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Abstract

Based on a Morse-Smale structure, we study planar global attractors Af of the scalar
reaction-advection-diffusion equation ut = uxx + f(x, u, ux) in one space dimension. We
assume Neumann boundary conditions on the unit interval, dissipativeness of f , and hy-
perbolicity of equilibria. We call Af Sturm attractor because our results strongly rely on
nonlinear nodal properties of Sturm type.

The planar Sturm attractor consists of equilibria, of Morse index 0, 1, or 2, and their
heteroclinic connecting orbits. The unique heteroclinic orbits between adjacent Morse levels
define a plane graph Cf , which we call the connection graph. Its 1-skeleton C1

f consists of
the unstable manifolds (separatrices) of the index-1 Morse saddles.

We present two results which completely characterize the connection graphs Cf and their
1-skeletons C1

f , in purely graph theoretical terms. Connection graphs are characterized by
the existence of pairs of Hamiltonian paths with certain chiral restrictions on face passages.
Their 1-skeletons are characterized by the existence of cycle-free orientations with certain
restrictions on their criticality.

In [FiRo07a] we have shown the equivalence of the two characterizations. Moreover
we have established that connection graphs of Sturm attractors indeed satisfy the required
properties. In the present paper we show, conversely, how to design a planar Sturm attractor
with prescribed plane connection graph or 1-skeleton of the required properties. In [FiRo07b]
we describe all planar Sturm attractors with up to 11 equilibria. We also design planar Sturm
attractors with prescribed Platonic 1-skeletons.



1 Introduction

Based on a Morse-Smale structure, we continue our study [FiRo07a] of the global spatio-
temporal dynamics of the following scalar reaction-advection-diffusion equation in one space
dimension

ut = uxx + f(x, u, ux).(1.1)

Here t ≥ 0 denotes time, 0 < x < 1 denotes space, and we seek solutions u = u(t, x) ∈ R.
To be completely specific we also fix Neumann boundary conditions

ux = 0 at x = 0, and x = 1.(1.2)

Our results will hold analogously, though, for other separated boundary conditions.
For nonlinearities f = f(x, u, p) of class C2, standard theory provides a local solution

semigroup u(t, ·) = T (t)u0, t ≥ 0, on initial conditions u0 ∈ X. For the underlying Banach
space X we choose the Sobolev space H2, intersected with the Neumann condition (1.2).
See for example [Ta79, He81, Pa83] for a general background.

Our main object is the global attractor A = Af of the semigroup T = Tf . We assume

f ∈ C2 is dissipative.(1.3)

Here dissipativeness requires that there exists a fixed large ball in X, in which any solution
u(t, ·) = T (t)u0 stays eventually, for all t ≥ t(u0). In particular, solutions exist globally for
all t ≥ 0. For broad surveys on the theory of global attractors we refer to [BaVi92, ChVi02,
Ed&al94, Ha88, Ha&al02, La91, Ra02, SeYo02, Te88] and the many references there. The
specific attractors arising from our setting (1.1), (1.2) we call Sturm attractors.

A Lyapunov function V of the form

V(u) =

∫ 1

0

a(x, u, ux)dx(1.4)

which is strictly decreasing along all solutions u(t, ·) = T (t)u0, except at equilibria, induces
a gradient-like structure of the semigroup T (t); see [Ze68, Ma78, Ma88]. For nonlinearities
f = f(x, u) which do not contain advection terms ux a well-known explicit form of a is
a(x, u, p) = 1

2
p2 − F (x, u) with primitive Fu: = f .

To exclude degenerate cases we assume hyperbolicity of all equilibria

0 = vxx + f(x, v, vx)(1.5)

of (1.1), with Neumann boundary conditions vx = 0 given by (1.2). As usual, hyperbolicity
of v means that the linearized Sturm-Liouville eigenvalue problem

λu = uxx + fp(x, v(x), vx(x))ux + fu(x, v(x), vx(x))u,(1.6)
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again with Neumann boundary (1.2), possesses only the trivial solution u ≡ 0 for λ = 0. We
call the number of positive eigenvalues λ the unstable dimension or Morse index i = i(v) of
the equilibrium v. We number eigenvalues λ = λk such that

λ0 > . . . > λi−1 > 0 > λi > λi+1 > . . .(1.7)

Let E = {v1, . . . , vN} denote the set of all equilibria. Note that E is finite, by dissipa-
tiveness of f and hyperbolicity of equilibria. Morse inequalities, Leray-Schauder degree, or
a shooting argument in fact show that N is odd.

Hyperbolic equilibria v come equipped with local unstable and stable manifolds W u(v)
and W s(v) of dimension and codimension i(v), respectively.

As a consequence of the Lyapunov functional (1.4), the global attractor A of (1.1),
(1.2) consists entirely of equilibria and heteroclinic orbits u(t, ·), which converge to different
equilibria for t → ±∞. See for example the survey [Ra02]. In other words, Sturm attractors
A consist of just all unstable manifolds,

A =
⋃
v∈E

W u(v).(1.8)

Indeed the omega-limit set of any trajectory in W u(v)\{v} must consist of a single equilib-
rium different from v itself, due to the gradient-like structure and hyperbolicity. Therefore
are non-equilibrium trajectories in A are heteroclinic.

The Morse-Smale property requires transverse intersections of all stable and unstable
manifolds of equilibria, in addition to hyperbolicity and the gradient-like structure. It was a
celebrated result of Angenent and Henry, independently, that this Morse-Smale transversality
is, not an additional requirement but, a consequence of hyperbolicity of equilibria; see [He85,
An86]. Surprisingly this fact is based on a generalization of the Sturm nodal property, first
observed by [St1836] and very successfully revived by [Ma82]. Let z(u) ≤ ∞ denote the
number of strict sign changes of u ∈ X \{0}. Let u1(t, ·), u2(t, ·) denote any two nonidentical
solutions of (1.1), (1.2). Then

t 7→ z(u1(t, ·)− u2(t, ·))(1.9)

is finite, for any t > 0, nonincreasing with t, and drops strictly whenever multiple zeros
u1 = u2, u1

x = u2
x occur at any t0, x0. See [An88]. See [Fi94, FiRo96, FiRo99, FiRo00,

FiSche03, Ga04, Ra02] for aspects of nonlinear sturm theory. It is for this property, central
to the entire analysis in the present paper, that we use the term Sturm attractor for the
global attractors of (1.1), (1.2).

Our description of Sturm attractors will be based on the connection graph Cf of the
global attractor Af . Vertices of Cf are the N equilibria v1, . . . , vN ∈ Ef of Af . An edge of
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Cf between vj, vk indicates the existence of a heteroclinic orbit between equilibrium vj, vk of
adjacent Morse index i(vj) = i(vk)± 1. By Morse-Smale transversality of stable and unsta-
ble manifolds, heteroclinic orbits can only run from higher to strictly lower Morse indices.
Therefore the connection graph Cf comes with a natural flow-defined edge orientation: edges
can be oriented from higher to lower Morse index. As an aside we already note here that
heteroclinic orbits between adjacent Morse levels turn out to be unique, whenever they exist,
in the Sturm setting (1.1), (1.2).

We have restricted attention to adjacent Morse levels, for the following two reasons.
First, Morse-Smale systems possess a transitivity property of heteroclinic connections. Let
v1  v2 indicate that there exists a heteroclinic orbit from v1 to v2. Then v1  v2 and
v3  v3 implies v1  v3. The proof is based on the λ-Lemma; see for example [PdM82].
Second and conversely, special to the Sturm setting (1.1), (1.2), suppose vk  v0 with
i(vk) = i(v0) + k. Then there exist further equilibria v1, . . . , vk−1 such that i(vj) = i(v0) + j
and vk  vk−1  . . .  v1  v0 connects through successively adjacent Morse levels. This
cascading principle was first observed in [BrFi89]; see also [Wo02b]. Together, transitivity
and cascading imply that our graph Cf of Morse-adjacent heteroclinic connections settles the
question of whether or not there exists a heteroclinic connection, for any pair of equilibria.

As a simplified variant of the full connection graph Cf we have also introduced its undi-
rected 1-skeleton C1

f . Vertices of C1
f are the sink equilibria, only, i.e., the equilibria v with

Morse index i(v) = 0. Edges of C1
f are the unstable manifolds W u(v) of saddle equilibria,

i.e., of equilibria v with i(v) = 1. More precisely, sink vertices vj, vk of C1
f are connected by

an (undirected) edge if, and only if, there exists a saddle equilibrium w such that w  vj

and w  vk. The 1-skeleton C1
f thus ignores source equilibria v in Cf , with i(v) = 2, together

with their emanating heteroclinics to saddle targets.
The present paper continues our description [FiRo07a] of all two-dimensional Sturm

attractors A, i.e., of all global attractors Af of (1.1), (1.2), for dissipative nonlinearities f
such that all equilibria are hyperbolic of Morse index at most two. Planarity of A is not just
local, restricted to each unstable manifold W u(v), but holds globally. In fact it has been
noted by [Br90, Ro91] that any L2-orthogonal projection P of any n-dimensional Sturm
attractor Af onto the span of the first n eigenfunctions of any Sturm-Liouville eigenvalue
problem (1.6) is injective. Moreover, Af becomes a C1 graph over the span. More specifically,
the zero number satisfies

z(u1 − u2) < dimAf = max
Ef

i(v)(1.10)

for any two distinct elements u1 and u2 of Af . The weaker property z(u1−u2) < i(v) for any
two distinct elements u1 and u2 of the same unstable manifold W u(v) had been established
by [He85, An86, BrFi86]. Because z ≥ n on the span of the L2-orthogonal complement of the
first n eigenfunctions of any Sturm-Liouville eigenvalue problem, injectivity of the projection
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P follows from (1.10). Note that the Sturm-Liouville problem need not be related to the
nonlinearity f at all. It only matters that z ≥ n on the L2-complement, excepting zero.

Planarity of the connection graphs Cf , C1
f does not come as a surprise, for two-dimensional

Sturm attractors Af . We simply identify the connection graph with the heteroclinic orbits
between equilibria of adjacent Morse levels, via the planar embedding P .

To formulate our main results on the structure of these connection graphs, we therefore
collect some terminology concerning plane graphs G, next. See also [BeWi97], section 1.6 and
11.2. We call a graph G plane, G ⊆ R2, if its vertices vj and edges ejk = vjvk are embedded
in the plane as points and continuous curves, respectively, such that edges neither intersect
nor self-intersect, except possible at their vertex end points vj, vk. A loop is an edge vkvk

with identical end points vk; we only consider graphs without loops, below. A multigraph is
allowed to possess several edges e`

jk connecting the same pair of vertices vj and vk. Rather
than assigning an integer weight to a single edge, we represent multiple edges by multiple
nonintersecting curves sharing the same end point vertices. We call any multigraph G finite,
if G consists of finitely many vertices and edges. Any finite plane multigraph G decomposes
its complement R2\G into finitely many connected components called the regions or faces of
G. Exactly one of the regions is unbounded, and its boundary vertices and edges are called
the boundary ∂G of G. Unless unboundedness is stated explicitly, by faces we always mean
bounded faces, below.

A path traverses any sequence e`1
k0k1

, e`2
k1k2

, . . . , e`r
kr−1kr

of distinct multi-edges via distinct
vertices. In the exceptional case k0 = kr where the first and last vertex only are allowed to
coincide, a path is called a cycle or closed. A (not necessarily closed) path which visits each
vertex exactly once is called a Hamiltonian path. A Hamiltonian cycle, similarly, is a cycle
which is a Hamiltonian path.

Directed multigraphs are multigraphs together with an orientation, for each edge. Multi-
graphs can be oriented, i.e., can be assigned an edge orientation. Conversely, any directed
multigraph can be made undirected, simply by forgetting the orientation. Directed paths,
Hamiltonian paths, and di-cycles (i.e., directed cycles), are required to traverse edges in the
given orientation. A vertex v of a directed multigraph is called a directed source (short:
di-source) if all its edges point away from it. If all its edges point toward v̄, then we call v̄ a
di-sink. We also call v a (local) maximum and v̄ a (local) minimum. We caution the reader
that this notion for vertices in multigraphs may be different, in general, from the Morse no-
tion of source and sink equilibria in planar global attractors Af based on their Morse index
to be 0 or 2, respectively.

We call a graph G connected, if any two vertices vk0 , vkr can be joined by a walk of suitable
length r. For finite connected, plane multigraphs with N vertices, m edges and r bounded
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Figure 1.1: Cellular and non-cellular multigraphs. Left: cellular. Center: not cellular
(doubly traversed vertex v on face boundary F ). Right: not cellular (doubly traversed edge
on face boundary).

faces we recall the Euler characteristic

N −m + r = 1.(1.11)

We call a plane multigraph cellular if each of its (bounded) faces F is bounded by an
(undirected) cycle of distinct edges and vertices. See Figure 1.1 for illustration. In other
words, each bounded face F is the interior of a plane (topological) n-gon, for some n ≥ 2.
In particular, the closure of each bounded face is homomorphic to a 2-disk.

Each boundary edge e ⊆ ∂G is the boundary of at most one bounded face. Each other
edge, called interior, is in the boundary of exactly two bounded faces. We note a slight
asymmetry in the role of the unbounded face. Under compactification of R2 to the 2-sphere
S2, the previously unbounded open face will be homomorphic to an open 2-disk but will not
necessarily become a cell of the resulting graph on Sz. The simplest connected example is
the graph G of two vertices, v1, v2 with a single edge joining them.

We are now ready to state the first variant of our main result. We exclude the case of a
trivial Sturm attractor Af which consist of only one single globally attracting equilibrium.

Theorem 1.1 A graph G is the 1-skeleton C1
f of the connection graph Cf of some at most

two-dimensional nontrivial Sturm attractor Af with only hyperbolic equilibria if, and only if,
G satisfies the following two properties:

(i) G is a finite, connected plane, cellular multigraph without loops, and

(ii) G possesses an orientation with exactly one di-sink v̄ and one di-source, v, both on the
boundary ∂G, and without di-cycles.
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To say that one plane graph G “is” another plane graph G̃, here and below, indicates
an isomorphism. The standard notion of graph isomorphism is a vertex bijection which
preserves edges. For our plane graphs, we require a homeomorphism of the plane graph,
including its bounded faces, which maps edge curves to edge curves and vertices to vertices.
Combinatorially, it is sufficient to preserve face boundaries, in addition to the usual notion.

An orientation of G without di-cycles, as in part (ii) of theorem 1.1, equivalently defines
a partial order on the vertices of G such that the orientation points downhill. In that sense
we may call v̄, v the unique minimum, maximum of this order, respectively.

We note that the full connection graph Cf and its flow-oriented variant can both be
reconstructed uniquely from their 1-skeleton C1

f . In fact we detail this construction next,
for arbitrary finite, plane, cellular multigraphs G without loops. Motivated by Cf and its
1-skeleton, we call the vertices of G Morse sinks. Starting from G, bisect each edge by an
additional vertex. Call the bisecting vertices Morse saddles. In each (bounded) face, insert
one additional vertex and call it a Morse source. Draw an edge from each Morse source to
the n bisecting Morse saddles on the boundary of its face. We call the resulting undirected
graph G2 the filled graph of G. By construction, G is the 1-skeleton of its filled graph G2.
Obviously there is a “flow” directed variant of this construction. We just orient bisected
edges away from their bisecting Morse saddles, and edges in bounded faces of G away from
their Morse sources.

To formulate our characterization of connection graphs Cf , rather than their 1-skeletons
C1

f , we need to recall one last concept from [FiRo07a]. Consider the filled graph G2 of any
finite, connected, plane, cellular multigraph G without loops. We call a Hamiltonian path
h0 in G2 a boundary Z-Hamiltonian path, if the properties (a)–(c) below all hold. Properties
(b), (c) restrict the path h0 as it crosses through any Morse source w in a face. F . Let
. . . v−2v−1wv1v2 . . . denote the vertex sequence along h0. Then v±1 are Morse saddles on
the face boundary ∂F . The vertices v±2 are Morse sinks, or Morse sources other than w,
outside F . If v−2 or v+2 is a Morse sink then it belongs to ∂F . Since ∂F contains at
least four vertices, and v1v2 are immediate successors, we can then speak of a clockwise or
counter-clockwise direction of the arc v1v2 from v1 to v2, uniquely, and similarly for v−2v−1.
Specifically we require

(a) “Boundary”:

h0 starts at some vertex v in the boundary ∂G, and terminates at another vertex v̄.
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(b) “No right turn exit”:

Whenever h0 = . . . wv1v2 . . . exits any Morse source w of a face F , then v1v2 are not
both on ∂F in clockwise direction.

(c) “No left turn entry”:

Whenever h0 = . . . v−2v−1w . . . enters any Morse source w of a face F , then v−2v−1 are
not both on ∂F in clockwise direction.

The letter Z graphically indicates the admissible behavior, in case both the exit arc v1v2,
on top, and the entry arc v−2v−1, on bottom, are on ∂F : right turn entry and left turn exit.
Note however, that h0 is also permitted to connect Morse sources of adjacent faces through
the bisecting Morse saddle of a shared edge, without creating arcs on ∂F at all. Also note
that the reverse path h−0 = . . . v2v1wv−1v−2 . . . of h0 is boundary Z-Hamiltonian, whenever
h0 is, albeit with reversed roles of the start and termination points v and v̄.

By plain reflection κ we can also define (boundary) S-Hamiltonian paths h1. We simply
call h1 S-Hamiltonian for G2 if the reflected path h0: = κh1 is Z-Hamiltonian for the reflected
graph κG2. In other words, the S-Hamiltonian path h1 is neither permitted right turns, upon
face entry, nor left turns upon exit. By a (boundary) ZS-Hamiltonian pair (h0, h1) we mean
a Z-Hamiltonian path h0 and an S-Hamiltonian path h1 in G2, both of which start at the
same vertex v and terminate at the same, distinct, vertex v̄ in G. See Figure 1.2 for examples

Our concept of ZS-Hamiltonian pairs (h0, h1) is motivated, as we have seen in [FiRo07a],
by the fact that the ordering of equilibria vk of the Sturm PDE (1.1), (1.2), alias vertices of
the connection graph Cf , by their boundary values vk(x) at x = 0, 1, respectively, defines a
pair of Z- and S-Hamiltonian paths with properties (a)–(c).

Theorem 1.2 A graph G2 is the connection graph Cf of some nontrivial, at most two-
dimensional Sturm attractor Af with only hyperbolic equilibria if, and only if, G2 satisfies
the following two properties:

(i) G2 is the filled graph of a finite, connected, plane, cellular multigraph G without loops,
and

(ii) G2 possesses a boundary ZS-Hamiltonian pair (h0, h1) which starts and ends at two
distinct vertices v, v̄ in the boundary ∂G.

The “flow” directed filled graph G2 then coincides with the flow directed connection graph
Cf .
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Figure 1.2: Boundary Hamiltonian pairs (h0, h1) for n-gons, n = 2, . . . 6. Path h0 black, path
h1 gray.
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In [FiRo07a] we have already proved the “only if” part of theorems 1.1 and 1.2. As a
main preparation we have proved the equivalence of the orientations of 1.1, (ii), with the
ZS-Hamiltonian pairs of 1.2, (ii). This equivalence is a purely graph theoretic statement on
plane graphs and can be formulated as follows.

Theorem 1.3 Let G be a finite, connected, plane, cellular multigraph without loops. Let G2

denote the filled graph of G. Then the following two statements are equivalent.

(i) G possesses an orientation Gd with exactly one di-source v and one di-sink v̄, both in
the boundary ∂G, and without directed cycles.

(ii) G2 possesses a boundary ZS-Hamiltonian pair (h0, h1) between v and v̄, in the sense
of properties (a)–(c) preceding theorem 1.2

The point of the two equivalent formulations, later on, will be that orientations of G
define unique boundary Z- and S-Hamiltonian paths h0 and h1 in G2, which can then be
interpreted as the ordering of equilibria vk by their boundary values at x = 0, 1, respectively.
These orders, in turn, determine the global Sturm attractor Af . In fact, the 1-skeleton C1

f

and the connection graph Cf will be shown to coincide with the prescribed 1-skeleton G and
its filled counterpart G2, respectively.

So far, we have shown that the 1-skeleton G = C1
f of the connection graph G2 = Cf of any

two-dimensional nontrivial Sturm attractor Af with hyperbolic equilibria satisfies properties
(i), (ii) of theorem 1.1. See [FiRo07a]. Together with theorem 1.3, this also shows that
properties (i), (ii) of theorem 1.2 hold for the connection graph G2 = Cf .

It therefore remains to prove that, conversely, any pair G, G2 with the properties of
theorems 1.1 and 1.2 indeed arises as a 1-skeleton C1

f and its connection graph Cf , respectively,
for some dissipative nonlinearity f with two-dimensional Sturm attractor Af and hyperbolic
equilibria. In fact we will have to address the converse part of theorem 1.2, only, again in
view of the equivalence in theorem 1.3. In particular we are given G2 with a given boundary
ZS-Hamiltonian pair (h0, h1) from the di-source v to the di-sink v̄ of the oriented 1-skeleton
Gd of G2.

To the converse part of theorem 1.2, we first review the precise role of the boundary
order of equilibria, alias the boundary ZS-Hamiltonian pair (h0, h1), for the characteriza-
tion of Sturm attractors Af and their connection graphs Cf , in section 2. In particular we
introduce the Sturm permutations π = h−1

0 ◦h1 and show how they determine Morse indices
of equilibria, the zero number of their differences, and the connection graph. We address
the special case of an n-gon connection graph and attractor, in section 3. Section 4 general-
izes this paradigm to any general n-gon face within a planar Sturm attractor. In section 5

9



we conclude the proof of theorem 1.2. We show how our general construction of boundary
ZS-Hamiltonian pairs (h0, h1) indeed gives rise to nonlinearities f with the prescribed con-
nection graph Cf = G2. For illustration purposes we discuss and classify all planar Sturm
attractors with up to 11 equilibria in the sequel [FiRo07b]. We also realize all classical
plane Platonic graphs: tetrahedron, cube, octahedron, dodecahedron, and icosahedron, and
include a discussion of our approach.
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2 Sturm attractors, Hamiltonian paths and Sturm per-

mutations

In the present section we outline the role that the boundary ZS-Hamiltonian pair (h0, h1)
will play in the connection graph Cf and the Sturm attractor Af in subsequent sections. See
also [Ra02, FiSche03] for surveys.

The role of h0, h1 originates from the ordering of the hyperbolic equilibria

Ef = {v1, . . . , vN} $ Af(2.1)

on the boundaries x = 0, 1, respectively. We define the boundary permutations hi = hf
i ∈ SN

by the boundary order

vhi(1)(x) < vhi(2)(x) < . . . < vhi(N)(x), at x = i = 0, 1.(2.2)

The central object in the classification of Sturm attractors, ever since it was first introduced
by Fusco and Rocha in [FuRo91], is then the Sturm permutation π = πf defined by

π: = h−1
0 ◦ h1.(2.3)

Relabeling equilibria by any permutation σ ∈ SN corresponds to replacing hi by σ ◦ h. This
does not affect the Sturm permutation π. For example we may label the equilibria v1, . . . , vN
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such that h0 = id is the identity permutation, and thus v1 < v2 < . . . < vN at x = 0. Then
π = h1 simply keeps track of the order

vπ(1) < vπ(2) < . . . < vπ(N) at x = 1.(2.4)

For simplicity of presentation we fix this labeling in the present section.
The Sturm permutations π = πf encode geometric and dynamical information on the

Sturm attractors A = Af and, in fact, make the study of their connection graphs Cf a
combinatorial task. We describe some of these results next, as they have been obtained
over the past decades, starting with preliminary results in [ChIn74, CoSm83, He85, BrFi88,
BrFi89, HaMi91] for nonlinearities f = f(u).

In [FiRo99] it has been observed that any permutation π ∈ SN is a Sturm permutation,
i.e., π = πf for some dissipative nonlinearity f = f(x, u, ux) with only hyperbolic equilibria,
if, and only if, π is a dissipative Morse meander. We explain these three notions next.

We call a permutation π ∈ SN dissipative, whenever N is odd and π(1) = 1, π(N) = N
are fixed under π.

We call a permutation π ∈ SN Morse, whenever the following N quantities ij are all
nonnegative:

ij: =

j−1∑
ι=1

(−1)ι+1 sign (π−1(ι + 1)− π−1(ι)).(2.5)

Note i0 = 0 by the empty sum, and iN = 0 for dissipative π.
Following Arnold [ArVi89], we call π ∈ SN a meander permutation, if the following prop-

erty holds. Whenever π−1(j′) is between π−1(j) and π−1(j + 1), and j, j′ have the same
parity (−1)j = (−1)j′ , then π−1(j′+1) is also between π−1(j) and π−1(j +1). An alternative
geometric description is the following: consider a C1 Jordan curve S which intersects the
horizontal axis transversely and at precisely N locations, numbered k = 1, . . . , N in increas-
ing order. Also number the same intersections successively along the curve S. The second
numbering j provides a permutation j = π(k), relative to the first. Any permutation π
arising by such a construction is called meander permutation. See figure 2.1 for an example
of a dissipative Morse meander π ∈ S13. For many more examples see [FiRo07b].

It is fairly straightforward to see that Sturm permutations π = πf are dissipative Morse
meanders. In fact, v1 = v and vN = v̄ are the lowest and highest equilibria in the global
attractor Af as discussed in section 1. In particular (2.2), (2.3) imply π(1) = 1 and π(N) =
N . The Morse property of π follows because ij = i(vj) are the Morse indices of the equilibria
vj, by [FuRo91], and hence nonnegative. In particular iN = 0 for the top sink v̄ = vN , and
hence N is odd by (2.5) mod 2 with j = N . The meander property follows by shooting:
consider the equilibrium second order ODE (1.5) with initial condition vx = 0 given by the
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1     8     9   10  11   12     7   2   3    4    5      6     13        π(k)

1     2     3    4     5       6     7  8   9   10   11   12   13          k

S

Figure 2.1: Dissipative Morse meander permutations π = (1, 8, 9, 10, 11, 12, 7, 2, 3, 4, 5, 6, 13)
and shooting curve S. For k below the horizontal axis, j = π(k) is denoted above. Filled
dots indicate ij = 0 and the circled dot has i7 = 2. For all other intersections, ij = 1.

horizontal v-axis in the (v, vx) phase plane. The diffeomorphic image of the v-axis in the
phase plane (v, vx), at x = 1, is called the shooting curve S. The curve S crosses the v-axis
transversely, at the boundary values vj(x) of the hyperbolic equilibria evaluated at x = 1.
The permutation π associated to the shooting curve S is the Sturm permutation defined in
(2.3), (2.4) above. Numbers j above the v-axis indeed indicate the ordering of equilibria at
x = 0, i.e., along the shooting curve S, whereas numbers k below the axis indicate their
ordering at x = 1. This explains why Sturm permutations are dissipative Morse meanders.
It is significantly more difficult, but has been established in [FiRo99], that all dissipative
Morse meanders π are indeed Sturm permutations π = πf , for some nonlinearity f .

The precise numbering of equilibria is just a minor issue of bookkeeping, but also a major
source of confusion. Let us clarify. In figure 2.1, numbers j above the horizontal axis indicate
the label of the equilibrium vj which is defined by the intersection point of the shooting curve
S with the horizontal axis. This assumes that equilibria are ordered by increasing index j,
at x = 0, according to the convention h0 = id underlying (2.4). Let k denote the number
at j, but below the horizontal axis. Then the values vh0(j) = vj are ordered as the k are,
at x = 1, by definition (2.2) of h0. On the other hand, the values vh1(k) are also ordered as
the k themselves are, at x = 1, by definition (2.2) of h1. Therefore j = h0(j) = h1(k). In
particular j = h−1

0 (h1(k)) = π(k), as claimed in figure 2.1.
In [FiRo00] it has been shown that Sturm attractors Af and Ag are C0 orbit equivalent

if their Sturm permutations coincide:

πf = πg ⇒ Af
∼= Ag.(2.6)

Here C0 orbit equivalence ∼= requires that there exist a homeomorphism between Af and Ag
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which maps orbits of the PDE (1.1), (1.2) under nonlinearity f to orbits under g. As we
shall see and discuss below, the converse of (2.6) does not always hold.

The key to our construction of prescribed connection graphs Cf = G2 from boundary
ZS-Hamiltonian pairs (h0, h1) between v and v̄ in G2 will be the derivation of connection
graphs Cf from Sturm permutations πf . We present these results following [FiRo96]; see also
the elegant form due to [Wo02a].

One central ingredient to determining Cf from πf is the notion of blocking. Let v, v1, v2

be three distinct equilibria in A. We say that v blocks any heteroclinic orbit v1  v2, if one
of the following two conditions holds:

z(v1 − v) < z(v2 − v); or(2.7)

z(v1 − v) = z(v2 − v) and v is between v1 and v2 at x = 0 or x = 1.(2.8)

Indeed blocking prevents heteroclinic orbits u(t, ·) from v1 to v2 by the Sturm nodal property
(1.9) of nonincreasing t 7→ z(u(t, ·)− v).

For later reference and as an introduction to blocking, we mention the following useful
blocking lemma.

Lemma 2.1 Let v1, v2, v3, v4 be distinct equilibria such that v4  v3 and v2  v1. Assume
that the following overlap conditions hold, either all at x = 0 or all at x = 1: the equilibrium
v2 is between v3, v4, and v3 is between v1, v2. Then

z(v4 − v2) ≥ z(v3 − v1) + 2(2.9)

Proof: Since v2 between v3, v4 does not block v4  v3, blocking conditions (2.7), (2.8) must
both be violated for the triple v2, v3, v4. Therefore

z(v4 − v2) > z(v3 − v2).(2.10)

Similarly, v3 between v1, v2 does not block v2  v1 and therefore

z(v2 − v3) > z(v1 − v3).(2.11)

Together, (2.10) and (2.11) prove the lemma. ./

Due to cascading, we only have to consider equilibria v1, v2 of adjacent Morse indices
i(v1) = i and i(v2) = i + 1 as candidates for adjacency in the connection graph Cf . For such
Morse adjacent pairs we can refine the notion of blocking. By Morse-Smale transversality
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of stable and unstable manifolds, a unique heteroclinic orbit u(t, x) may run from v2 to v1,
but not vice versa. The dropping property of the zero number z on X \ {0} implies for a
heteroclinic orbit u(t) ∈ X from v2 to v1 that

i = codim W s(v1) ≤ z(u(t)− v1) ≤ z(v2 − v1) =(2.12)

= z(v1 − v2) ≤ z(u(t)− v2) < dim W u(v2) = i + 1.

See (1.10) and [An86, BrFi86, He85] for the first and last inequality. Therefore we may also
assume z(v1 − v2) = i. We say that an equilibrium v ∈ Cf i-blocks v1, v2 if

z(v − v1) = z(v − v2) = z(v1 − v2) = i = i(v1) = i(v2)− 1 and(2.13)

v(x) is between v1(x) and v2(x) at x = 0 or, equivalently, at x = 1.

Obviously i-blocking prevents heteroclinic orbits u(t) between v1 and v2, by z-dropping of
z(u(t)− v).

Theorem 2.2 [FiRo96] Let v1, v2 be hyperbolic equilibria in Af numbered such that i(v1) ≤
i(v2). Then v1, v2 are connected by an edge in the connection graph Cf , i.e. by a heteroclinic
orbit v2  v1, if, and only if, there exists a nonnegative integer i such that the following two
properties hold:

(i) z(v1 − v2) = i(v1) = i(v2)− 1 = i, and

(ii) v1, v2 are not i-blocked.

The above theorem provides an explicit algorithm

πf 7→ Cf(2.14)

which determines the connection graph Cf from the Sturm permutation πf , once the Morse
indices ik = i(vk) and the zero numbers z(vj − vk) are known, for all 1 ≤ j, k ≤ N . We
combine these numbers in the z-matrix with entries

zjk: =

{
i(vk) = ik for j = k;
z(vj − vk) = z(vk − vj) for j 6= k.

(2.15)

An explicit expression for the diagonal entries ik in terms of π = πf was given in (2.5). The
off-diagonal entries zjk = zkj, for 1 ≤ j < k ≤ N satisfy

zjk = ij +
1

2

(
(−1)k sign (π−1(k)− π−1(j))− 1

)
+(2.16)

+
∑

j<`<k

(−1)` sign (π−1(`)− π−1(j)),
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again with empty sums denoting zero. See [FuRo91, Ro91, FiRo96]. For practical purposes
we also mention the following properties, for all 1 ≤ j < N and, in the last line, 1 ≤ j <
k < N .

z11 = i1 = zNN = iN = 0;(2.17)

zj1 = zjN = 0(2.18)

zj,j+1 = min{ij, ij+1}(2.19)

zj,k+1 = zjk +
1

2
((−1)k+1 sign (π−1(k + 1)− π−1(j)) +(2.20)

+(−1)k sign (π−1(k)− π−1(j)))

In figure 2.2 we collect the 18 connection graphs Cf of Sturm attractors Af with N = 9
hyperbolic equilibria. Trivially isomorphic copies by π 7→ π−1, as generated by x 7→ −x, and
by conjugation with the flip σ = (N, N − 1, . . . , 2, 1), as generated by v 7→ −v, are omitted.
See [Fi94].

Corollary 2.3 Let vj, vk be equilibria with, among all equilibria from Cf , adjacent boundary
values at x = 0 or at x = 1. Then vj, vk are adjacent in the connection graph Cf , i.e.,
vj  vk or vk  vj.

Proof: Equilibria vj, vk with adjacent boundary values cannot be i-blocked, for any i. By
theorem 1.3 it only remains to check property (i) for vj, vk. Reflecting x 7→ 1 − x, if
necessary, we may assume adjacency of the boundary values at x = 0, i.e., k = j + 1.
Then i(vk) = i(vj) ± 1, by (2.5), and (2.13) implies property (i) for vj, vk. This proves the
corollary. ./

By corollary 2.3, we always have two boundary Hamiltonian paths h0 and h1 in our
connection graph Cf . The two paths are given by the succession of vertices vk ∈ E , ordered by
their boundary values at x = 0 and x = 1, respectively. In our present notation, specifically,
the paths are

h0: v1, v2, . . . vN

h1: vπ(1)vπ(2) . . . vπ(N)

(2.21)

Clearly these paths arise from the permutations h0 = id and h1 = π defined via the boundary
ordering of equilibria in (2.2). The paths start and end at the boundary of Cf because v1 = v
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Figure 2.2: All 18 connection graphs Cf of Sturm attractors Af with N = 9 equilibria, up
to trivial isomorphisms generated by π 7→ π−1 and π 7→ σπσ−1 with σ = (9, 8, . . . , 2, 1).
Equilibria are numbered such that h0 = id.
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and vN = v̄ are on the boundary of the L2-orthogonal Sturm Liouville projection PAf

discussed in section 1, (1.10).
None of the above results uses planarity of PAf . Our poof of the remaining converse parts

of theorems 1.1, 1.2, will show how boundary ZS-Hamiltonian pairs (h0, h1) in filled graphs
G2, viewed as permutations of the equilibrium labels 1, . . . , N , will give rise to dissipative
Morse meander permutations π: = h−1

0 h1 with prescribed connection graph Cf = G2.

3 Example: n-gon attractors

In this section we pause for a moment to illustrate our approach with a specific class of
examples: n-gon attractors An,m for 1 ≤ m < n. See figure 1.2 for the cases 1 ≤ n/2 ≤ m <
n ≤ 6 and figure 3.1 for the general cases An,n−1 and An,n−[n/2] where [·] denotes the floor
function.

The 1-skeleton G of the n-gon attractor is a regular plane n-gon with Morse sink vertices
vk labeled k = 1, 3, . . . , 2n−1, clockwise. The filled graph G2 possesses the additional Morse
saddles 2k bisecting the edges {2k − 1, 2k + 1}, for 1 ≤ k < n, and the edge {2n− 1, 1} for
k = n. The barycenter of the n-gon is the Morse source 2n + 1 of G2, connected by edges to
each Morse saddle. Obviously there is only one bounded face F : the interior of the n-gon.
The boundary ∂F is the 1-skeleton G.

The loop-free orientations of G, without di-sources and di-sinks other than the Morse
sinks v and v̄, are characterized by the positions of v and v̄ along the boundary n-gon ∂F :
the two n-gon arcs between v and v̄ are oriented from v to v̄. Without loss of generality we
label

v = v1, v̄ = v2m+1(3.1)

for some 1 ≤ m < n.
We have seen in [FiRo07a] how any planar Sturm attractor Af possesses such an orien-

tation. Conversely, we now construct dissipative Morse meander permutations π ∈ S2n+1

such that π = πf implies Cf = G2, for our n-gon. In view of theorem 1.3 it will be sufficient
to show that the 1-skeletons coincide:

C1
f = G.(3.2)

To construct π we follow the program outlined in section 1 and at the end of section 2,
based on the above orientation of G with di-source v = v1 and di-sink v̄ = v2m+1. Properties
(a)–(c) of Z-Hamiltonian paths h0 from v to v̄, as specified in section 1, identify the path
h0 = vh0(1)vh0(2) . . . vh0(N) with N = 2n + 1 to be given uniquely by the permutation

h0 =

(
1 2 3 . . . 2m 2m + 1 2m + 2 2m + 3 . . . 2n 2n + 1
1 2 3 . . . 2m 2n + 1 2n 2n− 1 . . . 2m + 2 2m + 1

)
(3.3)
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Figure 3.1: The n-gon attractors An,m with (a) m = n− 1; (b) n even and m = n/2; (c) n
odd and m = (n + 1)/2. Z-Hamiltonian path h0 (solid) and S-Hamiltonian path h1 (gray)

of the equilibrium labels. Similarly, the unique S-Hamiltonian path from v to v̄ is given by
the permutation

h1 =

(
1 2 . . . 2(n−m) 2(n−m) + 1 2(n−m) + 2 . . . 2n 2n + 1
1 2n . . . 2m + 2 2n + 1 2 . . . 2m 2m + 1

)
(3.4)

By recipe (2.3) this defines the candidate πn,m: = h−1
0 ◦ h1 for a Sturm permutation with

Sturm attractor An,m and connection graph Cn,m = G2 to be

πn,m =
(

1 2 . . . 2(n−m) 2(n−m) + 1 2(n−m) + 2 . . . 2n 2n + 1
1 2m + 2 . . . 2n 2m + 1 2 . . . 2m 2n + 1

)
.(3.5)

Note the symmetry under m 7→ n−m:

πn,n−m = π−1
n,m.(3.6)

It is straightforward to check that the permutation πn,m is a dissipative Morse meander. See
figure 3.2 for the shooting curve and the Morse indices ik of πn,m.

To show that the connection graph Cn,m of the Sturm permutation πn,m = πf is the filled
n-gon G2 it remains to check that the 1-skeleton C1

n,m coincides with the n-gon boundary G;
see (3.3). More specifically, we have to show that the saddle v2k indeed connects to v2k−1

and v2k+1, for k = 1, . . . n, and to no other sinks. Subscripts are taken mod 2n here . This
is a case of checking for heteroclinic orbits with i = 0, by theorem 2.2.
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Figure 3.2: Shooting curve and Morse indices of πn,m. Below axis: k; above axis: πn,m(k).
Note that labels k above and below axis indicate equilibrium vh0(k) and vh1(k) in figure 3.1,
respectively.

We first show v2k  v2k±1. Indeed v2k and v2k±1 are successors along the Hamiltonian
paths h0 or h1. Hence their boundary values are adjacent at the boundary x = 0 or x = 1,
among all equilibria. Therefore i = 0 blocking cannot occur. Moreover i(v2k) = 1, i(v2k±1) =
0, and hence z(v2k − v2k±1) = min{i(v2k), i(v2k±1)} = 0 by property (2.13) of the z-matrix.
This proves v2k  v2k±1, by theorem 2.2.

To exclude all other heteroclinic orbits v2k  v2j+1, j 6∈ {k− 1, k} we group the relevant
indices k, j into two different sets L and R for the left and right arcs of the n-gon, oriented
downward from v to v̄:

L = {2m + 2, . . . , 2n}, R = {2, . . . , 2m}.(3.7)

Note that v2k  v2j+1 is 0-blocked by v2k±1, within the same set and including v, v̄, because
the orientation on each of these arcs, respectively, defines a total order with strict ordering
of all these equilibria on the whole interval 0 ≤ x ≤ 1, and not just on the boundaries.
Heteroclinic orbits v2k  v2j+1 with saddle v2k and sink v2j+1 in different sets are excluded,
because

z(v2k − v2j+1) ≥ 1(3.8)

in that case. Indeed note that the boundary values of equilibria in L are strictly above those
of R, at x = 0; see the ordering define by h0 in (3.3). The ordering at the other boundary,
x = 1 is the reverse: L is below R. This proves (3.8). See also figure 4.2 below.

Summarizing, the 1-skeleton C1
n,m of the connection graph Cn,m of the global attractor

Af = An,m with Sturm permutation πn,m is indeed the prescribed n-gon, as was claimed in
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(3.2). Moreover the boundary orders of equilibria, at x = 0, 1 are as was prescribed by the
boundary ZS-Hamiltonian pair (h0, h1) from v = v1 to v̄ = v2m+1 specified in (3.3), (3.4).

4 Example: n-gon faces in planar Sturm attractors

In the previous section we have studied the n-gon Sturm attractors An,m for 1 ≤ m < n,
which consist of just a single face F with one source w inside, and n sink-saddle pairs on its
n-gon boundary ∂F . In the present section we study an arbitrary face F , alias the unstable
manifold W u(w) of an arbitrary source w, of any planar Sturm attractor A = Af with Sturm
permutation πf . The face boundary ∂F must then be an n-gon, for some n ≥ 2. This has
already been observed in [FiRo07a] and is contained in the “only if” part of theorem 1.1:
the 1-skeleton is cellular. The analysis of n-gon faces in the present section will therefore
serve as a paradigm to our subsequent proof, in section 5, that boundary ZS-Hamiltonian
pairs (h0, h1) in a plane filled graph G2 indeed give rise to a planar Sturm attractor A = Af

with prescribed connection graph G2, via the Sturm permutation πf = π: = h−1
0 ◦ h1.

The general environment in the shooting curve S of a source equilibrium w = v2m+1 in
any planar Sturm attractor A is sketched in figure 7.1. The shooting curve S consists of
arcs above and below the horizontal axis v(1) which match globally, at their end points, to
form the Jordan curve S. Consider S oriented from the lowest equilibrium sink v to the
highest, v̄. Then S crosses the v-axis transversely, by hyperbolicity. Crossings are upward,
at equilibria v with even Morse index (here: sinks and sources), and are downward at odd
Morse index (here: saddles). By (2.5) the Morse index increases by 1 along any arc which
turns right, but decreases by 1 along left turning arcs.

By these observations, the source w = v2n+1 comes associated with the following corona
of sinks and saddles. Let v2n, below w = v2m+1, denote the saddle end point of the shooting
arc a+ emanating from w to the left. Similarly, let v2m be the saddle starting point, above
w, of the shooting arc a− from the right which terminates at w. Because S is a shooting
curve, vertically neighboring arcs must have opposite orientation. In particular, the (possibly
absent) upper arcs bn−1, . . . , bm+1 immediately below a+ are oriented to the right and are right
turning. Therefore they start at n−m−1 sinks v2n−1, . . . , v2m+3 and terminate at n−m−1
saddles v2n−2, . . . , v2m+2. This defines the integer n −m − 1 ≥ 0. Similarly, we find m − 1
(possibly absent) right oriented and left turning lower shooting arcs b1, . . . , bm−1 immediately
above a−. These arcs start at saddles v2, . . . v2m−2 and terminate at sinks v3, . . . , v2m−1. The
numbers m − 1 and n − m − 1 of these arcs bk, incidentally, define m, n with 1 ≤ m < n.
Finally, let v1 denote the starting point of the first shooting arc c+ above a+. Note that c+

indeed exists and v1 must be a sink. Analogously, the sink v2m+1 denotes the end point of
the first shooting arc c− below a−. This defines the sink and saddle equilibria v1, . . . , v2n in
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Figure 4.1: Corona v1, . . . , v2n of a source w = v2n+1 in the shooting curve S of a planar
Sturm attractor A. For notation see text. The face boundary ∂F of w is indicated by thick
solid and dashed segments.

the Sturm attractor A which we call the corona of the source w = v2n+1.

Theorem 4.1 The equilibria v1, . . . , v2n+1 introduced above define an n-gon face F with
source w = v2n+1. The periphery is an n-gon ∂F with alternating sinks and saddles v1, . . . , v2n.
The sink v1 is a di-source, v′ = v1, and the sink v2m+1 is a di-sink v′ = v2m+1 on ∂F , as
described geometrically in section 3. Specifically we claim that the saddles v2, . . . , v2n and
the source v2n+1 only possess the following heteroclinic connections to sinks and saddles,
respectively:

(i) v2n+1  v2k, for k = 1, . . . , n;

(ii) v2k  v2k−1, for k = 1, . . . , n;

(iii) v2k  v2k+1, for k = 1, . . . , n− 1;

(iv) v2n  v1

In particular the connection graph Cf is the filled graph of its 1-skeleton C1
f .

We split the poof of theorem 4.1 into the string of lemmas 4.2–4.6 below. Lemma 4.2
establishes v2k  v2k−1 as in (ii), except for k = 1, m + 1. Similarly, it takes care of (iii),
except for k = m. In lemma 4.3 we establish the connections from the source w = v2n+1

to the periphery v2k as claimed in (i). The case k = 1 of (ii), which leads to the di-source
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v′ = v1 on ∂F , is addressed in lemma 4.4, together with claim (iv). The remaining cases
k = m, m + 1 lead to the di-sink v′ = v2m+1 on ∂F , in lemma 4.5. Lemma 4.6 establishes
the absence of further heteroclinic orbits from the source and saddles of F to adjacent Morse
levels, and thus completes the proof of the theorem.

All lemmas in this section employ the notation and assumptions of the theorem.

Lemma 4.2
v2k  v2k−1 for 1 < k ≤ m or m + 1 < k ≤ n(4.1)

v2k  v2k+1 for 1 ≤ k < m or m + 1 ≤ k < n(4.2)

In particular the equilibria vk(x) are ordered as follows, pointwise for all 0 ≤ x ≤ 1 :

v2 < v3 < v4 < . . . < v2m;(4.3)

v2m+2 > v2m+3 > v2m+4 > . . . > v2n.(4.4)

At the boundaries the orders are

v2 < v3 < . . . < v2m < w = v2n+1 < v2n < . . . < v2m+3 < v2m+2 at x = 0, and(4.5)

v2n < v2n−1 < . . . < v2m+2 < w = v2n+1 < v2 < . . . < v2m−1 < v2m at x = 1.(4.6)

See figure 4.2 for an illustration of lemma 4.2. Without loss of generality we have nor-
malized to the case w = v2n+1 ≡ 0.

Proof: We only consider the claims for m + 1 ≤ k ≤ n. Substituting v 7→ −v the cases
1 ≤ k ≤ m are analogous and will be omitted.

At x = 1 and for m + 1 < k ≤ n, the sink v2k−1 is adjacent to its preceding saddle v2k

along the v-axis; see figure 4.1. By corollary 2.3 this shows v2k  v2k−1 for m+1 < k ≤ n and
hence proves claim (4.1). Because i(v2k) = 1 at the saddles, the heteroclinic orbit also implies
z(v2k − v2k−1) = 0, which shows half of the ordering (4.4). Similarly, corollary 2.3 implies
v2k  v2k+1 for m + 1 ≤ k < n, because the sink v2k+1 is adjacent to the subsequent saddle
v2k along the shooting curve S and at x = 0. This proves claim (4.2) and the remaining half
of (4.4). Claims (4.5) and (4.6) follow from the respective boundary orders of v2m, v2n+1, v2n

and from (4.3), (4.4). This proves the lemma. ./

Lemma 4.3
w = v2n+1  v2k, for k = 1, . . . , n.(4.7)
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Figure 4.2: Orderings of vk(x) in general face F . Hashed regions at x = 0, 1 indicate
adjacency of equilibria.

Proof: The shooting arcs a± of the F -source w = v2n+1 in figure 4.1 reach to v2m and v2n.
By corollary 2.3 this shows

v2n+1  v2m, v2n+1  v2n.(4.8)

Interchanging the roles of a+ and a− by the substitution v 7→ −v, if necessary, we consider
the arc a+ and only show v2n+1  v2k for m < k < n, without loss of generality.

We proceed by induction on k, starting at the settled case k = m. We thus assume
v2n+1  v2k has been proved. We now show indirectly

v2n+1  v2k+2.(4.9)

If the heteroclinic orbit (4.9) does not exist, then it is i-blocked with i = 1 by some other
equilibrium B; see theorem 2.2. Indeed i(v2n+1) = 2 and i(v2k+2) = 1. Moreover z(v2n+1 −
v2k+2) < dimA = 2, by (1.10), and z(v2n+1 − v2k+2) ≥ 1 by the boundary orderings (4.5),

23



(4.6). Therefore z(v2n+1 − v2k+2) = 1 and B exists, supposedly. To reach a contradiction
and thus complete the induction step (4.9) we show below that

z(v2k −B) = 0 < 1 = z(v2k+1 −B).(4.10)

Then B blocks v2k  v2k+1, by (2.7), in contradiction to lemma 4.2.
To prove the present lemma it therefore remains to show (4.10). Again from (1.10) we

recall z(v − B) < dimA = 2 for all equilibria v. The zero numbers in (4.10) can therefore
be determined from the boundary values at x = 0, 1.

Because B is assumed to be 1-blocking for w = v2n+1  v2k+2, say at x = 1, we have
v2k+2 < B < w at x = 1. Because v2k+1 and v2k+2 are adjacent, at x = 1, this implies

v2k+2 < v2k+1 ≤ B < w at x = 1;(4.11)

see also (4.6). Moreover z(w −B) = z(v2k+2 −B) = 1, by 1-blocking, and therefore

w < B < v2k+2 < v2k+1 < v2k at x = 0;(4.12)

see also (4.5). Together this proves B 6= v2k+1 and z(v2k+1−B) = 1. By induction hypothesis
w  v2k, however, B does not block w  v2k. Therefore z(w − B) = 1 and (4.12) imply
that z(v2k −B) ∈ {0, 1} must be zero. This proves (4.10), the induction step (4.9), and the
lemma. ./

As a preparation for lemma 4.4 we define the two candidates v2 and v2n for v′ = v1 as
follows. The saddles v2, v2n each possess an unstable manifold with two heteroclinic orbits.
One of these, running upward at any fixed 0 ≤ x ≤ 1, terminates at v3, v2n−1, respectively;
see lemma 4.2. The other one, running downward, terminates at equilibria which we call
v2, v2n, respectively. In other words:

v2  v2 < v2;(4.13)

v2n  v2n < v2n.(4.14)

The following lemma closes the (undirected) boundary cycle ∂F at v1.

Lemma 4.4
v2 = v2n = v1.(4.15)

In particular v2  v1 and v2n  v1.
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Proof: We recall that v1 is the left starting point of the first shooting arc c+ above the arc
a+ from w = v2n+1 to v2n; see figure 4.1.

Between v1 and v2n there are (possibly absent) arcs d+
j below c+ which connect sources

to saddles. To identify v2n = v1 we first invoke the defining relation (4.14) of the downward
heteroclinic orbit v2n  v2n < v2n. By lemma 2.1 the target sink v2n cannot be located
below any of the arcs dj on the v(1)-axis. Indeed (2.9) is impossible by dimA = 2. Likewise,
v2n cannot be located outside the arc c+. Therefore v2n = v1.

Similarly, lemma 2.1 also implies v2 = v1. The above argument indeed applies verbatim
if we include the arc d0: = a+. This proves the lemma. ./

Analogously to v2 and v2n in (4.13), (4.14) we define v̄2m and v̄2m+2 by the relations

v2m  v̄2m > v2m;(4.16)

v2m+2  v̄2m+2 > v2m+2.(4.17)

The following lemma closes the (undirected) boundary cycle ∂F at v2m+1.

Lemma 4.5
v̄2m = v̄2m+2 = v2m+1.(4.18)

In particular v2m  v2m+1 and v2m+2  v2m+1.

Proof: Substituting v 7→ −v, this case is analogous to lemma 4.4. ./

Lemma 4.6 The source w = v2n+1 of F does not possess heteroclinic connections to any
saddles besides v2k, 1 ≤ k ≤ n. The saddles v2k, 1 ≤ k ≤ n, do not possess any heteroclinic
connections to any sinks besides v2k±1, with indices taken mod 2n. In particular v′ = v1 and
v̄′ = v2m+1 on ∂F .

Proof: In lemmas 4.2, 4.4, 4.5 we have established two sink targets v2k±1 for each saddle v2k.
Since the one-dimensional unstable manifolds of the saddles contain only two heteroclinic
orbits, this proves the claim on saddles. That the source w = v2n+1 does not connect to any
saddles outside the corona v1, . . . , v2n follows from blocking lemma 2.1, because z(v − w) <
dimA = 2 for any equilibrium v ∈ A, by (1.10). Indeed the closed circle ∂F of the corona
heteroclinic orbits around w prevents any heteroclinic orbits from w crossing the corona.

Since v1 and v2m+1 are the maximal and the minimal equilibrium in ∂F , by construction
and in the boundary order at x = 1, this also proves v′ = v1 and v̄′ = v2m+1. This completes
the proof of the lemma, and of theorem 4.1. ./
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5 From ZS-Hamiltonian pairs and skeleton orientations

to Sturm attractors

In this section we complete the proof of theorems 1.2 and 1.1 on the characterization of
the connection graphs Cf and their 1-skeletons C1

f as filled graphs G2 with boundary ZS-
Hamiltonian pairs (h0, h1) and their oriented 1-skeletons G, respectively. In theorem 1.3 we
have recalled the equivalence of the characterizing graph theoretic properties of G2 and G.
The equivalence proof was on the graph level, directly, and did not recur to any dynamical
systems concepts like connection graphs of Sturm attractors. In section 4 of [FiRo07a] we
showed how Sturm attractors induce an orientation of the 1-skeleton C1

f . This proved that
G: = C1

f satisfies the characterizing properties of theorem 1.1 and thus completed the “only
if” part of theorems 1.1 and 1.2. In the present section, finally, we show how the existence of
boundary ZS-Hamiltonian pairs (h0, h1) in G2 (and of a compatible orientation of G) with
properties (i), (ii) of theorems 1.2 (and 1.1) conversely provides a connection graph Cf which
is isomorphic to G2.

As announced in sections 1 and 4, our proof starts from the paths h0, h1 and defines

π: = h−1
0 ◦ h1;(5.1)

see also (2.3), (2.6). In lemma 5.1 we show that π = πf is indeed a Sturm permutation. Based
on [FiRo96] it is sufficient to show that π is a dissipative Morse meander. Recall section 2 for
this terminology. To establish the graph isomorphism Cf

∼= G2 of the connection graph Cf

with the prescribed filled graph G2 we observe that any realization of the Sturm permutation
π = πf by boundary orders h̃0, h̃1 of equilibria associated to the specific nonlinearity f in the
PDE (1.1), (1.2) just amounts to a relabeling of the equilibria v1, . . . , vN by some permutation
σ ∈ SN ; see lemma 5.2. This allows us to choose a labeling such that hj = h̃j indeed provide
the boundary orders of the equilibria at x = j = 0, 1, as required in (2.2). Lemma 5.3 then
establishes that Cf and G2 are indeed isomorphic, with the identity isomorphism on the
vertices. This completes the proof of theorem 1.2.

To complete the proof of theorem 1.1, then, only theorem 1.3 needs to be invoked. Indeed
we then have the cycle of implications {Sturm} ⇒ {theorem 1.1 (i), (ii)} ⇒ {theorem 1.2
(i), (ii)} ⇒ {Sturm}, by [FiRo07a], theorem 1.3, and the proof of the “if” part of theorem
1.2 given below.

Throughout the present section we fix the setting of theorem 1.2 (i), (ii). Specifically, we
are given a finite, connected, plane, cellular and loop-free multigraph G with two distinct
Morse sinks v, v̄ in the boundary ∂G. Moreover, the filled graph G2 with N vertices v1, . . . , vN

possesses a ZS-Hamiltonian pair (h0, h1) of paths, both of which start and terminate at v
and v̄ respectively. We consider the paths hj ∈ SN as permutations of the vertices and define
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π: = h−1
0 ◦ h1 as in (5.1).

Lemma 5.1 The permutation π = h−1
0 ◦ h1 ∈ SN is a Sturm permutation, i.e., π is a

dissipative Morse meander.

Proof: Without loss of generality let the vertices v1, . . . , vN of G2 be labeled such that v1 = v
and vN = v̄. Then the paths hj, j = 0, 1, both satisfy hj(k) = k, for k = 1, N , because they
both start and end at v1, vN . In particular

π(k) = k, for k = 1, N,(5.2)

is dissipative.
We show next that π is a meander permutation, i.e., can be described by a Jordan

curve S; see figure 2.1. In fact we will derive the topology of the shooting curve S, and its
transverse crossings of the horizontal axis, from the Hamiltonian paths h0 and h1 (including
their edge parts) in G2, respectively. For this purpose we disentangle the paths h0 and h1,
wherever they run parallel or antiparallel along the same edge AB between vertices A and
B. We consider the path h0 as running from A to B.

To define disentanglement we briefly recall the concept of duality, a slight variant G∗

of the standard dual graph of G, from [FiRo07a]. Vertices of G∗ inside ∂G are the Morse
sources of the filled graph G2 in the bounded faces of G. We replace the single vertex of the
standard dual, representing the exterior of ∂G, by two vertices v∗, v̄∗ as follows. Edges e∗ of
G∗ connect Morse sources of adjacent faces of G. We orient edges e∗, based on the oriented
edge e which the adjacent faces share, such that the ordered pair (e∗, e) is oriented positively
at the bisecting Morse saddle {v} = e ∩ e∗. Then v̄∗ terminates all edges e∗ which point
away from ∂G, to the outside, whereas v∗ provides a start vertex for all edges e∗ pointing
toward ∂G from the outside. See also [FiRo07b] for some realistic examples.

On the 1-skeleton G, the ZS-Hamiltonian paths h0 and h1 then follow the given orienta-
tion of the edges. On the dual skeleton G∗, however, the paths follow opposite orientations:
h0 respects the orientation defined above, whereas h1 runs against it. In other words, let h0

run from A to B. Then h0 and h1 both run from A to B, in parallel, if one of A, B is a
Morse sink. If one of A, B is a Morse source, on the other hand, then h1 runs from B to A,
i.e., antiparallel to h0.

We also assign the Morse types 0,1,2 respectively, to any vertex which is a Morse sink,
saddle, or source. The Morse types of A, B are adjacent. Here then is the disentanglement
rule:
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Figure 5.1: Disentanglement of ZS-Hamiltonian paths h0 (black) and h1 (gray). Dots,
crosses, and circles mark Morse sinks, saddles, and sources of Morse types 0,1, and 2, re-
spectively.

h1 runs

• to the left of h0, viewed along the edge AB, if A is of higher Morse
type than B, and

• to the right, otherwise.

(5.3)

See figure 5.1 for illustrations of all four cases. Our rendering of the ZS-Hamiltonian paths
(h0, h1) in figures 1.2 and 3.1 already respected the disentanglement rule.

It is an easy but important exercise to check that the ZS-Hamiltonian paths h0 and h1

cross each other, due to the disentanglement rule, at each vertex other than v, v̄. At sources,
for example, this follows from figure 2.1(a), even when v′ and v̄′ are adjacent sinks in G.
The case of only two sinks on the face boundary is particularly noteworthy; see also figure
1.2 top left.

By our duality construction, path crossing at sinks follows from crossing at sources.
Indeed, sinks other than v, v̄ become sources of the filled dual. Moreover, the disentanglement
rule (5.3) is invariant under interchange of sources with sinks and reversal of the path h0.
Since crossing is likewise invariant under reversal of both paths, this settles the case of sinks.

As a third example, we consider a path h0 which leaves a face F and continues on the
boundary ∂F . Crossing of h0 and h1 at the saddle then ensues because (h0, h1) is a ZS-pair.
We leave the resulting not too few saddle cases to the reader.

For later reference we note that the disentangled oriented pair (h0, h1) defines a negative

28



orientation frame at Morse sinks and Morse sources, but a positive orientation frame at Morse
saddles. Graphically, this is indicated by over- and under-crossings of h0. (In particular, we
obtain an alternating knot by joining h0 and the reverse of h1.)

We now stretch the path h1 by an orientation preserving homeomorphism H of the plane
R2 to become the horizontal axis, oriented left to right from v to v̄. The disentangled path h0

then becomes a “shooting curve” S := H(h0) which crosses the horizontal axis path H(h1)
as required. Moreover π = h−1

0 ◦h1 becomes the permutation associated to the Jordan curve
S, by construction. This proves that π is a meander.

Note that we do not claim that S = H(h0) literally comes from an equilibrium ODE
(1.5) with Neumann boundary conditions. But our construction certainly establishes the
meander property of π.

For simplicity we henceforth consider the graph G2 with paths h0, h1 as presented in the
plane such that H = id. We may then identify h1 to be horizontal, and h0 to coincide with
the “shooting curve” S.

To show that the permutation π is Morse we show, more specifically, that the Morse
quantities ik defined in (2.5) are not only all nonnegative but coincide with the Morse types
of the vertices vk. Here the vertices v1, . . . , vN are numbered along the path h0, i.e., such
that h0 = id ∈ SN .

By the orientation of the frame (h0, h1) at any vertex of the horizontal path h1, the
shooting curve S = h0 crosses the horizontal axis upward, at Morse types 0,2, and downward
at Morse type 1. Consider an upward crossing at a Morse source w of Morse type 2. Then
the arc of S emanating from w above the horizontal path h1 terminates at a Morse saddle
v+ to the left of w. Indeed the orientation of the face boundary ∂F of w is compatible with
h0, h1 and thus v+ precedes w on h1; see figures 1.2 and 3.1, as well as section 2 in [FiRo07a].
Similarly the w-arc of h0 below h1 emanates from a Morse saddle v− and ends at w which
precedes v− on h1. Along the arc v−w the path h0 thus describes a right turn which increases
the index ik by 1, along with the Morse type. Along the arc wv+ in h0 both numbers are
reduced by 1 through a left turn. See the explicit expression (2.5) for ik.

A similar analysis applies to h0 arcs between Morse saddles and Morse sinks to show
that, again, the Morse type and the index ik change by 1 in complete synchrony along the
arcs.

By the Morse types in the filled graph G2, any edge of the shooting path h0 contains
either Morse types 0,1 or else 1,2 as end points. Since ik = 0 at the start vertex v of h0, h1,
which is a Morse sink of type 0, we conclude that Morse types and ik agree all along the
Hamiltonian path h0, i.e., on all vertices of the filled graph G2. In particular the permutation
π is also Morse, and the lemma is proved. ./

In the above proof we have constructed a “shooting curve” S := H(h0) as a homeomorphic

29



image of the boundary Hamiltonian Z-path h0 in the prescribed plane graph G2. By [FiRo99]
we now know that the abstract permutation π := h−1

0 ◦h1 = πf is in fact a Sturm permutation
and comes from a suitable nonlinearity f in the original PDE (1.1), (1.2). In particular we
obtain an associated shooting curve Sf which, unlike the mock candidate S, does arise
from the equilibrium ODE (1.5) with Neumann boundary. The crossing directions of the
horizontal axis, alias the horizontal path h1, coincide for both curves. We can, and will,
therefore choose the plane homeomorphism such that S = Sf is the shooting curve, itself.

Lemma 5.2 Let π = h−1
0 ◦ h1 be the Sturm permutation π = πf associated to the boundary

ZS-Hamiltonian pair (h0, h1) of the filled graph G2, as in lemma 5.1. Let hf
j denote the

boundary permutations of the equilibria v1, . . . , vN of the PDE (1.1), (1.2) associated to the
nonlinearity f , as in (2.2). Then there exists a permutation σ ∈ SN such that

hf
j = σ ◦ hj, for j = 0, 1.(5.4)

In other words, the equilibria can be relabeled by σ such that hj = hf
j for j = 0, 1.

Proof: Let σ: = hf
0 ◦ h−1

0 . Then (5.4) holds for j = 0. Moreover h−1
0 h1 = π = πf = (hf

0)
−1hf

1

implies
hf

1 ◦ h−1
1 = hf

0πfh
−1
1 = hf

0πh−1
1 = hf

0h
−1
0 h1h

−1
1 = σ,(5.5)

which proves the lemma. ./

We henceforth relabel the equilibria in the Sturm attractor Af of the Sturm permutation
πf = π = h−1

0 h1 such that the ZS-paths h0, h1 in G2 also coincide with the boundary

permutations hf
0 , h

f
1 . With this labeling we can provide the final ingredient to the proof of

theorems 1.1 and 1.2.

Lemma 5.3 The identity map between the vertices v1, . . . , vN of the given filled graph G2

and the equilibria of the connection graph Cf for the Sturm permutation πf provides a graph
isomorphism.

Proof: In the proof of lemma 5.1 we have seen how the Morse type of vertex vk in G2

coincides with the Morse index ik = i(vk) of the equilibrium vk in Cf . This justifies the
terminology Morse type, Morse sink, etc., which we have introduced. It also settles the
direction of heteroclinic orbits in Cf , from higher to lower Morse index, once it has been
shown that the graphs G2 and Cf are indeed isomorphic in the sense explained below theorem
1.1. The given graph G2 is the filled graph of its 1-skeleton G, by definition. The connection
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graph Cf , likewise, is the filled graph of its 1-skeleton C1
f , by theorem 4.1. It only remains to

show, therefore, that both 1-skeletons possess the same edges and faces. Since edges connect
vertices of adjacent Morse type, alias Morse index, in {0,1,2} it suffices to show that each
Morse saddle possesses the same edges attached to it, when considered in G2 and Cf . We
first consider the nontrivial case of edges to saddles v which come from a source w. This will
also settle the case of edges from those saddles to sinks. The remaining case of edges from
saddles v, which are not adjacent to any sources, to sinks will then be trivial.

Let therefore w denote any (Morse) source, i(w) = 2, in G2 and Cf . The face F of w in
Cf , the corona ∂F , and the heteroclinic orbits in this set have been described in section 4;
see theorem 4.1 and figure 4.1. For our analysis of this case, we will switch to the notation
v1, . . . , v2n for vertices in the corona, and w = v2n+1 for the source, as employed there, both
for G2 and Cf .

The graphs G2 and Cf are the filled graphs of G and C1
f , respectively. To show that G2

is isomorphic to Cf in the closure of the w-face F , it is therefore sufficient to show that the
(undirected) cycle ∂F in Cf is a cycle, likewise, in G without interior points in G. Consider
the shooting map S = h0 and the horizontal path h1 associated to the vertices in ∂F , as in
figure 4.1. We recall that these are also paths in G2 due to the straightening homeomorphism
H in the poof of lemma 5.1. Suppose we can show that G2 possesses (dashed) pairs of edges

v2v1, v2nv1 and v2mv2m+1, v2m+2v2m+1(5.6)

located below c+ but above all d+
j , and above c− but below all d−j , respectively. See fig-

ures 4.1 and 5.2. Then these edges will patch together with the h0 shooting arcs b1,...,bm−1,
bm+1,...,bn−1 and the attached horizontal h1 segments v3v4,...,v2m−1v2m, v2m+3v2m+4,...,v2n−1v2n

to form an undirected cycle in G which is isomorphic to ∂F . Since w 6∈ G is the only vertex
of G2 inside this cycle, ∂F is also isomorphic to a face boundary in G, as was claimed.

To settle the question of isomorphic saddle connections in the closure of faces F it there-
fore remains to establish the edges (5.6) of Cf to also be present in G2. Substituting v 7→ −v,
as usual, we only need to address the pair v2v1, v2nv1. The analysis of section 4 on orien-
tations, shooting arcs, and Morse types alias Morse indices readily applies in G2. The
heteroclinic orbits v2  v1, v2n  v1 of theorem 4.1 alone have become meaningless in G2

and must be replaced by a different argument.
The geometric situation above the horizontal h1 axis is indicated in figure 5.2. The

shooting arc c+ emanates to the right, from the sink v1. Below c+ is the left running arc
a+ from source w = v2n+1 to saddle v2n. To the left of a+, below c+, similar left running
source-saddle arcs d+

j may exists. Analogous arcs dj may also exist to the right of a+ below
c+. In absence of dj, the arc c+ of the shooting path h0 terminates at v2 and provides an
edge v2v1 in G2, directly. Analogously, the horizontal path h1 provides the edge v2nv1 in
absence of d+

j .
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Figure 5.2: Hamiltonian paths h0 and h1. Dashed arcs indicate saddle-sink heteroclinic
orbits which separate Morse sources of adjacent faces.

In the general case consider the (undirected) cycle Γ in G2 defined by the arcs a+, c+, d+
j ,

dj of h0 and their connecting horizontal pieces of h1. In G2 the sources of the arcs a+, d+
j ,

dj must then be separated from each other by saddle-sink edges, which emanate from each
saddle in the arcs dj, d+

j , except d+
1 , into the interior of the cycle Γ. This follows because

G2 is the filled graph of its 1-skeleton G, and thus possesses only one single source in each
face of G. The face separating saddle-sink edges are indicated by dashed arcs in figure 5.2.
The only available sink on the cycle Γ to terminate all separating saddle-sink edges is v1.
In particular, G2 contains the saddle-sink edges v2v1 and v2nv1. This proves claim (5.6) and
thus shows that any saddle on a face boundary in Cf possesses the same edges in Cf and in
G2.

The only remaining case concerns saddles v which are not on any face boundary of C1
f . See

figure 5.3. Note that v cannot be on a face boundary of G either, by the above arguments,
since faces of G and C1

f already coincide.
The Hamiltonian paths h0 and h1 then must both pass through the faceless saddle v, in

parallel. By definition (5.3) and figure 5.1 they disentangle as in figure 5.3. Therefore both
edges of v in G2 are also edges in Cf . Moreover, these are all the edges of v in Cf because
the one-dimensional unstable manifold W u(v)\{v} consists of only two orbits, and the stable
manifold W s(v)\{v} does not intersect the Sturm attractor Af . This proves the lemma and,
finally, completes the proof of theorems 1.1 and 1.2. ./
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Figure 5.3: A faceless saddle v.
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