower Morse indices. Therefore the
connection graph Cf comes with a natural flow-defined edge orientation: edges can be ori-
ented from higher to lower Morse index. As an aside we already note here that heteroclinic
orbits between adjacent Morse levels turn out to be unique, whenever they exist, in the
Sturm setting (1.1), (1.2).

We restrict attention to adjacent Morse levels, for the following two reasons. First,
Morse-Smale systems possess a transitivity property of heteroclinic connections. Let v1  v2

indicate that there exists a heteroclinic orbit from v1 to v2. Then v1  v2 and v2  v3

implies v1  v3. The proof is based on the λ-Lemma; see for example [PdM82]. Second and
conversely, special to the Sturm setting (1.1), (1.2), suppose vk  v0 with i(vk) = i(v0) + k.
Then there exist further equilibria v1, . . . , vk−1 such that i(vj) = i(v0) + j and vk  vk−1  
. . . v1  v0 connect through successively adjacent Morse levels. This cascading principle
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was first observed in [BrFi89]; see also [Wo02]. Together, transitivity and cascading imply
that our graph Cf of Morse-adjacent heteroclinic connections settles the question, for any
pair of equilibria, of whether or not there exists a heteroclinic connection.

As a simplified variant of the full connection graph Cf we also introduce its undirected
1-skeleton C1

f . Vertices of C1
f are the sink equilibria only, i.e., the equilibria v with Morse

index i(v) = 0. Edges of C1
f are the unstable manifolds W u(v) of saddle equilibria, i.e., of

equilibria v with i(v) = 1. More precisely distinct sink vertices vj, vk of C1
f are connected by

an (undirected) edge if, and only if, there exists a saddle equilibrium w such that w  vj

and w  vk. The 1-skeleton C1
f thus ignores source equilibria v in Cf , with i(v) = 2, together

with their emanating heteroclinics to saddle targets.
Planarity of the connection graphs Cf , C1

f does not come as a surprise for two-dimensional
Sturm attractors Af . To formulate our main results on the structure of these connection
graphs we therefore collect some terminology concerning plane graphs G, next. See also
[BeWi97], sections 1.6 and 11.2. We call a graph G plane, G ⊆ R2, if its vertices vj and
edges ejk = vjvk are embedded in the plane as points and continuous curves, respectively,
such that edges neither intersect nor self-intersect, except possible at their vertex end points
vj, vk. A loop is an edge vkvk with identical end points vk; we only consider graphs without
loops, below. A multigraph is allowed to possess several edges e`

jk connecting the same pair
of vertices vj and vk. Rather than assigning an integer weight to a single edge we represent
multiple edges by multiple nonintersecting curves sharing the same end point vertices. We
call any multigraph G finite, if G consists of finitely many vertices and edges. Any finite plane
multigraph G decomposes its complement R2\G into finitely many connected components
called the regions or faces of G. Exactly one of the regions is unbounded, and its boundary
vertices and edges are called the boundary ∂G of G. Unless unboundedness is stated explicitly
by faces we always mean bounded faces below.

Any sequence e`1
k0k1

, e`2
k1k2

, . . . , e`r
kr−1kr

of edges is called a walk of length r. If all edges are
distinct, the walk is called a trail. If, in addition, all vertices are distinct, a trail is called path.
In the exceptional case of k0 = kr where the first and last vertex only are allowed to coincide,
a walk, trail, or path is called closed. A cycle is a closed path. A (not necessarily closed)
path which visits each vertex exactly once is called a Hamiltonian path. A Hamiltonian
cycle, similarly, is a cycle which is Hamiltonian.

Directed or oriented multigraphs are multigraphs together with an orientation for each
edge. Multigraphs can be oriented, i.e., can be assigned an edge orientation. Conversely any
directed multigraph can be made undirected simply by forgetting the orientation. Directed
walks, trails, di-cycles (i.e. directed cycles), and Hamiltonian paths are required to traverse
edges in the given orientation. A vertex v of a directed multigraph is called a directed source
(short: di-source) if all its edges point away from it. If all its edges point toward v̄, then we
call v̄ a di-sink. We also call v a (local) maximum and v̄ a (local) minimum. We caution the
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Figure 1.1: Cellular and non-cellular multigraphs. Left: cellular. Center: not cellular
(doubly traversed vertex v on face boundary F ). Right: not cellular (doubly traversed edge
on face boundary).

reader that this notion for vertices in multigraphs differs from the Morse notion of source
and sink equilibria in planar global attractors Af based on their Morse index to be 0 or 2,
respectively.

We call a graph G connected, if any two vertices vk0 , vkr can be joined by a walk of suitable
length r. For finite connected, plane multigraphs with N vertices, m edges and r bounded
faces we recall the Euler characteristic

N −m+ r = 1.(1.11)

We call a plane multigraph cellular if each of its (bounded) faces F is bounded by an
(undirected) cycle of distinct edges and vertices. See figure 1.1 for illustration. In other
words, each bounded face F is the interior of a plane (topological) n-gon, for some n ≥ 2.
In particular the closure of each bounded face is homomorphic to a 2-disk.

Each boundary edge e ⊆ ∂G is the boundary of at most one bounded face. Each other
edge, called interior, is in the boundary of exactly two bounded faces. We note a slight
asymmetry in the role of the unbounded face. Under compactification of R2 to the 2-sphere
S2, the previously unbounded open face will be homomorphic to an open 2-disk but will not
necessarily become a cell of the resulting graph on S2. The simplest connected example is
the graph G of two vertices, v1, v2 with a single edge joining them.

We are now ready to state the first variant of our main result. We exclude the case of a
trivial Sturm attractor Af which consist of only one single globally attracting equilibrium.

Theorem 1.1 A graph G is the 1-skeleton C1
f of the connection graph Cf of some at most
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two-dimensional nontrivial Sturm attractor Af with only hyperbolic equilibria if, and only if,
G satisfies the following two properties:

(i) G is a finite, connected, plane, cellular multigraph without loops, and

(ii) G possesses an orientation with exactly one di-sink v̄ and one di-source v, both on the
boundary ∂G, and without di-cycles.

To say that one plane graph G “is” another plane graph G̃, here and below, indicates
an isomorphism. The standard notion of graph isomorphism is a vertex bijection which
preserves edges. For our plane graphs, we require a homeomorphism of the plane graph,
including its bounded faces, which maps edge curves to edge curves and vertices to vertices.
Combinatorially, it is sufficient to preserve face boundaries, in addition to the usual notion.

An orientation of G without di-cycles, as in part (ii) of theorem 1.1, equivalently defines a
partial order on the vertices of G such that the orientation points downhill. In that sense we
may call v̄, v the unique minimum, maximum of this order, respectively. Such orientations
are called bipolar with poles v, v in the survey [FMR95], which also reviews several other
applications.

We note that the full connection graph Cf and its flow-oriented variant can both be
reconstructed uniquely from their 1-skeleton C1

f . In fact we detail this construction next
for arbitrary finite, plane, cellular multigraphs G without loops. Motivated by Cf and its
1-skeleton we call the vertices of G Morse sinks. Starting from G bisect each edge by an
additional vertex. Call the bisecting vertices Morse saddles. In each (bounded) face insert
one additional vertex and call it a Morse source. Draw an edge from each Morse source to the
n bisecting Morse saddles on the boundary of its face. We call the resulting undirected graph
G2 the filled graph of G. By construction G is the 1-skeleton of its filled graph G2. Since this
filling procedure decomposes each face of the 1-gon into quadrilaterals it is sometimes called
a quadrangulation. Obviously there is a “flow” directed variant of this construction. We just
orient bisected edges away from their bisecting Morse saddles, and edges in bounded faces
of G away from their Morse sources.

To formulate our characterization of connection graphs Cf , rather than their 1-skeletons
C1

f , we need to introduce one last concept. Consider the filled graph G2 of any finite,
connected, plane, cellular multigraph G without loops. We call a Hamiltonian path h0

in G2 a boundary Z-Hamiltonian path, if the properties (a)–(c) below all hold. Properties
(b), (c) restrict the path h0 as it crosses through any Morse source w in a face F . Let
. . . v−2v−1wv1v2 . . . denote the vertex sequence along h0. Then v±1 are Morse saddles on
the face boundary ∂F . The vertices v±2 are Morse sinks, or Morse sources other than w
outside F . If v−2 or v+2 is a Morse sink then it belongs to ∂F . Since ∂F contains at
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least four vertices, and v1v2 are immediate successors, we can then speak of a clockwise or
counter-clockwise direction of the arc v1v2 from v1 to v2, uniquely, and similarly for v−2v−1.
Specifically we require

(a) “Boundary”:

h0 starts at some vertex v and terminates at another vertex v̄, both in the boundary
∂G.

(b) “No right turn exit”:

Whenever h0 = . . . wv1v2 . . . exits any Morse source w of a face F , then v1v2 are not
both on ∂F in clockwise direction.

(c) “No left turn entry”:

Whenever h0 = . . . v−2v−1w . . . enters any Morse source w of a face F , then v−2v−1 are
not both on ∂F in clockwise direction.

The letter Z graphically indicates the admissible behavior in case both the exit arc v1v2,
on top, and the entry arc v−2v−1, on bottom, are on ∂F : right turn entry and left turn exit.
Note however that h0 is also permitted to connect Morse sources of adjacent faces through
the bisecting Morse saddle of a shared edge without creating arcs on ∂F at all. Also note
that the reverse path h−0 = . . . v2v1wv−1v−2 . . . of h0 is boundary Z-Hamiltonian whenever
h0 is, albeit with reversed roles of the start and termination points v and v̄.

By plain reflection κ we can also define (boundary) S-Hamiltonian paths h1. We simply
call h1 S-Hamiltonian for G2 if the reflected path h0: = κh1 is Z-Hamiltonian for the reflected
graph κG2. In other words the S-Hamiltonian path h1 is neither permitted right turns, upon
face entry, nor left turns upon exit. By a (boundary) ZS-Hamiltonian pair (h0, h1) we mean
a Z-Hamiltonian path h0 and an S-Hamiltonian path h1 in G2, both of which start at the
same vertex v and terminate at the same, distinct, vertex v̄ in G. See figure 1.2 for examples

Our concept of ZS-Hamiltonian pairs (h0, h1) is motivated, as we shall see in sections 3,
4, by the fact that the ordering of equilibria vk of the Sturm PDE (1.1), (1.2), alias vertices
of the connection graph Cf , by their boundary values vk(x) at x = 0, 1, respectively, defines
a pair of Z- and S-Hamiltonian paths with properties (a)–(c).

Theorem 1.2 A graph G2 is the connection graph Cf of some nontrivial at most two-
dimensional Sturm attractor Af with only hyperbolic equilibria if, and only if, G2 satisfies
the following two properties:

(i) G2 is the filled graph of a finite, connected, plane, cellular multigraph G without loops,
and
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Figure 1.2: Boundary Hamiltonian pairs (h0, h1) for n-gons, n = 2, . . . 6. Path h0 black, path
h1 gray.
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(ii) G2 possesses a boundary ZS-Hamiltonian pair (h0, h1) which starts and ends at two
distinct vertices v, v̄ in the boundary ∂G.

The “flow” directed filled graph G2 then coincides with the flow directed connection graph
Cf .

As a trivial corollary to theorem 1.2 we consider one-dimensional Sturm attractors Af ,
i.e., Sturm attractors without Morse source equilibria i(v) = 2. Then the connection graph
Cf , and in fact Af itself, is homeomorphic to an interval with Morse sinks v, v̄, as end points
and with Morse saddles i(v) = 1 alternating with Morse sinks, in between. Indeed the
connection graph Cf , in absence of any bounded faces, is a tree. By the Hamilton property
of even a single Hamiltonian path h0 the tree must be an interval as described above. The
Z- and S-Hamiltonian paths h0 and h1 consist of identical paths h0 ≡ h1, in fact, and the
attractor Af is realized by spatially homogeneous ODE solutions u(t, x).

Our strategy of proof for theorems 1.1 and 1.2 is the following. In Sections 2 and 3 we
show the equivalence of theorems 1.1 and 1.2, based on purely graph theoretic considerations.
We simply show the equivalence of properties (ii), as formulated in these theorems, for finite,
plane, connected and loop-free cellular multigraphs G and their filled counterparts G2. The
point of our two formulations, later on, will be that orientations of G will define unique
boundary Z- and S-Hamiltonian paths h0 and h1 in G2, which can then be interpreted as
the ordering of equilibria vk in the connection graph Cf by their boundary values at x = 0, 1,
respectively. In part II we survey previous results on the relation between these boundary
orders h0 h1 and the connection graph Cf ; see [FiRo07a]. Section 4, below, provides an easy
proof of the graph properties of G in theorem 1.1, for 1-skeletons G = C1

f of connection graphs
G2: = Cf of planar Sturm attractors. The discussion in section 5 includes further graph
theoretic properties of the bipolar 1-skeletons C1

f following the beautiful survey [FMR95]. It
then remains to prove the converse claim, namely that any pair G,G2 with the properties
of theorems 1.1 and 1.2 indeed arises as a 1-skeleton C1

f and its connection graph Cf , for
some dissipative nonlinearity f with two-dimensional Sturm attractor Af and hyperbolic
equilibria. To achieve this goal we address the special case of an n-gon connection graph and
attractor, in the sequel [FiRo07a]. We will first study the precise form of any general n-gon
face within a planar Sturm attractor. We then conclude the proof of the remaining part
by showing how our general construction of boundary ZS-Hamiltonian pairs (h0, h1) indeed
gives rise to nonlinearities f with the prescribed connection graphs C1

f , Cf . See section 5 for
an outline of this remaining part of the proof. For illustration purposes we discuss and classify
all plane Sturm attractors with up to 11 equilibria in part III [FiRo07b]. We also realize
all classical plane Platonic graph there: tetrahedron, cube, octahedron, dodecahedron, and
icosahedron.
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2 From orientations to Hamiltonian pairs

In the terminology and notation of section 1 we consider plane graphs G together with their
filled counterparts G2. The current section proves the implication (i) ⇒ (ii) of the following
equivalence.

Theorem 2.1 Let G be a finite, connected, plane, cellular multigraph without loops. Let G2

denote the quadrangulation of G. Then the following two statements are equivalent.

(i) G possesses an orientation Gd with exactly one di-source v and one di-sink v̄, both in
the boundary ∂G, and without directed cycles.

(ii) G2 possesses a boundary ZS-Hamiltonian pair (h0, h1) between v and v̄, in the sense
of properties (a)–(c) preceding theorem 1.2

To show how (i) implies (ii) we start from an acyclic orientation Gd, alias a partial order,
of the 1-skeleton G with boundary di-source v and boundary di-sink v̄. Such orientations
are called e bipolar with poles v, v̄ in [FMR95] Proposition 3.2(5) if, in addition, there is an
edge e from v to v̄. Planarity is not required there, but Hamiltonian paths are not discussed.
Rather than quoting and bending we proceed directly - but with care. Of course v and v̄,
respectively, will serve as the start and termination vertex of the paths h0, h1 of the boundary
ZS-Hamiltonian pair in the filled graph G2. We only construct the Z-Hamiltonian path h0,
indicating the minor modifications for the S-path h1 along our way.

The absence of di-critical vertices from the directed 1-skeletonGd, other than the maximal
start vertex v and the minimal termination vertex v̄, will play a crucial role in our proof. We
call a vertex v of a plane directed multigraph G di-critical, unless the edges pointing toward
v and the edges pointing away from v each form nonempty and non-interspersed sets when
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Figure 2.1: Hamiltonian paths, h0, h1 through Morse saddles v. For cases (a)–(c) see text.

going around v clockwise. In other words we can traverse a circle around v, say clockwise,
such that we first meet all edges oriented toward v and then all edges oriented away from
v. All equilibria in a plane, flow-oriented connection graph Cf , for example, turn out to be
di-critical vertices: sources, sinks, and also, by the geometry of their stable and unstable
manifolds in Af , the saddles. The orientation Gd of the 1-skeleton G above will therefore
differ fundamentally from any flow-defined orientation where any Morse-sink is a di-sink, for
example.

Our poof proceeds along the following outline. Lemma 2.1 first observes the absence of
di-critical vertices in the 1-skeleton Gd, other than v, v̄. Focusing on a single face F in Gd,
lemma 2.2 then shows that each face boundary ∂F is oriented with exactly one maximum v′

and one minimum v̄′ within ∂F . A similar statement holds for v, v̄ on ∂G. The proof uses
a duality construction to derive lemma 2.2 from lemma 2.1. See also [FMR95], section 5.

To construct the Z-Hamiltonian path h0 from v to v̄ in the filled graph G2 we first specify
how h0 traverses each Morse saddle v. Let e denote the oriented edge AB of the 1-skeleton
which v bisects, directed from Morse sink A to Morse sink B in Gd. See figure 2.1. The path
h0 proceeds from A to v along the given orientation of e as in figure 2.1(c), unless e is part
of the boundary ∂F0 of a bounded face F0 to the left of the oriented edge e and A = v′0 in
F0. In that latter case, the path h0 proceeds from the Morse source w0 in F0 to v. See figure
2.1(a). Similarly the path h0 continues from v to B along e, unless e is part of the boundary
∂F ′0 of a bounded face F ′0 to the right of e and B = v̄′0 in F ′0. In that latter case, the path h0

continues from v to the Morse source w′0 in F ′0. See figure 2.1(b).
The modification of this construction for h1 with faces F1, F

′
1 and Morse sources w1, w

′
1

in F1, F
′
1 is easy: we simply swap indices 0,1, switch the side requirements for F1, F

′
1 and

keep all other defining properties in effect. See figure 2.1 again.
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Figure 2.2: Face entry and exit of a Z-path h0 (solid gray), and an S-path h1 (dashed black).
Continuation may not remain on face boundary.

By construction of the filled graph G2 any edge e2 in G2 connects vertices of opposite
Morse parity: one end point of e2 is a Morse saddle and the other end point is either a Morse
source or a Morse sink. Any Hamiltonian path h in G2 must therefore traverse the vertices
by alternating parity. In particular we can define the ZS-Hamiltonian pair (h0, h1) by the
respective pieces of h0, h1 which traverse saddles, as above. In lemma 2.3 we show that the
saddle pieces indeed fall into place to form a well-defined pair of Hamiltonian paths.

It is then obvious that properties (a)–(c) of boundary ZS-Hamiltonian pairs hold for
(h0, h1). We only consider the Z-path h0, with obvious modifications for the S-path h1. By
construction h0 starts at the di-source v and terminates at the di-sink v̄ in ∂G, which shows
property (a). Now suppose h0 = . . . wv1v2 . . . violates the “no right turn exit” property (b)
at the Morse saddle v1 ∈ ∂F , coming from the Morse source w ∈ F . Then the geometric
situation of figure 2.1(a) holds, with v = v1, w0 = w, F0 = F . Therefore A = v′0, to the right
of v1 in the clockwise direction on ∂F0, is the maximum vertex in the oriented boundary ∂F0.
By figure 2.1(b), (c) this only leaves the possibilities v2 = w′0 or v2 = B for the continuation
v2 of the path h0 = . . . wv1v2 . . . beyond the saddle v = v1. This prevents h0 from turning
right on any face exit and thus establishes exit property (b) of a Z-Hamiltonian path. The
arguments to establish entry property (c) are completely analogous.

From figure 2.1(a), (b) we also observe that the Z-Hamiltonian path h0 enters any face F
from the Morse saddle to the right of the minimum v̄′ on ∂F and exits to the Morse saddle to
the left of the maximum v′ on ∂F . For an S-Hamiltonian path h1, these sides are reversed.
See figure 2.2.

To complete the proof of theorem 2.1 it only remains to prove lemmas 2.1–2.3 below.

Lemma 2.1 Consider a graph Gd as in theorem 2.1 with boundary bipolar orientation as in

12



theorem 2.1(i). Then Gd does not contain di-critical vertices other than v and v̄.

Proof: Our proof is indirect. SupposeA is a di-critical vertex inGd, other than the maximum
v and the minimum v̄. Since v, v̄ are the only extrema in Gd, A must possess at least
four edges e±1,2 adjacent to A such that e−j , e+j possess incoming and outgoing orientation,
respectively. Moreover, these four edges must be interspersed: outgoing edges must alternate
with incoming ones, when inspected cyclically around A. See figure 2.3. Following any
oriented paths downward, along the outgoing directions e+j , until these paths first meet each

other, we obtain an (undirected) closed Jordan curve Γ+ with maximum at A. Indeed Gd

contains only one minimum v̄, and no directed cycles. Climbing e−j paths upward, against

the orientation of Gd, we similarly construct a Jordan curve Γ− with minimum at A. By
construction, Γ+∩Γ− = {A}, in contradiction to the Jordan curve theorem. This proves the
lemma. ./

To shorten the remaining proofs, we introduce a slight variant G∗ of the standard dual
graph of G. Vertices of G∗ inside ∂G are the Morse sources of the filled graph G2 in the
bounded faces of G. We replace the single vertex of the standard dual, representing the
exterior of ∂G, by two vertices v∗, v̄∗ as follows. Edges e∗ of G∗ connect Morse sources of
adjacent faces of G. Here distinct (bounded or unbounded) faces are called adjacent if their
boundaries share at least one edge. We orient edges e∗, based on the oriented edge e which the
adjacent faces share, such that the ordered pair (e∗, e) is oriented positively at the bisecting
Morse saddle {v} = e ∩ e∗. In other words e∗ crosses e left to right. Then v̄∗ terminates all
edges e∗ which point away from ∂G, to the outside, whereas v∗ provides a start vertex for all
edges e∗ pointing toward ∂G from the outside. The ∂G part of lemma 2.2 below will ensure
that this construction is possible in the plane without producing intersecting edges of G∗.
See also figure 3.3 below and [FiRo07b] for some realistic examples.

The following elementary observations hold for our duality construction. Let G− denote
the graph G with all orientations reversed. Then

(G−)∗ = (G∗)−;(2.1)

G∗∗ = G− .(2.2)

Moreover Gd, G∗ does not possess directed cycles if, and only if, G∗, Gd does not possess
local extrema other than {v∗, v̄∗}, {v, v̄}, respectively. Finally Gd, G∗, respectively, does not
possess di-critical vertices other than {v, v̄}, {v∗, v̄∗} if, and only if, any bounded face F ∗, F
of G∗, Gd possesses only one maximum v∗′, v′ and one minimum v̄∗′, v̄′ when restricting the
underlying order to the boundary ∂F ∗, ∂F , respectively.

13
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Figure 2.3: A di-critical vertex A with interspersed outgoing and incoming edges e±1,2.

Lemma 2.2 Assume a boundary bipolar orientation Gd of a graph G is given, as in theorem
2.1, (i). Let F denote any bounded face of G. Then the orientation, when restricted only to
the boundary ∂F , possesses exactly one di-source maximum v′ and one di-sink minimum v̄′.

The same statement holds for the graph boundary ∂G, with v′ = v and v̄′ = v̄.

Proof: We first address the statement on ∂G, indirectly and without using the above duality
construction. Suppose v′ 6= v and v̄′ 6= v̄ are additional local maxima and minima on ∂G
(though not on G, of course). Without loss of generality we can choose v, v̄′, v′ nearest
possible to each other, so that v′ connects to v̄′, downhill, on ∂G, and (v, v′), (v̄, v̄′) mutually
separate each other. See figure 2.4. As in the proof of lemma 2.2 we can then construct, in
Gd, a descending Jordan path Γ1 from v̄′ to v̄ and an ascending Jordan path Γ2 from v′ to v.
Here we use that the boundary minimum v̄′ 6= v̄ must possess an outgoing edge because v̄ is
the unique local minimum in Gd. Analogously, v′ possesses an incoming edge. By absence
of di-cycles, and because v′ > v̄′ in the orientation order of Gd, we obtain Γ1 ∩ Γ2 = ∅,
contradicting the Jordan curve theorem. This proves the claim about ∂G.

The remaining lemma, for Gd, follows from lemma 2.1 for the dual G∗ introduced above.
./

Lemma 2.3 The definitions of local paths h0, h1 through Morse saddles, as summarized in
figure 2.1, define a boundary ZS-Hamiltonian pair (h0, h1) from v to v̄ in the filled graph
G2. The direction of the paths h0, h1 respectively follows the orientation Gd

2 of G2 ⊆ G ∪G∗

inherited from Gd and the oriented duals G∗, G−∗ introduced above.

Proof: The orientation claims are immediate from figure 2.1 and the definition of the
orientation of G∗ and the reverse orientation G−∗.

14
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Figure 2.4: Absence of extrema on ∂G, besides v and v̄.

By reflection, it suffices to consider h0. It remains to show that the Morse saddle pieces
of h0 fall into place to define a Hamiltonian path from v to v̄ in G2. This reduces to the
following two claims:

(a) the pieces glue to unique paths, locally through any Morse source and Morse sink,
other than v, v̄;

(b) the glued pieces do not form any cycle.

We show claim (a) at Morse sources w, first. Let F denote the face of w with boundary
extrema v′, v̄′ as in lemma 2.2. Then h0, when glued at w, traverses F from the saddle
preceding v̄′, clockwise on ∂F , to the saddle preceding v′, by construction. See figure 2.2
again. This takes care of the Morse sources.

We next show claim (a) at Morse sinks v other than v, v̄. Duality G↔ G∗ converts the
claim to the previous case on G∗. We leave the instructive details to the reader.

At this stage our construction of h0 might still consist of several connected components.
All of them are paths. All will be cycles, except for one path running from v to v̄. To prove
h0 is a Hamiltonian path we have to show absence of cyclic components. We prove claim (b)
by contradiction: suppose there is a cycle hc

0 of h0 as constructed in (a). If the interior of the
cycle hc

0 contains any vertex, its component in h0 will provide a strictly interior cycle. We
can therefore descend to a case where the interior of hc

0 does not contain any further vertices
of G2. Thus hc

0 = ∂F2 for some bounded face F2 of G2. Since F2 ⊂ F , for some bounded face
F of G, we see that F2 must contain the Morse source w of F , as in the above analysis of case
(a). The cyclic component hc

0 therefore must contain either the boundary extremum v′ or v̄′

on ∂F , together with both its adjacent vertices on ∂F . Since the orientation of hc
0 follows
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Figure 3.1: Hypothetical orientation conflict for an edge e = AB on the boundary of a single
face F .

the orientation of Gd, by construction, the appearance of an extremum in hc
0 contradicts it

cyclicity. This proves the lemma. ./

3 From Hamiltonian pairs to orientations

In this section we show the reverse implication, (ii) ⇒ (i), under the assumptions of theorem
2.1. In the notation and terminology of sections 1 and 2, let h0 be a boundary Z-Hamiltonian
path in G2 between Morse sink vertices v and v̄ in ∂G, which satisfies properties (a)–(c) of
section 1. We will then construct an orientation Gd on the 1-skeleton G of G2, alias a partial
order, with maximum v and minimum v̄ as the only di-source and di-sink, respectively, and
without di-cycles. In lemma 3.1 we will show that this orientation Gd is well-defined. In
lemmas 3.2, 3.3 we show that Gd possesses the required properties: uniqueness of extrema
v, v̄, and acyclicity. This completes the proof of theorem 2.1 and of the equivalence of
theorems 1.1 and 1.2. In lemma 3.4 we observe that h0, for the orientation Gd, coincides
with the unique Z-Hamiltonian path constructed from such an order in section 2. Corollary
3.5 then provides a variant of theorem 1.2 by showing that the existence of a single boundary
Z-Hamiltonian path h0 in G already entails the existence of a boundary ZS-Hamiltonian
pair (h0, h1).

The orientation of Gd induced by any boundary Z-Hamiltonian path h0 in G2 from v to
v̄ in ∂G is constructed as follows.

(O1) If h0 traverses an edge e of G completely, then orient the edge in the direction of the
path h0.
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(O2) If h0 = . . . v−1wv1 . . . traverses the Morse source w of any face F of G, then orient
the face boundary ∂F in G with unique maximum v′ and unique minimum v̄′ given
by the Morse sinks immediately following the exit vertex v1 and the entry vertex v−1,
respectively, in clockwise direction.

Recall figures 2.1(c), 2.2 for an illustration of cases (O1), (O2), respectively.

Lemma 3.1 Properties (O1), (O2) above define a unique orientation Gd on the 1-skeleton
G of the filled graph G2.

Proof: Let e = AB be an edge in G between Morse sinks A,B. We proceed, case by
case, depending on the number of faces adjacent to e, and on the position of e on their face
boundaries.

Case 0: The edge e is not a face boundary.

Then property (O1) defines the orientation of e uniquely, and without conflict to (O2).

Case 1: The edge e is on the face boundary of a single face F .
Then we rule out a conflict between (O1) and (O2), indirectly. Without loss of generality,

we have to consider the geometric configuration of figure 3.1, possibly with A = v̄′. By the
Jordan curve theorem, however, the neighboring arcs AvB and v−1wv1 of h0 must have
opposite, rather than parallel, orientations. This contradiction rules out an orientation
conflict on e.

Case 2: The edge e = AB is on the common face boundary of two adjacent faces F1 and F2.
Let v′j and v̄′j denote the boundary maximum and minimum, respectively, as defined for

face Fj, j = 1, 2, in property (O2). Without loss of generality we have to exclude three
subcases of potential orientation conflicts, in the geometric configurations of figure 3.2

Case 2.1: v′1 6= B and v′2 6= A. Then the edge e = AB must be contained entirely in the
path h0 and conflict is excluded by the argument of case 1.

Case 2.2: v′1 = B and v′2 = A. Then the path h0 joins the Morse sources w1 and w2 of the
faces F1 and F2 via the bisecting Morse saddle v of AB. However, an orientation conflict of
the Hamiltonian path h0 itself arises at v, and excludes the present case.

Case 2.3: v′1 = B and v′2 6= A. Then the Z- Hamiltonian path h0 = . . . w1v11v12 . . . cannot
exit F1 toward v12 = w2 and therefore must proceed to v12 = A. The resulting parallel
orientations of the neighboring h0-arcs v11A and w2v21 then provide a contradiction to the
Jordan curve theorem, as in case 1. The case v′1 6= B and v′2 = A is analogous.
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Figure 3.2: Hypothetical orientation conflicts for an edge e = AB on the common boundary
of two adjacent faces F1 and F2. Path h0 in gray.

The above contradictions in all cases rule out all possible orientation conflicts, and com-
plete the indirect proof of the lemma. ./

By lemma 3.1, the Z-Hamiltonian path h0 generates the orientation of G defined by (O1),
(O2). We may then ask whether the direction of the path h0 coincides with that orientation
whenever h0 progresses along part of an edge in Gd. The following lemma provides an
affirmative answer.

Lemma 3.2 The orientation Gd of G defined by properties (O1) and (O2) above is compat-
ible with the direction of its generating Z-Hamiltonian path h0. In particular this identifies
v and v̄ as the only possible di-source and di-sink in Gd.

Proof: By property (O1), the directions of h0 and an edge e in Gd coincide, whenever
that edge is traversed completely. By property (O2), the directions also coincide, when e is
traversed only partially; see figure 2.2. Since h0 passes through any other vertex, only v and
v̄ are candidates for di-extrema. This proves the lemma. ./

The above lemma does not yet prove that v is in fact a di-source, and v̄ a di-sink. We
address this question together with the absence of cycles.

Lemma 3.3 The above orientation Gd of G does not possess directed cycles. In particular,
v is the only di-source and v̄ is the only di-sink in Gd.
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Proof: We first prove absence of cycles, indirectly. Suppose Gd contains a di-cycle Γ.
Following forward or backward paths to the interior of Γ, if available, until they close up, we
may descend to smaller cycles until we reach a minimal cycle Γ′ without interior vertices of
G. Here we use that such maximal directed paths may not terminate, except at a di-source
or a di-sink. By lemma 3.2 these would have to coincide with v, v̄, which lie on the boundary
of G, and hence outside the cycle Γ. Any minimal cycle Γ′ then is a face boundary ∂F . By
orientation property (O2), however, all face boundaries are acyclic. This proves absence of
di-cycles.

Since Gd is an oriented graph without di-cycles, we may descend along any maximal
directed path in G following the orientation. Any such path terminates at a di-sink, only.
Since the possible di-sink v̄ is the only candidate, by lemma 3.2, the path terminates at v̄ and
v̄ is indeed a di-sink. Similarly, paths in G which ascend against the orientation terminate
at the only di-source v. This proves the lemma, and theorem 2.1. ./

In section 2, we have constructed a unique boundary Z-Hamiltonian path h0 in G2 with
properties (a)–(c) of section 1, from a given orientation Gd of the 1-skeleton G with di-
source v and di-sink v̄ on ∂G. In the present section, conversely, we have constructed a
unique orientation Gd of G with properties (O1), (O2), from a given Z-Hamiltonian path
h0 in G2 running between boundary Morse sinks v and v̄ ∈ ∂G. We now show that these
constructions are inverses to each other.

Let Ov,v̄(G) denote the class of orientations d of G with exactly one di-sink v ∈ ∂G, one
di-source v̄ ∈ ∂G, and without directed cycles. Let ZHv,v̄(G2) denote the class of boundary
Z-Hamiltonian paths of the quadrangulation G2 from v ∈ ∂G to v̄ ∈ ∂G. Let

HZ : Ov,v̄(G) → ZHv,v̄(G2)(3.1)

d 7→ h0

denote the construction of section 2, and

DZ : ZHv,v̄(G2) → Ov,v̄(G)(3.2)

h0 7→ d

the construction of the present section.

Lemma 3.4 Under the assumptions of theorem 2.1 and with the above notation, D and H
are inverse maps to each other:

HZ = D−1
Z(3.3)
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Proof: Suppressing Z, v, v̄ let d ∈ O and define h0: = H(d) by (a)–(c) of section 2. Then
(O1) follows from figure 2.1(c) and (O2) follows from figure 2.2. Therefore d = DH(d).

Conversely, let d: = D(h0) be defined by (O1), (O2). Then figure 2.1(c) follows from (O1).
Figure 2.2 follows from (O2) and, in turn, implies figures 2.1(a),(b). Therefore h0 = HD(h0),
and the lemma is proved. ./

Let SHv,v̄(G2) denote the boundary S-Hamiltonian paths h1 from v ∈ ∂G to v̄ ∈ ∂G in
the filled graph G2. Let κ denote the plane reflection with axis through v, v̄. Then

SHv,v̄(G2) = κZHv,v̄(κG2),(3.4)

by construction: reflection converts Z to S. If we consider the orientation class Ov,v̄(G) as
represented by oriented edge curves between vertices, then we also have

Ov,v̄(G) = κOv,v̄(κG).(3.5)

We can then define the maps HS and DS by conjugation,

DS: = κDZκ; HS: = κHZκ(3.6)

and conclude that the commutator composition

HSH
−1
Z = κHZκ

−1H−1
Z : ZHv,v̄(G2) → SHv,v̄(G2)(3.7)

is a bijection. Moreover HS and DS are inverses, just as HZ and DZ were. This proves the
following corollary.

Corollary 3.5 Under the assumptions of theorem 2.1, the graph G2 possesses a boundary
S-Hamiltonian path h1 between v and v̄, and thus a ZS-Hamiltonian pair (h0, h1), if and
only if it possesses a boundary Z-Hamiltonian path h0 between these vertices.

We conclude this section with a short meditation on duality, as introduced before lemma
2.2. Given an orientation Gd of G, as in theorem 2.1(i), we have constructed an orientation
of the slightly adapted dual graph G∗ with a di-source v∗ and a di-sink v̄∗ in the exterior
face of G. Let G∗

2 denote the quadrangulation of G∗, as G2 was the quadrangulation of G.

Corollary 3.6 Under the assumptions of theorem 2.1 on G or, equivalently, on the undi-
rected dual G∗, the quadrangulated dual graph G∗

2 possesses a boundary ZS-Hamiltonian pair
(h∗0, h

∗
1) between v∗ and v̄∗ if, and only if, G2 possesses such a pair between v and v̄.
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Figure 3.3: Some examples of graph duals G∗ (dashed) of Gd (solid), and Z-Hamiltonian
paths in Gd (gray solid) versus S-Hamiltonian paths in G∗ (black dashed).

Proof: Theorem 2.1(i) holds for G∗ with v∗, v̄∗ if, and only if, it holds for Gd, by construction
of the dual orientation. ./

We note that the above corollaries establish bijections

ZHv,v̄(G2) → ZHv∗,v̄∗(G
∗
2)(3.8)

SHv,v̄(G2) → SHv∗,v̄∗(G
∗
2)

of the specific boundary ZS-Hamiltonian pairs in the filled graphs G2 and G∗
2. The related

bijection

ZHv,v̄(G2) → SHv∗,v̄∗(G
∗
2)(3.9)

h0 7→ h∗1
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is in fact most easily described. Simply replace the first edge vA and the last edge Bv̄, only,
of a Z-Hamilton path

h0 = vA . . . Bv̄ ∈ ZHv,v̄(G2)(3.10)

by their counterparts v∗A and Bv̄∗, respectively:

h∗1 = v∗A . . . Bv̄∗.(3.11)

Similarly, we obtain the mirrored isomorphism

SHv,v̄(G2) → ZHv,v̄∗(G
∗
2)(3.12)

h1 7→ h∗0

replacing the first and last edges from/to v, v̄ by their v∗, v̄∗ counterparts. In particular,
this construction shows how the directions of the Hamiltonian paths h0, h1, h

∗
0, h

∗
1 all are

compatible, both, with the orientations of G and G∗, and satisfy the orientation rules (O1),
(O2) in both. In view of theorem 1.1 and 1.2 the bijections (3.8) will provide somewhat
unusual “dualities” among planar global Sturm attractors; see [FiRo07b].

4 From Sturm attractors to skeleton orientations

In this section we prove the “only if” parts of theorems 1.1 and 1.2.We consider the 1-skeleton
C1

f of the connection graph Cf of any nontrivial, at most two-dimensional Sturm attractor
Af with only hyperbolic equilibria. The undirected graph C1

f consists of the sink equilibria
of Af , as vertices, and of the unstable manifolds of the saddle equilibria of Af , as edges. In
lemmas 4.1–4.3, we show that the graph G: = C1

f satisfies properties (i) and (ii) of theorem
1.1. Preparing for the proof of theorem 1.2, we also show in lemma 4.1 that the connection
graph G2: = Cf indeed possesses G = C1

f as its 1-skeleton and is the filled graph of C1
f .

In the following lemma, we call a plane graph G edge-cellular, if the boundary ∂F of each
bounded face is a cycle, except that vertices may be visited repeatedly. See figure 1.1 center,
for an edge-cellular example, and figure 1.1 right, for an example which is not edge-cellular.

Lemma 4.1 Under the above assumptions, the 1-skeleton G: = C1
f of the connection graph

Cf is a finite, connected, plane, edge-cellular multigraph without loops. The connection graph
Cf itself is the quadrangulation G2 = Cf , of the 1-skeleton G.

Proof: Planarity of any two-dimensional Sturm attractor Af , and hence of its 1-skeleton
C1

f ⊆ Cf ⊆ Af , was shown by [Ro91] under separated boundary conditions. See also [Br90,
Jo89] and, for the circle case x ∈ S1, [MaNa97]. In fact let

22



P : Af → span {ψ0, . . . ψn−1}(4.1)

denote L2 orthogonal projection onto the first n eigenfunctions of any Sturm-Liouville eigen-
value problem on 0 < x < 1 with Neumann boundary conditions. Assume n is the maximal
Morse index in the not necessarily planar Sturm attractor Af , with all equilibria assumed
hyperbolic. Then the projection (4.1) is injective, and describes Af as the C1-graph of the
function P−1 over the subset PAf of span {ψ0, . . . , ψn−1}. We identify Af with its projec-
tion, for simplicity. Note the point of this construction: the local unstable manifolds W u(v)
of equilibria v with maximal Morse index i(v) = n in Af are differentiable n-dimensional
manifolds, parametrized locally over their respective tangent spaces, of course. The above
results, however, provide a global parametrization.

Finiteness of C1
f , Cf follows because vertices are equilibria in the compact attractor Af

which are all assumed hyperbolic, hence isolated, and hence finite in number.
Connectedness of C1

f and Cf follows from connectedness of Af as the ω-limit set of a large
ball in the underlying Sobolev space X. This also shows that Af has trivial homology.

The 1-skeleton C1
f is loop-free, because heteroclinic orbits between hyperbolic equilibria

of adjacent Morse index are unique; see [BrFi88, BrFi89]. Indeed the two branches of the
unstable manifolds W u(v) of saddles v, which form the edges in C1

f , cannot both connect to
the same sink. The unstable manifolds W u(vj) of several distinct saddles vj, however, may
well connect to the same pair of sinks, making C1

f a multigraph.
To show G = C1

f is edge-cellular with filled graph G2 = Cf , we first note that any bounded
face F of G must be contained in (the projection of) Af . Indeed Af caries only trivial
homology. Since the closure clos F is bounded, connected, and invariant, the α-limit set
α(F ) in Af is a single equilibrium w of Morse index α(w) = 2. In other words, F = W u(w)
is the unstable manifold of a single source w. By the λ-Lemma [PdM82] the edges of the
face boundary ∂F in G are the unstable manifolds of the saddles vj which w connects to by
heteroclinic orbits uj. By uniqueness of each such heteroclinic orbit uj, between adjacent
Morse levels 1 and 2, the face boundary ∂F is indeed a cycle of edges. The cycle may still
run through the same sink, repeatedly, at this stage. See figure 1.1 center.

To see that Cf = G2 is the quadrangulation of G = C1
f we observe that sinks, saddles, and

sources in Cf indeed play the roles of Morse sinks, Morse saddles, and Morse sources in G2.
It only remains to show that the source w in any bounded face F does connect to each saddle
vj on the edge cycle ∂F . Starting with a small circle of initial conditions in W u(w)\{w}
around w, we see how any missing heteroclinic connection to any saddle vj ∈ ∂F would
render the circle simply connected or even disconnected, after some finite positive time as it
retracts to its ω-limit set in ∂F . This proves that the source w ∈ F connects to each saddle
vj ∈ ∂F , and completes the lemma. ./
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To prove theorem 1.1(ii) for the 1-skeleton G = C1
f of the connection graph Cf we have to

define an orientation of the C1
f edges e = W u(v) generated by their bisecting (Morse) saddles

v. Let v1, v2 denote the (Morse) sink end points of e. We define

v1 ≺ v2 if, and only if, v1(x) > v2(x) for all 0 < x < 1.(4.2)

Let uj = uj(t) ∈ X denote the heteroclinic connections from the saddle v to vj, j = 1, 2.
Then 0 ≤ z(uj(t) − v) < dimW u(v) = i(v) = 1; see [FiRo96] and also [BrFi86]. Hence
uj(t) is entirely above, or entirely below v, for all t ∈ R, 0 < x < 1. Passing to the limit
vj = lim

t→+∞
uj(t) and recalling that uj(t) start to opposite sides of v, for t→ −∞, we either

conclude v1(x) < v(x) < v2(x), for all 0 < x < 1, or else the reverse inequalities hold.
Therefore either v1 � v2, or else v1 ≺ v2. This defines the orientation of e to point from v1

to v2, or from v2 to v1, respectively, as the “arrowheads” � and ≺ may indicate.
Note how (4.2) defines a partial order� on not necessarily adjacent Morse sinks ofG = C1

f .
It is slightly unfortunate, but useful below, that a di-source v with respect to this orientation,
alias a local maximum with respect to the order � on G, is actually a minimum with respect
to the pointwise partial order < on X. This is caused by the boundary ZS-Hamiltonian
paths h0, h1 following the orientation order � downhill, but ordering the equilibria v ∈ Af

upward at the boundaries x = 0, 1.
By dissipativeness and the parabolic comparison principle, the nontrivial Sturm attractor

Af contains two distinguished equilibria v, v̄ such that

v � v � v̄(4.3)

for any other equilibrium v ∈ Af . Indeed, the sinks v, v̄ can be obtained as ω-limit sets of
constant initial conditions u = ±C, at t = 0, for any sufficiently large C > 0.

Lemma 4.2 Let the 1-skeleton G = C1
f of the connection graph G2 = Cf be endowed with

the orientation d induced by the partial order ≺ of its Morse sinks.
Then G possesses exactly one di-source v, one di-sink v̄, both on ∂G, and no di-cycles.

Proof: Absence of di-cycles is obvious because the orientation of G results from a partial
order ≺. We show uniqueness of the di-sink v̄, indirectly. Uniqueness of the di-source v is
analogous.

By construction we have v, v̄ ∈ ∂G. Suppose indirectly that ṽ is another di-sink. Then

ṽ(x) < v̄(x),(4.4)

for all 0 < x < 1, by definition of v̄; see (4.3). Because (1.1), (1.2) is a strongly monotone
dynamical system, in the sense of [Hi88, Ma87], there exists an equilibrium v above the
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Morse sink ṽ, and below v̄ anyway, together with a monotone heteroclinic orbit u = u(t, x)
from v to ṽ, such that

ṽ(x) < u(t, x) < v(x) < v̄(x)(4.5)

for all 0 < x < 1 and t ∈ R. See [Po89, Po02] for detailed results which even carry over to
several dimensions. By the cascading property of Af mentioned in the introduction, we may
assume v to be a saddle. This shows that an edge in C1

f which contains the bisecting saddle
v ≺ ṽ, is oriented away from ṽ. Therefore ṽ cannot be a di-sink, and the lemma is proved.
./

Lemma 4.3 Under the assumptions of lemma 4.1, the 1-skeleton G = C1
f of the connection

graph Cf is not only edge-cellular but cellular.

Proof: To exclude multiply traversed vertices v on a face boundary ∂F , as in figure 1.1
center, we proceed indirectly. Consider the orientation of G defined in lemma 4.2. If v ∈ ∂F
is multiply traversed, then the edge-cycle ∂F decomposes into at least two disjoint cycles
through v, none of which can be a di-cycle. This produces an interior di-sink or di-source in
a smallest cycle through v, and not on ∂G. This contradicts lemma 4.2. Therefore the edge
cycle of ∂F passes through each vertex v ∈ ∂F only once, and G is cellular. In particular,
clos F is a topological disk and F is the interior of the (topological) n-gon ∂F . ./

This completes the proofs of the “only if” parts of theorems 1.1 and 1.2.

5 Discussion

As an outlook on the sequels [FiRo07a, FiRo07b] of the present paper we briefly sketch the
main line of argument in our proof of the “if” parts of theorems 1.1 and 1.2. The precise
details are somewhat involved and of a quite different flavor from the present mostly graph
oriented part and are therefore relegated to [FiRo07a].

We conclude with a discussion of further graph theoretic aspects of the bipolar 1-skeletons
C1

f of the connection graphs Cf of planar global Sturm attractors Af following the beautiful
survey [FMR95]. As an example we also include the simplest self-dual two-dimensional
Sturm attractor. This attractor consists of 11 equilibria and their heteroclinic orbits. See
[FiRo07b] for a complete classification of all Sturm attractors with up to 11 equilibria, and
many more examples.
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To prove the “if ” part of theorems 1.1 and 1.2 we start from any pair G,G2 of a plane
graph G with the properties of theorem 1.1(i) and its quadrangulation G2. We have to con-
struct a dissipative nonlinearity f = f(x, u, ux) of (1.1) such that the associated connection
graph Cf and its 1-skeleton C1

f coincide with G2 and G, respectively. In fact we have to
address G2 = Cf only, in view of the equivalence statement of theorem 2.1. In particular we
are also given a boundary ZS-Hamiltonian pair (h0, h1) in G2 from the di-source v to the
di-sink v̄ of the oriented 1-skeleton Gd.

The key role in our proof is played by the permutation

π = h−1
0 ◦ h1.(5.1)

Here the Hamiltonian paths h0, h1 are viewed as permutations of the labeled vertices v1, . . . , vN

of G2. Note that π, unlike h0 and h1, is independent of the specific vertex labeling.
We then show that the permutation π is a dissipative Morse meander in the sense of

[FiRo99]. Here dissipative means that π(1) = 1 and π(N) = N . The Morse property
requires the integers

ij :=

j−1∑
ι=1

(−1)ι+1 sign (π−1(ι+ 1)− π−1(ι))(5.2)

to be nonnegative, for all j = 2, . . . , N . The meander property, introduced in [ArVi89]
in a completely different context, requires that there exist a C1 Jordan curve S which in-
tersects the horizontal axis tranversely at precisely N locations k = 1, . . . , N . Numbering
the intersections alternatively, by j = 1, . . . , N along the curve S is then required to yield
j = π(k).

It is fairly easy to see that any Sturm attractor Af with equilibria v1, . . . , vN gives rise
to a dissipative Morse meander permutation πf . Following an idea implicit in (4.2) above,

we may in fact define permutations hf
0 , h

f
1 such that

vhf
0 (1) < vhf

0 (2) < · · · < vhf
0 (N) at x = 0,

vhf
1 (1) < vhf

1 (2)y < · · · < vhf
1 (N) at x = 1.(5.3)

Following Fusco and Rocha [FuRo91] we then define the Sturm permutation

πf := (hf
0)
−1 ◦ hf

1 .(5.4)

By [FuRo91] the Sturm permutation is indeed a dissipative Morse meander. In fact the
Morse numbers (5.2) turn out to be the Morse indices, ij = i(vhf

0 (j)) ≥ 0. The meander
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property of πf follows when we solve the ODE boundary value problem for the equilibria vj

by a shooting approach. Dissipativeness of πf is an easy consequence of dissipativeness of f
itself.

It is more demanding, but has also been achieved in [FiRo99], to show that, conversely,
any dissipative Morse meander permutation π does arise as a Sturm permutation π = πf for a
suitable dissipative nonlinearity f = f(x, u, ux) in (1.1). Once it has been established that π,
defined via the ZS-Hamiltonian pair (h0, h1) in (5.1), indeed is a dissipative Morse meander,
this therefore reveals π = πf as a true Sturm permutation. We can then invoke the results
of [FiRo96] which specify the complete connection graph Cf once the Sturm permutation
π = πf is known. The main remaining work in [FiRo07a] therefore will be to show that, yes
indeed, the big excursion G2 7→ (h0, h1) 7→ π = πf 7→ Cf closes up by

Cf = G2.(5.5)

Moreover we may label equilibria vk such that h0 = hf
0 and h1 = hf

1 indeed specify the
ordering (5.3) of vk(x) at the interval boundaries x = 0 and x = 1.

We conclude with a discussion of some graph theoretic aspects of the bipolar 1-skeletons
C1

f of connection graphs Cf . Comparing with the survey [FMR95] we first note a slight
discrepancy in the definition of bipolar graphs G and, in the plane case, their dual G∗. In
[FMR95] an orientation d of a finite connected graph G with some distinguished oriented edge
e is called e-bipolar, if the oriented graph Gd does not possess di-cycles and the endpoints
v and v̄ of e are the unique di-source vertex v and di-sink vertex v̄ of the orientation,
respectively. See [FMR95] Property 3.2(5). To match our definition in theorem 1.1(ii),
which does not require adjaceny of the di-extrema v and v̄, we therefore insert an artificial
additional exterior edge e between the di-extrema v and v̄ on the boundary of G.

For plane e-bipolar graphs Gd, with additional edge e, we may consider the standard
oriented dual Gd∗ which represents the unbounded face of Gd by a single vertex v∗ rather
than by two such vertices v∗ and v̄∗. The additional exterior edge e, however, splits the
unbounded exterior face in two and creates an additional edge e∗ in Gd∗. To reconcile Gd∗

with our dual (G\e)∗ of G\e we only have to remove e∗ from Gd∗, keeping its end points v∗

and v̄∗ = v∗ as vertices:
(Gd\e)∗ = Gd∗\e∗.(5.6)

As a slight benefit we note that (Gd\e)∗, as defined in the present paper, is bipolar with
di-extrema v∗ and b̄∗. In contrast, Gd∗ is e∗-bipolar only after reversing the orientation of
e∗; see [FMR95], Proposition 5.1.

Self-dual Sturm attractors are particular examples. Dimension one is trivial with a 1-
skeleton of two sinks and a single edge; see the top left example in Figure 3.3. The simplest
two-dimensional example features a 1-skeleton with 11 sinks; see Figure 5.1.
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Figure 5.1: The simplest two-dimensional self dual Sturm attractor: connection graph (left)
and shooting curve (right). ZS-Hamiltonian pair h0 (black) and h1 (gray).

This example was first encountered as the simplest non-pitchforkable Sturm attractor;
see [Ro91] for a background. Combinatorially, pitchforkable attractors are characterized by
the existence of a triplet of adjacent values π(i−1), π(i), π(i+1) in the Sturm permutation π.
In terms of ZS-Hamiltonian pairs they are characterized by paths h0 and h1 which coincide
along at least three successive vertices in the quadrangulation G2. The shooting curve S,
equivalently, is required to file sequentially through at least three successive intersections
with the horizontal v-axis. The significance of non-pitchforkable Sturm attractors was that
their heteroclinic orbits are not accessible to analysis via successive pitchfork bifurcations.
Therefore the original approach by Conley, Smoller and Henry [CoSm83, He85] to the het-
eroclinic orbit problem failed for these Sturm attractors. We caution the combinatorially
and dynamically well-versed reader that edge deletion and edge contraction on bi-polar 1-
skeleton C1

f as discussed in [FMR95], section 6 does not, in general, correspond to pitchfork
bifurcations in the associated Sturm attractor Af . Only formally, such operations involve
equilibria of Morse indices compatible with pitchfork bifurcations. The presence of deletable
and contractable edges in the non-pitchforkable Rocha example, however, clearly demon-
strates the discrepancy between these two notions. See [FiRo07a] for further discussion of
the relation to bifurcation theory, and [FiRo07b] for a complete classification of planar Sturm
attractors with up to 11 equilibria which indeed exhibits the Rocha example as the simplest
planar self-dual case.

We conclude with some known results on existence and enumeration of e-bipolar orienta-
tions; see [FMR95] and the references there. Lempe et al. have shown in 1967 that e-bipolar
orientations on (not necessarily plane) G exist if, and only if, the graph G is 2-connected
(i.e., cannot be disconnected by removal of a single vertex). In view of the artificially added
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edge e, we can therefore view the original 1-skeleton C1
f as a collecttion of 2-connected com-

ponents which are arranged and connected sequentially along an interval. Even and Tarjan
(1967,1986) have developed algorithms for finding some, but not necessarily all, e-bipolar
orientations of any given, not necessarily plane, 2-connected graph G in only linear time. In
the plane case, any e-bipolar orientation can be reached in linear time (Rosenstiehl, Tarjan
1986). This is a marked computational advantage of theorem 1.1 over any direct search for
Hamiltonian paths in the spirit of theorem 1.2.

Enumeration results are surveyed in [FMR95], section 9. Let 2σe(G) denote the number
of e-bipolar orientations of G. On the 1-skeleton C1

f of the connection graph the artificial
edge e only indicates the location of the di-extrema v, v̄, up to interchange, which are the
end points of e. Remarkably the invariant σe(G) = σ(G) is independent of e. In fact σ(G)
coincides with the beta invariant of Crapo and appears in the Tutte polynomial of G. For
example consider adjacent v, v̄ on the boundary of a given1-skeleton G. We may than choose
the “additional” edge e to already be present in G. In particular the number σe(G) of bipolar
orientations of G, alias the different Sturm permutations πf which provide the 1-skeleton
C1

f = G with prescribed extrema v, v̄, does not depend on the specific location of the adjacent
extrema v, v̄ on the boundary of G.
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