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Abstract

Based on a Morse-Smale structure, we study planar global attractors Af of the scalar
reaction-advection-diffusion equation ut = uxx + f(x, u, ux) in one space dimension. We
assume Neumann boundary conditions on the unit interval, dissipativeness of f , and hy-
perbolicity of equilibria. We call Af Sturm attractor because our results strongly rely on
nonlinear nodal properties of Sturm type.
Planar Sturm attractors Af consist of equilibria, of Morse index 0, 1, or 2, and of the het-
eroclinic connecting orbits between them. The unique heteroclinic orbits between adjacent
Morse levels define a plane graph Cf , which we call the connection graph. The 1-skeleton C1

f

is the closure of the unstable manifolds (separatrices) of the index-1 Morse saddles.
We summarize and apply two previous results [FiRo07a, FiRo07b] which completely charac-
terize the connection graphs Cf and their 1-skeletons C1

f , in purely graph theoretical terms.
Connection graphs are characterized by the existence of pairs of Hamiltonian paths with cer-
tain chiral restrictions on face passages. Their 1-skeletons are characterized by the existence
of cycle-free orientations with certain restrictions on their criticality.
We describe all planar Sturm attractors with up to 11 equilibria. We also design planar Sturm
attractors with prescribed Platonic 1-skeletons of their connection graphs. We present com-
plete lists for the tetrahedron, octahedron, and cube. We provide representative examples
for the design of dodecahedral and icosahedral Sturm attractors.



1 Introduction

Based on a Morse-Smale structure, we apply our previous results [FiRo07a, FiRo07b] on the
global spatio-temporal dynamics of the following scalar reaction-advection-diffusion equation
in one space dimension

ut = uxx + f(x, u, ux).(1.1)

Here t ≥ 0 denotes time, 0 < x < 1 denotes space, and we seek solutions u = u(t, x) ∈ R.
To be completely specific we also fix Neumann boundary conditions

ux = 0 at x = 0, and x = 1.(1.2)

Our results will hold analogously, though, for other separated boundary conditions.
For nonlinearities f = f(x, u, p) of class C2, standard theory provides a local solution semi-
group u(t, ·) = T (t)u0, t ≥ 0, on initial conditions u0 ∈ X. For the underlying Banach space
X we choose the Sobolev space H2, intersected with the Neumann condition (1.2). See for
example [Ta79, He81, Pa83] for a general background.
Our main object is the global attractor A = Af of the semigroup T = Tf . We assume

f ∈ C2 is dissipative.(1.3)

Here dissipativeness requires that there exists a fixed large ball in X, in which any solution
u(t, ·) = T (t)u0 stays eventually, for all t ≥ t(u0). In particular, solutions exist globally for
all t ≥ 0. For broad surveys on the theory of global attractors we refer to [BaVi92, ChVi02,
Ed&al94, Ha88, Ha&al02, La91, Ra02, SeYo02, Te88] and the many references there. The
specific attractors arising from our setting (1.1), (1.2) we call Sturm attractors.
A Lyapunov function V of the form

V(u) =

∫ 1

0

a(x, u, ux)dx(1.4)

which is strictly decreasing along all solutions u(t, ·) = T (t)u0, except at equilibria, induces
a gradient-like structure of the semigroup T (t); see [Ze68, Ma78, Ma88]. For nonlinearities
f = f(x, u) which do not contain advection terms ux a well-known explicit form of a is
a(x, u, p) = 1

2
p2 − F (x, u) with primitive Fu: = f .

To exclude degenerate cases we assume hyperbolicity of all equilibria

0 = vxx + f(x, v, vx)(1.5)

of (1.1), with Neumann boundary conditions vx = 0 given by (1.2). As usual, hyperbolicity
of v means that the linearized Sturm-Liouville eigenvalue problem

λu = uxx + fp(x, v(x), vx(x))ux + fu(x, v(x), vx(x))u,(1.6)
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again with Neumann boundary (1.2), possesses only the trivial solution u ≡ 0 for λ = 0. We
call the number of positive eigenvalues λ the unstable dimension or Morse index i = i(v) of
the equilibrium v.
Let E = {v1, . . . , vN} denote the set of all equilibria. Note that E is finite, by dissipativeness
of f and hyperbolicity of equilibria. Morse inequalities, Leray-Schauder degree, or a shooting
argument in fact show that N is odd.
Hyperbolic equilibria v come equipped with local unstable and stable manifolds W u(v) and
W s(v) of dimension and codimension i(v), respectively.
As a consequence of the Lyapunov functional (1.4), the global attractor A of (1.1), (1.2)
consists entirely of equilibria and heteroclinic orbits u(t, ·), which converge to different equi-
libria for t → ±∞. See for example the survey [Ra02]. In other words, Sturm attractors A
consist of just all unstable manifolds,

A =
⋃
v∈E

W u(v).(1.7)

Indeed the ω-limit set of any trajectory in W u(v)\{v} must consist of a single equilibrium
different from v itself, due to the gradient-like structure and hyperbolicity. Therefore all
non-equilibrium trajectories in A are heteroclinic.
Our results also use a generalization of the Sturm nodal property, first observed by Sturm
[St1836] and very successfully revived by Matano [Ma82]. It is for this property, central
to the entire analysis in the present paper, that we use the term Sturm attractor for the
global attractors of (1.1), (1.2). Let z(u) ≤ ∞ denote the number of strict sign changes of
u ∈ X \ {0}. Let u1(t, ·), u2(t, ·) denote any two nonidentical solutions of (1.1), (1.2). Then

t 7→ z(u1(t, ·)− u2(t, ·))(1.8)

is finite, for any t > 0, nonincreasing with t, and drops strictly whenever multiple zeros
u1 = u2, u1

x = u2
x occur at any t0, x0. See [An88].

The Morse-Smale property requires transverse intersections of all stable and unstable mani-
folds of equilibria, in addition to hyperbolicity and the gradient-like structure. It was a cel-
ebrated result of Angenent and Henry, independently, that this Morse-Smale transversality
is, not an additional requirement but, a consequence of hyperbolicity of equilibria for Sturm
attractors; see [He85, An86]. See also [Fi94, FiRo96, FiRo99, FiRo00, FiSche03, Ga04, Ra02]
for further aspects of nonlinear Sturm theory.
Our description of Sturm attractors is based on the connection graph Cf of the global attrac-
tor Af . Vertices of Cf are the N equilibria v1, . . . , vN ∈ Ef of Af . An edge of Cf between
vj, vk indicates the existence of a heteroclinic orbit between equilibria vj, vk of adjacent
Morse indices i(vj) = i(vk)± 1. By Morse-Smale transversality of stable and unstable mani-
folds, heteroclinic orbits can only run from higher to strictly lower Morse indices. Therefore
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the connection graph Cf comes with a natural flow-defined edge orientation: edges can be
oriented from higher to lower Morse index. As an aside we already note here that hetero-
clinic orbits between adjacent Morse levels turn out to be unique, whenever they exist, in
the Sturm setting (1.1), (1.2).
We restrict attention to adjacent Morse levels, for the following two reasons. First, Morse-
Smale systems possess a transitivity property of heteroclinic connections. Let v1  v2 indicate
that there exists a heteroclinic orbit from v1 to v2. Then v1  v2 and v2  v3 implies v1  v3.
The proof is based on the λ-Lemma; see for example [PdM82]. Second and conversely, special
to the Sturm setting (1.1), (1.2), suppose vk  v0 with i(vk) = i(v0) + k. Then there exist
further equilibria v1, . . . , vk−1 such that i(vj) = i(v0) + j and vk  vk−1  . . .  v1  
v0 connects through successively adjacent Morse levels. This cascading principle was first
observed in [BrFi89]; see also [Wo02b]. Together, transitivity and cascading imply that our
graph Cf of Morse-adjacent heteroclinic connections settles the question of whether or not
there exists a heteroclinic connection, for any pair of equilibria.
Everything observed so far holds without restrictions on the dimension dimA = maxv∈E i(v)
of the global Sturm attractor A. From now on, and for the remainder of this paper, we
restrict our attention to the planar case dimA = 2 which only features equilibria v which
are sinks of Morse index i(v) = 0, saddles of Morse index i(v) = 1, and sources of Morse index
2. As a simplified variant of the full connection graph Cf we also consider its undirected
1-skeleton C1

f . Vertices of C1
f are the sink equilibria, only. Edges of C1

f are the unstable
manifolds W u(v) of the saddles. More precisely, sink vertices vj, vk of C1

f are connected by
an (undirected) edge if, and only if, there exists a saddle equilibrium v such that v  vj

and v  vk. The 1-skeleton C1
f thus ignores sources w in Cf , with i(w) = 2, along with their

emanating heteroclinics to saddle targets.
Planarity of the connection graphs Cf , C1

f does not come as a surprise, for two-dimensional
Sturm attractors Af . In fact it has been noted by [Br90, Ro91] that any L2-orthogonal pro-
jection P of any n-dimensional Sturm attractor Af onto the span of the first n eigenfunctions
of any Sturm-Liouville eigenvalue problem (1.6) is injective. Moreover, Af becomes a C1

graph over the span. More specifically, the zero number satisfies

z(u1 − u2) < dimAf = max
Ef

i(v)(1.9)

for any two distinct elements u1 and u2 of Af . For planar Sturm attractors, we will there-
fore identify the connection graph with the unique heteroclinic orbits between equilibria of
adjacent Morse levels, via the planar embedding P .
We now state the two main results from [FiRo07a, FiRo07b]. For the convenience of the
reader we also summarize some graph terminology. We exclude the case of a trivial Sturm
attractor Af which consist of only one single globally attracting equilibrium.
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Theorem 1.1 A graph G is the 1-skeleton C1
f of the connection graph Cf of some at most

two-dimensional nontrivial Sturm attractor Af with only hyperbolic equilibria if, and only if,
G satisfies the following two properties:

(i) G is a finite, connected, plane, cellular multigraph without loops, and

(ii) G possesses an orientation with exactly one di-sink v̄ and one di-source v, both on the
boundary ∂G, and without di-cycles.

Moreover ∂G is oriented from v̄ to v.

Theorem 1.2 A graph G2 is the connection graph Cf of some nontrivial, at most two-
dimensional Sturm attractor Af with only hyperbolic equilibria if, and only if, G2 satisfies
the following two properties:

(i) G2 is the filled graph of a finite, connected, plane, cellular multigraph G without loops,
and

(ii) G2 possesses a boundary ZS-Hamiltonian pair (h0, h1) which starts and ends at two
distinct vertices v, v̄ in the boundary ∂G.

Moreover the “flow” directed filled graph G2 then coincides with the flow directed connection
graph Cf .

We review our terminology, next. See also [BeWi97], section 1.6 and 11.2. We call a graph
G plane, G ⊆ R2, if its vertices vj and edges ejk = {vj, vk} are embedded in the plane as
points and continuous curves, respectively, such that edges neither intersect nor self-intersect,
except possibly at their vertex end points vj, vk. A loop is an edge {vk, vk} with identical
end points vk. A multigraph is allowed to possess several edges e`

jk connecting the same pair
of vertices vj and vk. Rather than assigning an integer weight to a single edge, we represent
multiple edges by multiple nonintersecting curves sharing the same end point vertices. A
multigraph G is finite, if it consists of finitely many vertices and edges. Any finite plane
multigraph G decomposes the complement R2\G into finitely many connected components
called regions or faces of G. Exactly one of the regions is unbounded, and its boundary
vertices and edges are called the boundary ∂G of G.
For finite connected, plane multigraphs with N vertices, m edges and r bounded faces we
recall the Euler characteristic

N −m + r = 1.(1.10)

A path traverses any sequence e`1
k0k1

, e`2
k1k2

, . . . , e`r
kr−1kr

of distinct multi-edges via distinct
vertices. In the exceptional case k0 = kr where the first and last vertex only are allowed to
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Figure 1.1: Cellular and non-cellular multigraphs. Left: cellular. Center: not cellular
(doubly traversed vertex v on face boundary F ). Right: not cellular (doubly traversed edge
on face boundary).

coincide, a path is called a cycle or closed. A (not necessarily closed) path which visits each
vertex exactly once is called a Hamiltonian path. A Hamiltonian cycle, similarly, is a cycle
which is a Hamiltonian path.
We call a plane multigraph cellular if each of its (bounded) faces F is bounded by an
(undirected) cycle of distinct edges and vertices. See figure 1.1 for illustration. In other
words, each bounded face F is the interior of a plane (topological) n-gon, for some n ≥ 2.
In particular, the closure of each bounded face is homomorphic to a 2-disk.
Each boundary edge e ⊆ ∂G is the boundary of at most one bounded face. Each other
edge, called interior, is in the boundary of exactly two bounded faces. We note a slight
asymmetry in the role of the unbounded face. Under compactification of R2 to the 2-sphere
S2, the previously unbounded open face will be homomorphic to an open 2-disk but will not
necessarily become a cell of the resulting graph on Sz. The simplest connected example is
the graph G of two vertices, v1, v2 with a single edge joining them.
To say that one plane graph G “is” another plane graph G̃ indicates an isomorphism. The
standard notion of graph isomorphism is a vertex bijection which preserves edges. For
our plane graphs, we require a homeomorphism of the plane graph, including its bounded
faces, which maps edge curves to edge curves and vertices to vertices. Combinatorially, it is
sufficient to preserve face boundaries, in addition to the usual notion.
As a variant, we call directed (or, oriented) multigraphs orientation isomorphic, if the above
isomorphism also respects their given orientations.
Directed (or, oriented) multigraphs come with an orientation, for each edge. Directed paths,
directed Hamiltonian paths, and di-cycles (i.e., directed cycles), are required to traverse
edges in the given direction. A vertex v of a directed multigraph is called a directed source
(short: di-source) if all its edges point away from it. If all its edges point toward v̄, then we
call v̄ a di-sink.
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An orientation of G without di-cycles, as in part (ii) of theorem 1.1, equivalently defines a
partial order on the vertices of G such that the orientation points downhill. In that sense
we may call v̄ and v the unique minimum and maximum of this order, respectively. This
notion differs, in general, from the Morse notion of source and sink equilibria in planar global
attractors Af based on their Morse index to be 0 or 2, respectively.
The full connection graph Cf and its flow-oriented variant can both be reconstructed uniquely
from their 1-skeleton C1

f . We detail this construction next, for arbitrary finite, plane, cellular
multigraphs G without loops. Motivated by Cf and its 1-skeleton, we call the vertices of G
Morse sinks. Starting from G, bisect each edge by an additional vertex. Call the bisecting
vertices Morse saddles. In each (bounded) face, insert one additional vertex and call it a
Morse source. Draw an edge from each Morse source to the n bisecting Morse saddles on
the boundary of its face. We call the resulting undirected graph G2 the filled graph of G. By
construction, G is the 1-skeleton of its filled graph G2. Obviously there is a “flow” directed
variant of this construction. We just orient bisected edges away from their bisecting Morse
saddles, and edges in bounded faces of G away from their Morse sources.
The absence of di-critical vertices from the oriented 1-skeleton G, other than the maximal
start vertex v and the minimal termination vertex v̄, is a consequence of the absence of
di-cycles; see section 2 in [FiRo07a]. We call a vertex v of a plane directed multigraph G
di-critical, unless the edges pointing toward v and the edges pointing away from v each
form nonempty and non-interspersed sets, when going around v clockwise. In other words,
we can traverse a small circle around v, say clockwise, such that we first meet all edges
oriented toward v, and then all edges oriented away from v. All equilibria in a plane, flow-
oriented connection graph Cf , for example, turn out to be di-critical vertices: sources, sinks,
and also, by the geometry of their stable and unstable manifolds in Af , the saddles. The
orientation of the 1-skeleton G in theorem 1.1 above will therefore differ fundamentally from
any flow-defined orientation, for which any Morse-sink is a di-sink, for example.
We call a Hamiltonian path h0 in the filled graph G2 a boundary Z-Hamiltonian path, if the
properties (a)–(c) below all hold. Properties (b), (c) restrict the path h0 as it traverses any
Morse source w in a face F . Let . . . v−2v−1wv1v2 . . . denote the vertex sequence along h0.
Then v±1 are Morse saddles on the face boundary ∂F . The vertices v±2 are Morse sinks, or
other Morse sources outside F . If v−2 or v+2 is a Morse sink then it belongs to ∂F . Since
∂F contains at least four vertices, and v1v2 are immediate successors, we can then speak of a
clockwise or counter-clockwise direction of the arc v1v2 from v1 to v2, uniquely, and similarly
for v−2v−1. Specifically we require

(a) “Boundary”:

h0 starts at some vertex v in the boundary ∂G, and terminates at another vertex v̄.
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(b) “No right turn exit”:

Whenever h0 = . . . wv1v2 . . . exits any Morse source w of a face F , then v1v2 are not
both on ∂F in clockwise direction.

(c) “No left turn entry”:

Whenever h0 = . . . v−2v−1w . . . enters any Morse source w of a face F , then v−2v−1 are
not both on ∂F in clockwise direction.

The letter Z graphically indicates the admissible behavior, in case both the exit arc v1v2,
on top, and the entry arc v−2v−1, on bottom, are on ∂F : right turn entry and left turn
exit. Note however, that h0 is also permitted to connect Morse sources of adjacent faces
through the bisecting Morse saddle of a shared edge, without creating an arc on ∂F at all.
The reverse path h−0 = . . . v2v1wv−1v−2 . . . of h0 is boundary Z-Hamiltonian, whenever h0 is,
albeit with reversed roles of the start and termination points v and v̄.
By plain reflection κ we can also define (boundary) S-Hamiltonian paths h1. We simply
call h1 an S-Hamiltonian path for G2 if the reflected path h0: = κh1 is Z-Hamiltonian for
the reflected graph κG2. In other words, the S-Hamiltonian path h1 is neither permitted
right turns, upon face entry, nor left turns upon exit. By a (boundary) ZS-Hamiltonian pair
(h0, h1) we mean a Z-Hamiltonian path h0 and an S-Hamiltonian path h1 in G2, both of
which start at the same vertex v and terminate at the same, distinct, vertex v̄ in G. See
figure 1.2 for examples.
To design Sturm attractors with prescribed plane connection graphs G2 and 1-skeletons G we
proceed as follows. We start from an admissible orientation of G, i.e., an acyclic orientation
with v, v̄ as the only di-critical vertices. In [FiRo07a] we have shown how such an orientation
of G defines unique boundary Z- and S-Hamiltonian paths h0 and h1 in the filled graph G2,
which follow the given orientation on the 1-skeleton G. These paths can be interpreted
as the ordering of equilibria vk by their boundary values at x = 0, 1, respectively. These
orders, in turn, determine the global Sturm attractor Af . In fact, the 1-skeleton C1

f and the
connection graph Cf then coincide with the prescribed 1-skeleton G and its filled counterpart
G2, respectively.
In section 2.1 we review the properties of Sturm permutations π := h−1

0 ◦ h1 and recall
how they determine Morse indices of equilibria and the connection graph. We discuss triv-
ial attractor equivalences, duality of connection graphs, and the constructions of attractor
stacking and face gluing, in sections 2.2–2.5. We also recall the very special case of an n-gon
connection graph and attractor; see section 2.6 and figure 1.2.
37 planar Sturm attractors with up to 11 equilibria. We also design planar Sturm attractors
with prescribed Platonic 1-skeletons of their connection graphs. We present complete lists for
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Figure 1.2: Boundary Hamiltonian pairs (h0, h1) for n-gons, n = 2, . . . 6. Path h0 black, path
h1 gray.
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the tetrahedron, octahedron, and cube. We provide representative examples for the design
of dodecahedral and the icosahedral Sturm attractors.
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2 Generalities

In this section we collect several general tools for subsequent use in the design of specific
Sturm attractors.

2.1 Orientations, Hamiltonian paths, Sturm permutations, and
Sturm attractors

We first recall the role of the boundary ZS-Hamiltonian pair (h0, h1) in the connection
graph Cf and the Sturm attractor Af . See also [Ra02, FiSche03] for surveys. At the end
of this section we formulate a recipe to design Sturm permutations πf from orientations of
prescribed 1-skeletons G and from ZS-Hamiltonian paths of their filled graphs G2, such that
the connection graph and its 1-skeleton indeed coincide with G2 and G, respectively.
Our concept of ZS-Hamiltonian pairs (h0, h1) is motivated, as we have seen in [FiRo07a],
by the fact that the ordering of equilibria vk of the Sturm PDE (1.1), (1.2), alias vertices of
the connection graph Cf , by their boundary values vk(x) at x = 0, 1, respectively, defines a
pair of Z- and S-Hamiltonian paths with properties (a)–(c). The hyperbolic equilibria

Ef = {v1, . . . , vN} $ Af(2.1)

are the vertices of the connection graph Cf . On the boundaries x = 0, 1, respectively, we

define the boundary permutations hi = hf
i ∈ SN by the boundary order

vhi(1)(x) < vhi(2)(x) < . . . < vhi(N)(x), at x = i = 0, 1.(2.2)
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The central object in the classification of Sturm attractors, ever since it was first introduced
by Fusco and Rocha in [FuRo91], is the Sturm permutation π = πf defined by

π: = h−1
0 ◦ h1.(2.3)

Relabeling equilibria by any permutation σ ∈ SN corresponds to replacing hi by σ ◦ h. This
does not affect the Sturm permutation π. For example we may label the equilibria v1, . . . , vN

such that h0 = id is the identity permutation, and thus v1 < v2 < . . . < vN at x = 0. Then
π = h1 simply keeps track of the order

vπ(1) < vπ(2) < . . . < vπ(N) at x = 1.(2.4)

For simplicity of presentation we fix this labeling in the present section.
The Sturm permutations π = πf encode geometric and dynamical information on the Sturm
attractors A = Af and, in fact, turn the study of their connection graphs Cf into a combi-
natorial task. We describe some of these results next, as they have been obtained over the
past decades, starting with preliminary results in [ChIn74, CoSm83, He85, BrFi88, BrFi89,
HaMi91] for nonlinearities f = f(u).
In [FiRo99] it has been observed that any permutation π ∈ SN is a Sturm permutation, i.e.,
π = πf for some dissipative nonlinearity f = f(x, u, ux) with only hyperbolic equilibria, if,
and only if, π is a dissipative Morse meander. We recall these three notions next.
We call a permutation π ∈ SN dissipative, whenever N is odd and π(1) = 1, π(N) = N are
fixed under π.
We call a permutation π ∈ SN Morse, whenever the following N quantities ij are all non-
negative:

ij : =

j−1∑
ι=1

(−1)ι+1 sign (π−1(ι + 1)− π−1(ι)).(2.5)

Note i1 = 0 by the empty sum.
To define meanders, we follow Arnold [ArVi89] and consider a C1 Jordan curve S which in-
tersects the horizontal axis transversely and at precisely N locations, numbered k = 1, . . . , N
in increasing order. Also number the same intersections successively along the curve S. The
second numbering j provides a permutation j = π(k), relative to the first. Any permutation
π arising by such a construction is called meander permutation. See figure 2.1 for an example
of a dissipative Morse meander π ∈ S13. For many more examples see sections 3 and 4 below.
It is fairly straightforward to see that Sturm permutations π = πf are dissipative Morse
meanders. In fact, v1 = v and vN = v̄ are the lowest and highest equilibria in the global
attractor Af as discussed in section 1. In particular (2.2), (2.3) imply π(1) = 1 and π(N) =
N . The Morse property of π follows because ij = i(vj) are the Morse indices of the equilibria
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1     8     9   10  11   12     7   2   3    4    5      6     13        π(k)

1     2     3    4     5       6     7  8   9   10   11   12   13          k

S

Figure 2.1: Dissipative Morse meander permutations π = (1 8 9 10 11 12 7 2 3 4 5 6 13) and
shooting curve S. For k below the horizontal axis, j = π(k) is denoted above. Filled dots
indicate ij = 0 and the circled dot has i7 = 2. For all other intersections, ij = 1.

vj, by [FuRo91, Ro91], and hence nonnegative. Therefore iN = 0 for the top sink v̄ = vN ,
and hence N is odd by (2.5) mod 2 with j = N . The meander property follows by shooting:
consider the equilibrium second order ODE (1.5) with initial condition vx = 0 given by the
horizontal v-axis in the (v, vx) phase plane. The diffeomorphic image of the v-axis in the
phase plane (v, vx), at x = 1, is called the shooting curve S. The curve S crosses the v-axis
transversely, at the boundary values vj(x) of the hyperbolic equilibria evaluated at x = 1.
The permutation π associated to the shooting curve S is the Sturm permutation defined in
(2.3), (2.4) above. Numbers j above the v-axis indeed indicate the ordering of equilibria at
x = 0, i.e., along the shooting curve S, whereas numbers k below the axis indicate their
ordering at x = 1. This explains why Sturm permutations are dissipative Morse meanders.
It is significantly more difficult, but has been established in [FiRo99], that all dissipative
Morse meanders π are indeed Sturm permutations π = πf , for some nonlinearity f .
In [FiRo00] it has been shown that Sturm attractors Af and Ag are C0 orbit equivalent if
their Sturm permutations coincide:

πf = πg ⇒ Af
∼= Ag.(2.6)

Here C0 orbit equivalence ∼= requires that there exist a homeomorphism between Af and Ag

which maps orbits of the PDE (1.1), (1.2) under nonlinearity f to orbits under g, preserving
time direction. As we shall see and discuss below, the converse of (2.6) does not always hold.
See figures 3.7, 3.9, 3.11, and sections 2.6 and 4 for specific examples.
The key to our construction of prescribed connection graphs Cf = G2 from boundary ZS-
Hamiltonian pairs (h0, h1) between v and v̄ in G2 is the derivation of connection graphs Cf
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from Sturm permutations πf = π defined by (2.3). See theorem 1.2 and [FiRo07b]. In fact,
such permutations π are always dissipative Morse meanders, by construction, and it has
been shown in [FiRo96] that any dissipative Morse meander is in fact a Sturm permutation
for some suitable nonlinearity f . See also the very elegant presentation in [Wo02a].
Let us summarize. To design Sturm attractors with prescribed plane connection graphs G2

and 1-skeletons G we can proceed by the following recipe. We first choose an admissible
orientation of G, i.e., an acyclic orientation with a choice of vertices v, v̄ on the boundary
∂G as the only di-critical vertices. In step 2 this orientation of G defines unique boundary
Z- and S-Hamiltonian paths h0 and h1 from v to v̄ in the filled graph G2, which follow the
given orientation on the 1-skeleton G. In step 3 we define the permutation π := h−1

0 ◦ h1

according to (2.3). By [FiRo07b], π = πf is a dissipative Morse meander. The proofs of
theorems 1.1 and 1.2 then assert, in the final step 4, that the Sturm attractor associated
to f possesses the prescribed design: the 1-skeleton C1

f and the connection graph Cf of the
Sturm attractor Af coincide with the prescribed 1-skeleton G and its filled counterpart G2,
respectively.

2.2 Trivial substitution equivalence

The trivial linear substitutions x 7→ −x and u 7→ −u into solutions u(t, ·) ∈ X of the PDE
(1.1), (1.2) generate an action of the Klein group Z2 × Z2 on the nonlinearities f . They
replace f(x, u, p) by f(−x, u,−p) and −f(x,−u,−p), respectively. We call the linearly flow
equivalent Sturm attractors Af on the same group orbit of substitutions trivially substitution
equivalent. We also use this terminology for the associated Sturm permutations, connection
graphs, and 1-skeletons.
For example, let (h0, h1) be a boundary Hamiltonian pair in the plane 1-skeleton G. Then the
interchanged pair (h1, h0) is also a boundary ZS-Hamiltonian pair, after a reflection of the
plane embedding of G which fixes the boundary extrema v, v̄ and preserves any orientation of
G. In the PDE (1.1), (1.2) this corresponds to the substitution x 7→ −x; see (2.2). By (2.3)
this amounts to replacing the Sturm permutation π = h−1

0 ◦h1 by its inverse π−1 = h−1
1 ◦h0.

Similarly, we may reverse the orientation of G and interchange the extrema v, v̄ by the
substitution u 7→ −u in the PDE (1.1), (1.2). This rotates the plane embedding of G by 180
degrees, and amounts to replacing hj by the reverse paths h−j := hjκ, with the involution κ
defined as

κ(j) = N + 1− j,(2.7)

for j = 1, . . . , N . The ZS parity of the paths is preserved, and π is replaced by its conjugate
κπκ.
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Figure 2.2: Trivial stacking of Sturm attractors Aj and their connection graphs G2,j = Cj

via v̄1 = v2.

Therefore the two trivial substitutions above indeed generate an action of the Klein group
Z2 × Z2 on the Sturm permutations. Below, we usually represent each such group orbit by
only a single instance.

2.3 Attractor stacking

For practical computations of Sturm permutations we mention stacking as one building
principle for Sturm attractors. For j = 1, 2, let Aj denote Sturm attractors with connection
graphs G2,j = Cj and with extremal equilibria vj, v̄j. Let C be the union of C1 and C2 with
v̄1 and v2 identified, i.e.,

C = (C1 ∪ C2)/{v̄1 = v2}(2.8)

In other words, v = v̄1 = v2 is a cut-vertex of G2. Then C is again the connection graph Cf of
a Sturm attractor Af , by theorem 1.1. Indeed the respective orientations of the 1-skeletons
C1

1 , C1
2 fit together, at v, without making v di-critical. Also note v = v1 and v̄ = v̄2 for C.

On the level of boundary ZS-Hamiltonian pairs (hj
0, h

j
1), stacking simply amounts to travers-

ing the paths h1
ι and h2

ι successively. Similarly we may simply attach the shooting curve S2

of π2 to the right of S1, π1 and thus obtain S and π for A and C.
On the level of nonlinearities f and fj attractor stacking can be performed quite explicitly.
We first normalize fj such that vj, vj become x-independent equilibria,

fj(x, u, p) ≡ 0 for u = vj, v̄j ∈ R,(2.9)

with identical first and second u-derivatives at u = v: = v̄1 = v2 and for all real p. This
can be achieved, without perturbing any of the other equilibria, and without affecting v̄1,
v2 being sinks. In particular it keeps the Sturm permutations πj = πfj

fixed, and does not
affect the connection graphs. We then stack fj to become a C2-function

f(x, u, p): =

{
f1(x, u, p), for u < v,
f2(x, u, p), for u ≥ v.

(2.10)
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By this construction, the connection graph Cf coincides with the trivial stacking of Cf1

and Cf2. Indeed connections within Cfj
are unaffected, by the monotonicity principle, and

heteroclinic connections between Cf1 and Cf2 are blocked by v.

2.4 Duality

In [FiRo07a] we have introduced a slight variant G∗ of the standard dual graph of G. Vertices
of G∗ inside ∂G are the Morse sources of the filled graph G2 in the bounded faces of G. We
replace the single vertex of the standard dual, representing the unbounded exterior face of
∂G, by two vertices v∗, v̄∗ as follows. Edges e∗ of G∗ connect Morse sources of adjacent faces of
G. Here distinct (bounded or unbounded) faces are called adjacent if their boundaries share
at least one edge. We orient edges e∗, based on the oriented edge e which the adjacent faces
share, such that the ordered pair (e∗, e) is oriented positively at the bisecting Morse saddle
{v} = e ∩ e∗. Then v̄∗ terminates all edges e∗ which point away from ∂G, to the outside,
whereas v∗ provides a start vertex for all edges e∗ pointing toward ∂G from the outside.
By lemma 2.2 in [FiRo07a] this construction is possible in the plane without producing
intersecting edges of G∗. For examples see figures 2.3, 3.6, and sections 2.5, 3, 4 below.
The following elementary observations hold for our duality construction. Let G− denote the
graph G with all orientations reversed. Then

(G−)∗ = (G∗)−;(2.11)

G∗∗ = G− .(2.12)

Under the assumptions of theorem 1.1 on G or, equivalently, on the undirected dual G∗, the
filled dual graph G∗

2 possesses a boundary ZS-Hamiltonian pair (h∗0, h
∗
1) between v∗ and v̄∗

if, and only if, G2 possesses such a pair between v and v̄.
The above duality induces isomorphisms

ZHv,v̄(G2) → ZHv∗,v̄∗(G
∗
2)(2.13)

SHv,v̄(G2) → SHv∗,v̄∗(G
∗
2)

of boundary ZS-Hamiltonian pairs in the filled graphs G2 and G∗
2. The isomorphism

ZHv,v̄(G2) → SHv∗,v̄∗(G
∗
2)(2.14)

h0 7→ h∗1
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Hamiltonian paths in Gd (gray solid) versus S-Hamiltonian paths in G∗ (black dashed).
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is in fact easily described. Simply replace the first edge vA and the last edge Bv̄, only, of a
Z-Hamilton path

h0 = vA . . . Bv̄ ∈ ZHv,v̄(G2)(2.15)

by their counterparts v∗A and Bv̄∗, respectively:

h∗1 = v∗A . . . Bv̄∗.(2.16)

See figure 2.3. Similarly, we obtain the mirrored isomorphism

SHv,v̄(G2) → ZHv,v̄∗(G
∗
2)(2.17)

h1 7→ h∗0

reversing the orientation of h1 and replacing the first and last arcs from/to v, v̄ by their v̄∗, v∗

counterparts.
The algebraic description of the dual paths h∗j and the dual permutation π∗ = (h∗0)

−1 · h∗1
from h0, h1, π is also straightforward. In the shared part

G2 ∩G∗
2 = G2\{v, v̄} = G∗

2\{v∗, v̄∗},(2.18)

of the filled graphs, where G2 and G∗
2 coincide, the paths h0 and h∗1 also coincide, whereas

h1 and h∗0 run in opposite directions. The vertices v, v̄ are replaced by v∗, v̄∗, but keep their
original neighbors along these paths. Using the same vertex labels for v, v∗, and for v̄, v̄∗,
respectively, we see that

h∗0 = h1κ̂, h∗1 = h0,(2.19)

where the involution κ̂ fixes the indices 1 and N , in contrast to κ from (2.7):

κ̂ = κ ◦ (1 N) = (1 N) ◦ κ = (1, N − 1, . . . , 2, N).(2.20)

Therefore the Sturm permutation π∗ of the dual graph C∗ satisfies

π∗ = κ̂π−1.(2.21)

The double dual
π∗∗ = κπκ(2.22)

is substitution equivalent to π by the trivial substitution v 7→ −v of section 2.2, which
reverses the orientations of C1 = G and of C = G2.
In view of theorems 1.1 and 1.2, the isomorphisms (2.13) provide somewhat unexpected
“dualities” π ↔ π∗, f ↔ f ∗, A ↔ A∗ := Af∗ between Sturm permutations, nonlinearities,
and their planar Sturm attractors.
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Figure 2.4: Face gluing of attractors A1, A2.

2.5 Face gluing

We briefly address the dual operation of stacking: face gluing. Consider attractors Aj and
connection graphs Cj with extrema vj, v̄j and left, right boundaries Γj,`, Γj,r from vj to v̄j.
Let C consist of C1, C2 and a new face F with Morse source w such that the boundaries of
the face F coincide with Γ1,r, Γ2,` and v = v1 = v2, v̄ = v̄1 = v̄2 are identified. By the
above duality construction the dual 1-skeleton (C1)∗ is the stacking of the duals (C1

j )
∗ via

v∗1 = v̄∗2 = w. Since duals of connection graphs are connection graphs, and G∗∗ = −G, the
face gluing of C1 and C2 via F again produces a connection graph C with v = v1 = v2 and
v̄ = v̄1 = v̄2. The face gluing operator on the level of nonlinearities however, is far from
obvious.
We skip the details of the construction of h0, h1, and π for C, A, in the particular case of
face gluing. As a frequent example we just mention that plane oriented 1-skeletons G with
adjacent boundary extrema are trivially face glued, with one of the glued components being
an n-gon attractor.

2.6 Example: n-gon attractors

Following section 3 in [FiRo07b] we briefly summarize the structure of the general n-gon
attractors An,m for 1 ≤ m < n. See figure 2.5 for the general cases An,n−1 and An,n−[n/2]

where [·] denotes the floor function. The n-gon attractors An,m are all C0 orbit equivalent,
for fixed n. Their connection graphs Cn,m and 1-skeletons C1

n,m are isomorphic. But C1
n,m

and C1
n,m′ are neither orientation isomorphic nor substitution equivalent, for m 6= m′, unless

m + m′ = n. The same statement holds for trivial substitution equivalence of An,m and
An,m′ .
The 1-skeleton G of the n-gon is a regular plane n-gon with Morse sink vertices vk labeled
k = 1, 3, . . . , 2n − 1, clockwise. The filled graph G2 possesses the additional Morse saddles
2k bisecting the edges {2k − 1, 2k + 1}, for 1 ≤ k < n, and the edge {2n − 1, 1} for k = n.
The barycenter of the n-gon is the Morse source 2n + 1 of G2, connected by edges to each
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odd and m = (n + 1)/2. Z-Hamiltonian path h0 (solid) and S-Hamiltonian path h1 (gray)

2m
+

2

2m
+

3

2m2m
-1

2m
-2

2m
+

1

2n2n
-1

2m
+

4

1 2    3 2n+1

1       2        3       4

2(
n-

m
)-

1

2n
-1

2n
-2

2(
n

-m
)

2n

2n+1

2(
n-

m
)+

3

2(
n-

m
)+

2

2(
n-

m
)+

1

v 2n v 2m
-2

v 2m
-1

v 2mv 2m
+

1

v 2m
+

2

v 2m
+

3

v 2n
-2

v 2n
-1

v1 v2m+1v3v2

Figure 2.6: Shooting curve and Morse indices of πn,m. Below axis: k; above axis: πn,m(k).
Labels k above and below axis indicate equilibrium vh0(k) and vh1(k) in figure 2.5, respectively.

18



Morse saddle. Obviously there is only one bounded face F : the interior of the n-gon. The
boundary ∂F is the 1-skeleton G.
To design the associated n-gon Sturm attractor we follow the recipe at the end of section 2.1:
from orientations via ZS-Hamiltonian pairs and Sturm permutations to Sturm attractors.
The loop-free orientations of G, without di-sources and di-sinks other than the Morse sinks
v and v̄, are characterized by the positions of v and v̄ along the boundary n-gon ∂F : the
two n-gon arcs between v and v̄ are oriented from v to v̄. Without loss of generality we label

v = v1, v̄ = v2m+1(2.23)

for some 1 ≤ m < n. See figure 2.5 for the unique ZS-Hamiltonian paths which result from
this orientation.
According to the recipe of section 2.1, the Sturm permutation π = πn,m is then given by
(2.3):

π =
(

1 2 . . . 2(n−m) 2(n−m) + 1 2(n−m) + 2 . . . 2n 2n + 1
1 2m + 2 . . . 2n 2m + 1 2 . . . 2m 2n + 1

)
.(2.24)

See figure 2.6 for the associated shooting curve and the Morse indices ik of πn,m. This
completes the design of all n-gon Sturm attractors.

3 Specifics: 37 planar Sturm attractors with up to 11

equilibria

We apply theorems 1.1 and 1.2 to enumerate all planar Sturm attractors with up to 11
hyperbolic equilibria, in this section. We eliminate orientation isomorphic duplicates and
the trivial substitution equivalences generated by x 7→ −x, and by v 7→ −v; see section 2.2
above. We use the duality pairings of section 2.4 to effectively cut the total number of cases
in half.
Except for one indecomposable self-dual case, we do not follow the general design recipe
detailed at the end of section 2.1. Instead, we proceed from the n-gons of section 2.6 by
the attractor stacking and face gluing decompositions of sections 2.3 and 2.5, to inductively
exhaust all possibilities.
For each nontrivial example we present the oriented 1-skeleton G = C1

f of the connection
graph, the oriented dual 1-skeleton G∗ = C1

f∗ as introduced in section 2.4, the unique bound-
ary ZS-Hamiltonian pair (h0, h1), and the associated Sturm permutation π.
Let µi count the number of equilibria with Morse index i ∈ {0, 1, 2}. We then enumerate the
37 connection graphs C with up to 11 equilibria, and up to trivial substitution equivalences,
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