
Morse saddle. Obviously there is only one bounded face F : the interior of the n-gon. The
boundary ∂F is the 1-skeleton G.
To design the associated n-gon Sturm attractor we follow the recipe at the end of section 2.1:
from orientations via ZS-Hamiltonian pairs and Sturm permutations to Sturm attractors.
The loop-free orientations of G, without di-sources and di-sinks other than the Morse sinks
v and v̄, are characterized by the positions of v and v̄ along the boundary n-gon ∂F : the
two n-gon arcs between v and v̄ are oriented from v to v̄. Without loss of generality we label

v = v1, v̄ = v2m+1(2.23)

for some 1 ≤ m < n. See figure 2.5 for the unique ZS-Hamiltonian paths which result from
this orientation.
According to the recipe of section 2.1, the Sturm permutation π = πn,m is then given by
(2.3):

π =
(

1 2 . . . 2(n−m) 2(n−m) + 1 2(n−m) + 2 . . . 2n 2n + 1
1 2m + 2 . . . 2n 2m + 1 2 . . . 2m 2n + 1

)
.(2.24)

See figure 2.6 for the associated shooting curve and the Morse indices ik of πn,m. This
completes the design of all n-gon Sturm attractors.

3 Specifics: 37 planar Sturm attractors with up to 11

equilibria

We apply theorems 1.1 and 1.2 to enumerate all planar Sturm attractors with up to 11
hyperbolic equilibria, in this section. We eliminate orientation isomorphic duplicates and
the trivial substitution equivalences generated by x 7→ −x, and by v 7→ −v; see section 2.2
above. We use the duality pairings of section 2.4 to effectively cut the total number of cases
in half.
Except for one indecomposable self-dual case, we do not follow the general design recipe
detailed at the end of section 2.1. Instead, we proceed from the n-gons of section 2.6 by
the attractor stacking and face gluing decompositions of sections 2.3 and 2.5, to inductively
exhaust all possibilities.
For each nontrivial example we present the oriented 1-skeleton G = C1

f of the connection
graph, the oriented dual 1-skeleton G∗ = C1

f∗ as introduced in section 2.4, the unique bound-
ary ZS-Hamiltonian pair (h0, h1), and the associated Sturm permutation π.
Let µi count the number of equilibria with Morse index i ∈ {0, 1, 2}. We then enumerate the
37 connection graphs C with up to 11 equilibria, and up to trivial substitution equivalences,
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(a) by increasing the odd number N = 3, . . . , 11 of equilibria, and

(b) by increasing the number µ2 of faces.

Duality is utilized as follows. Obviously the total vertex count is

µ0 + µ1 + µ2 = N(3.1)

for plane attractors. On the other hand, µ0 counts vertices, µ1 edges, and µ2 faces of the
plane 1-skeleton G = C1

f . By the Euler characteristic (1.10)

µ0 − µ1 + µ2 = 1, and hence(3.2)

µ0 =
1

2
(N + 1)− µ2(3.3)

µ1 =
1

2
(N − 1).

Let µ∗j denote the Morse counts for the dual graph G∗. Then

µ∗0 = µ2 + 2

µ∗1 = µ1(3.4)

µ∗2 = µ0 − 2 =
1

2
(N − 3)− µ2

by construction. In particular N∗ = N and (3.3) holds for the starred quantities, as well.
By duality we may therefore skip the cases µ2 > µ∗2 = 1

2
(N − 3) − µ2, for now, and only

consider cases N, µ2 with

0 ≤ µ2 ≤
1

4
(N − 3).(3.5)

Throughout we present stacked and face glued cases first, which derive from lower N . For
N ≡ 3 (mod 4), i.e., N = 3, 7, 11, we include the duals when µ2 = µ∗2 = 1

4
(N − 3) = 0, 1, 2.

Enumerating the cases is delicate and remains a matter of taste, probably, at least as long
as the counting problem for plane attractors remains unresolved. We choose a notation

N · nmn(n− 1)mn−1 . . . 1m1 − `(3.6)

where nmn indicates a count mn of n-gon faces in the 1-skeleton G = C1. An edge without
face is assigned n = 1. Since multiple cases do arise, the number ` simply enumerates them,
in somewhat arbitrary order. For N < 21 equilibria, n-gon faces with n ≥ 10 do not arise.
We can therefore safely omit exponents mn = 1. The total face count is

µ2 = m2 + . . . + mn.(3.7)

20



v
_

v_

G=3.1 G*=3.1

v*
_

v_*

xx
1 2 3

1*
2
3*

v
_

v_ x
1 2 3

x

1 2 3

1 2 3
S

h0 h1

Figure 3.1: N = 3 equilibria. Left: 1-skeleton G and dual G∗. Right: paths h0, h1 and
shooting curve S.

v
_

v_ x
1 2 3

h0 h1

x

4 5

G=5.12
v_*1*=

v*
_

5*=

2
3

4x x

G*=5.2

Figure 3.2: N = 5 equilibria; straight line and dual Chafee-Infante 2-gon.

3.1 N = 3 equilibria

By (3.5), (3.3) we have µ2 = 0 and µ0 = 2, µ1 = 1. The straight line G with 2 end points v,
v̄ is the only case. This case G = 3.1 is self dual. See figure 3.1.

3.2 N = 5 equilibria

Up to duality, we may still assume µ2 = 0. Hence µ0 = 3, µ1 = 2. Therefore the 1-skeleton
G is the straight line, again, this time with 3 sinks. This case G = 5.12 can be obtained by
stacking the case G = 3.1 onto itself; h0, h1, π remain trivial; see figure 3.2. Note however
that the Chafee-Infante case G = 5.2 of a 2-gon attractor, as discussed in section 2.6, is dual
to the straight line. Somewhat trivially, but alternatively, the 2-gon attractor can also be
viewed as a face-gluing of the line attractor N = 3, on the left boundary, with another copy
of itself, on the right boundary.
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v
_

v_

v*
_

v_*

v
_

v_

v*
_

v_*7.13 7.21 7.22 7.3

Figure 3.3: N = 7 equilibria. Left: µ2 = 0, 1. Right: duals µ2 = 2, 1.

3.3 N = 7 equilibria

Up to duality, we now have the one-dimensional subcase µ2 = 0 with µ0 = 4 sinks, and the
case µ2 = 1 of a single face. The one-dimensional graph with µ2 = 0 faces cannot branch,
because it must possess a Hamiltonian pair. Therefore we only obtain a line G = 7.13.
For µ2 = 1 the single face is an n-gon, with n = 2 or 3, which adsorbs 2n + 1 = 5 or 7
equilibria, respectively. The two cases G = 7.21 and G = 7.3 are mutually dual. All cases
are stacked or glued. See figure 3.3 for the two 1-skeletons and their duals. The associated
Sturm permutations are easily derived from sections 2.4 and 2.6.

3.4 N = 9 equilibria

This case has already been enumerated in [Fi94], even without the restriction of planarity;
see figure 3.4 and [FiRo07b]. We have indicated the (filled) connection graphs Cf , the Sturm
permutations πf , and the directions of heteroclinic orbits between equilibria of adjacent
Morse index.
Originally these results had been obtained, somewhat mindlessly, by brute force computer
assisted scanning of the permutations π ∈ S9 for dissipative Morse meanders. In contrast, we
now aim for an intelligible and more systematic derivation of all planar cases: the Leitmotiv
is progress from scientific computing toward scientific understanding.
We follow the general duality approach outlined in (3.3)–(3.6). For µ2 = 0, dual to µ2 = 3,
we again obtain the stacked line, only. For µ2 = 1, dual to µ2 = 2, we obtain a single
n-gon with n = 2, 3, 4 edges and with 5,7,9 equilibria. For n = 2, the remaining two edges
of G can be attached to the 2-gon in two stacking configurations. The omitted cases are
just substitution equivalent or orientation isomorphic copies. A similar remark holds for the
substitution equivalent or orientation isomorphic edge-face pairs, when n = 3 and the free
edge is attached to an extremum v′ or v̄′ of the 3-gon. We cannot attach the edge to the
third sink v on the face boundary, different from v′, v̄′: this would preclude Hamiltonian
paths from v to v̄ to exist. The face glued final two cases of an n-gon, n = 4, without
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9.22

9.32-29.319.32-1

9.4-29.2219.212-1

9.23 9.32

Figure 3.4: All 18 connection graphs Cf of Sturm attractors Af with N = 9 equilibria, up
to trivial substitution equivalence. Equilibria are numbered such that h0 = id; in particular
v = 1 and v̄ = 9. See [Fi94] and [FiRo07b]. For case numbers of planar cases see figure 3.5
.
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Figure 3.5: The Sturm 1-skeletons with N = 9 equilibria. Left: µ = 0, 1 stacked and glued
cases. Right: µ2 = 3, 2 duals of left side. For enumeration of cases see (3.6).
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...
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.

m2n+1

Gn,m=(2n+1).n-m Gn,m=(2n+1).2n-2-m*
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_

v_*

Figure 3.6: Isomorphic n-gon attractors with N = 2n + 1 equilibria. Left: non-isomorphic
orientations on G = C1

n,m. Right: non-isomorphic duals G∗.
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Figure 3.7: Isomorphic, but neither orientation isomorphic nor substitution equivalent, con-
nection graphs 9.32 − ` with ` = 1, 2. Left: disentangled boundary ZS-Hamiltonian paths
h0 (black) and h1 (gray). Right: shooting curves.
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attached edges, are illustrated in figure 3.5 together with their stacked and glued duals.
Clearly µ2 = 0, 1 faces are dual to µ∗2 = 3, 2 faces, respectively.
Even though all examples can be obtained by gluing and stacking, there are two pairs
of isomorphic attractor 1-skeletons G here, which are neither substitution equivalent nor
orientation isomorphic. For the 4-gon cases 9.4-1 and 9.4-2 see the second row of figure 1.2.
See also figure 2.5, n = 4, m = 2, 3 for (h0, h1) pairs in A4,3 and A4,2. For the associated
Sturm permutations see (2.24) and figure 3.4. These cases are clearly distinguished by their
non-isomorphic duals G∗. The general case An,m, Gn,m = C1

n,m of an n-gon with v = 1 and
v̄ = 2m + 1, and its dual G∗

n,m is sketched in figure 3.6. Note how Gn,m is face glued from
two lines: one with m + 1 sinks, on the right, and the other with (n − m) + 1 sinks, on
the left. Similarly, G∗

n,m consists of two stacked parts. We recall from section 2.6 that Gn,m

and Gn,m′ are neither orientation isomorphic nor substitution equivalent, for m 6= m′, unless
m + m′ = n.
The other isomorphic, but neither substitution equivalent nor orientation isomorphic, pair
involves one 3-gon with one attached 2-gon; see the duals 9.32-1 and 9.32-2 in figure 3.5.
Again, the orientation discrepancy is caused by different positioning of the extrema v, v̄.
In figure 3.7 we sketch the orientations, the unique resulting boundary (ZS)-Hamiltonian
pairs, and the associated shooting curves. The Sturm permutations π1 = (2 8 4 6)(3 7) in
the top row, and π2 = (2 6 8)(3 5 7) in the bottom row, are trivially substitution equivalent
to their respective counterparts in figure 3.4. Moreover π1 and π2 produce isomorphic Sturm
attractors. But π1 and π2 are not even conjugate. This has been noted in [Fi94] and is
resolved here, in terms of different orientations on the 1-skeleton G = C1. See [Wo02b] for
an interesting geometric interpretation in terms of fast unstable manifolds.

3.5 N = 11 equilibria

This time we can have µ2 = 0, 1, or 2 faces, up to duality. The line case µ2 = 0, and the
obvious configurations of the single n-gon face, n = 2, 3, 4, 5 in the case µ2 = 1 are illustrated
by their 1-skeletons in figure 3.8, along with their duals. See also section 2.6. Substitution
equivalent and orientation isomorphic copies are eliminated.
By direct inspection, all connection graphs with µ2 6= 2 faces are stacked or glued. We have
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Figure 3.8: The Sturm 1-skeletons with N = 11 equilibria and µ2 6= 2 faces, ordered by single
n-gons, n = 2, 3, 4, 5, and paired with their duals. For Sturm permutations and enumeration
of cases see (3.6) and table 3.1.
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Figure 3.9: Isomorphic, but neither orientation isomorphic nor substitution equivalent,
“snoopy” attractors 11.322 − ` with ` = 3, 4. Left: disentangled boundary ZS-Hamiltonian
paths h0 (black) and h1 (gray). Right: shooting curves.
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four pairs of C0 orbit equivalent attractors, among these, which carry different orientations:

{11.322 − 1, 11.322 − 2},

{11.322 − 3, 11.322 − 4},

{11.41− 1, 11.41− 2},

{11.5− 1, 11.5− 2}.

(3.8)

The first and third pairs are similar to the simpler pairs {9.32-1, 9.32-2} and {9.4-1, 9.4-2}
discussed in subsection 3.4, due to a face gluing and a line stacking, respectively. The second
pair is illustrated in figure 3.9. The last pair, the 5-gon, has been discussed in section 2.6 in
complete generality. See also the third row in figure 1.2.
We now turn to the remaining case of connection graphs C with N = 11 vertices and µ2 = 2
faces. Again we proceed graphically by side numbers n1 ≥ n2 of the two n-gons. Duals also
possess µ∗2 = 2 faces. We therefore include duals, for each case, until we have exhausted
all possibilities. All cases are stacked and glued versions of constituents which we have
encountered already – with one exception. See figure 3.10. Case G = 11.32 − 3 = G∗ is the
first self-dual case after the trivial line G = 3.1. By absence of a decomposing cut-vertex, it
is neither stacked nor glued.
Isomorphic Sturm attractors with deviating orientations of their 1-skeletons arise in the
following cases:

{11.321− 2, 11.321− 3},

{11.32 − 1, 11.32 − 2, 11.32 − 3},

{11.42− 1, 11.42− 2, 11.42− 3, 11.42− 4},

{11.43− 1, 11.43− 2}.

(3.9)

The last pair originates from the simpler pair {9.32−1, 9.32−2} illustrated in figure 3.7. We
illustrate the triplet cases of isomorphic, but neither substitution equivalent nor orientation
isomorphic, Sturm attractors 11.32 − ` in figure 3.11, which also includes the self-dual case
11.32 − 3.
In tables 3.1, 3.2, we summarize all 37 Sturm permutations π = πf with N = 11 hyperbolic
equilibria which give rise to plane attractors dimA ≤ 2. For any listed permutation π we
omit substitution equivalent and orientation isomorphic variants. The upper permutation
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Figure 3.10: The Sturm 1-skeletons with N = 11 equilibria and µ2 = 2 faces, paired with
their duals. For Sturm permutations and notation of cases see (3.6) and table 3.2
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Figure 3.11: Isomorphic, but neither orientation isomorphic nor substitution equivalent,
attractor triplet 11.322 − ` with ` = 1, 2, 3. Left: disentangled boundary ZS-Hamiltonian
paths h0 (black) and h1 (gray). Right: shooting curves. Bottom row: self-duality.
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µ2 11.case 11.dual permutation π in cycles

0 15 24 2 3 4 5 6 7 8 9 10 ( )

1 213 − 1 322 − 1 4 3 2 5 6 7 8 9 10 (2 4)
213 − 2 322− 1 2 3 6 5 4 7 8 9 10 (4 6)
312 − 1 322 − 3 4 5 6 3 2 7 8 9 10 (2 4 6) (3 5)
312 − 2 322− 2 2 3 6 7 8 5 4 9 10 (4 6 8) (5 7)
41− 1 322 − 2 4 5 6 7 8 3 2 9 10 (2 4 6 8) (3 5 7)
41− 2 322 − 4 6 7 8 5 2 3 4 9 10 (2 6) (3 7) (4 8)
5− 1 231 4 5 6 7 8 9 10 3 2 (2 4 6 8 10) (3 5 7 9)
5− 2 23 6 7 8 9 10 5 2 3 4 (2 6 10 4 8) (3 7 5 9)

3 23 5− 2 4 3 2 5 10 9 8 7 6 (2 4) ( 6 10) (7 9)
231 5− 1 2 3 10 9 8 7 6 5 4 (4 10) (5 9) (6 8)

322 − 1 213 − 1 8 9 10 7 6 5 4 3 2 (2 8 4 10) (3 9) (5 7 )
322 − 2 41− 1 4 5 10 9 8 7 6 3 2 (2 4 10) (3 5 9) (6 8)
322 − 3 312 − 1 6 7 10 9 8 5 4 3 2 (2 6 8 4 10) (3 7 5 9)
322 − 4 41− 2 6 5 4 7 10 9 8 3 2 (2 6 10) (3 5 7 9)
322− 1 213 − 2 10 9 6 7 8 5 4 3 2 (2 10) (3 9)(4 6 8) (5 7)
322− 2 312 − 2 10 9 4 5 8 7 6 3 2 (2 10) (3 9) (6 8)

4 24 15 10 9 8 7 6 5 4 3 2 (2 10) (3 9) (4 8) (5 7)

Table 3.1: Duality and planar Sturm permutations with N = 11 equilibria. Enumeration
of all cases with µ2 6= 2 faces, up to trivial substitutions and orientation isomorphisms.
Dissipative ends π(1) = 1, π(11) = 11 are omitted. See also figure 3.8.

entries of table 3.1 are easily generated, even by hand, from the n-gon formula (2.24), and
the stacking principle of section 2.3. The lower dual entries with µ2 = 3 and 4 faces then
follow from (2.21).

3.6 Self-duality

All permutation entries of table 3.2, µ2 = 2, but one, originate from simpler constituents by
stacking and duality. The one exception is the self dual case 11.32 − 3. It is easy to derive
this unique self dual case with N = 11 equilibria directly. By (2.21), self-duality implies
π = κ̂π−1. In other words,

π2 = κ̂,(3.10)
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11.case 11.dual permutation π in cycles

221− 1 32 − 1 4 3 2 5 6 7 10 9 8 (2 4) (8 10)
221− 2 43− 1 4 3 2 5 8 7 6 9 10 (2 4) (6 8)
2212 − 1 42− 1 6 5 4 3 2 7 8 9 10 (2 6) (3 5)
2212 − 2 42 2 3 8 7 6 5 4 9 10 (4 8) (5 7)

32 42− 4 4 3 2 5 8 9 10 7 6 (2 4) (6 8 10) (7 9)
321− 1 32 − 2 8 7 4 3 2 5 6 9 10 (2 8 6) (3 7 5)
321− 2 43− 2 2 3 10 9 6 5 4 7 8 (4 10 8) (5 9 7)
321− 3 42− 2 2 3 8 9 10 7 6 5 4 (4 8 6 10) (5 9)

321 42− 3 8 7 4 5 6 3 2 9 10 (2 8 ) (3 7)

32 − 3 self-dual 8 7 2 3 6 9 10 5 4 (2 8 10 4) (3 7 9 5)

32 − 1 221− 1 8 9 10 7 6 5 2 3 4 (2 8) (3 9) (4 10) (5 7)
32 − 2 321− 1 6 7 8 5 4 9 10 3 2 (2 6 4 8 10) ( 3 7 9 )

42− 1 2212 − 1 6 7 8 9 10 5 4 3 2 (2 6 10) (3 7 5 9) (4 8)
42− 2 321− 3 10 9 2 3 4 5 8 7 6 (2 10 6 4) (3 9 7 5)
42− 3 321 4 5 8 7 6 9 10 3 2 (2 4 8 10) (3 5 7 9)
42− 4 32 8 9 10 7 2 3 6 5 4 (2 8 6 ) (3 9 5 7 ) (4 10)
43− 1 221− 2 8 9 10 7 4 5 6 3 2 (2 8 6 4 10) (3 9) (7 5)
43− 2 321-2 10 9 4 5 6 3 2 7 8 (2 10 8) (3 9 7 )

42 2212 − 2 10 9 4 5 6 7 8 3 2 (2 10) (3 9)

Table 3.2: Duality and planar Sturm permutations with N = 11 equilibria. Enumeration
of all cases with µ2 = 2 faces, up to trivial substitutions and orientation isomorphisms.
Dissipative ends π(1) = 1, π(11) = 11 are omitted. See also figure 3.10.
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and hence π is a square root of the involution κ̂ = (2 10) (3 9) (4 8) (5 7). Therefore π must
consist of 4-cycles. Since π preserves parity mod 2, like any dissipative meander, the 4-cycles
must permute the sets {2, 4, 8, 10} and {3, 5, 7, 9}, separately. Since (3.10) holds for the
entire substitution orbit π−1, κπκ, κπ−1κ, once it holds for π itself, only the two candidates
π = (2 8 10 4) (3 7 9 5) and (2 8 10 4) (3 5 9 7) remain, without loss of generality. Since (2
8 10 4) (3 5 9 7) is not a meander permutation, this proves

π = (2 8 10 4) (3 7 9 5),(3.11)

to be the only self-dual case with N = 11 equilibria, up to trivial substitutions.
Motivated by the pitchforkable Chafee-Infante nonlinearity f = λu(1− u2), as discussed in
[He85], [CoSm83], the self-dual case 11.32 − 3 has already been considered in [Ro91] as an
example of a non-pitchforkable Sturm attractor: pitchforkable attractors can be simplified by
a pitchfork bifurcation which reduces the number of equilibria by 2. In terms of the Sturm
permutation π, they feature three adjacent entries:

π = (. . . m− 1 m m + 1 . . .) or
π = (. . . m + 1 m m− 1 . . .).

(3.12)

By tables 3.1, 3.2 and their simpler ancestors with N = 3, 5, 7 and 9 equilibria, the self-dual
attractor 11.32−3 is in fact the first and lowest-dimensional non-pitchforkable example with
up to 11 equilibria.

4 Specifics: the planar Platonic graphs

In sections 4.1–4.5 we design Sturm attractors with the five planar Platonic graphs G as
1-skeletons C1

f of their connection graphs. Throughout we eliminate cases with substitution
equivalent attractors or orientation isomorphic 1-skeletons G.
Polarity is a primary feature of Sturm attractors and, more generally, of any Morse system.
This is caused by the two possible signs of any eigenfunction for any simple real eigenvalue
and, consequently, by the two asymptotic directions of any trajectory which converges to any
hyperbolic equilibrium – be it forward or backward in time, at a slower or faster exponential
rate. See for example [BrFi86].
Such polarity is not easily accomodated by Platonic polyhedra. In the following sections
we therefore present our attempts at designing planar Sturm attractors Af such that the 1-
skeletons C1

f of their connection graphs coincide with the five Platonic graphs. Each of these
planar graphs possesses only one plane embedding G, up to isomorphism, by the symmetries
of the Platonic solids.
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