
and hence π is a square root of the involution κ̂ = (2 10) (3 9) (4 8) (5 7). Therefore π must
consist of 4-cycles. Since π preserves parity mod 2, like any dissipative meander, the 4-cycles
must permute the sets {2, 4, 8, 10} and {3, 5, 7, 9}, separately. Since (3.10) holds for the
entire substitution orbit π−1, κπκ, κπ−1κ, once it holds for π itself, only the two candidates
π = (2 8 10 4) (3 7 9 5) and (2 8 10 4) (3 5 9 7) remain, without loss of generality. Since (2
8 10 4) (3 5 9 7) is not a meander permutation, this proves

π = (2 8 10 4) (3 7 9 5),(3.11)

to be the only self-dual case with N = 11 equilibria, up to trivial substitutions.
Motivated by the pitchforkable Chafee-Infante nonlinearity f = λu(1− u2), as discussed in
[He85], [CoSm83], the self-dual case 11.32 − 3 has already been considered in [Ro91] as an
example of a non-pitchforkable Sturm attractor: pitchforkable attractors can be simplified by
a pitchfork bifurcation which reduces the number of equilibria by 2. In terms of the Sturm
permutation π, they feature three adjacent entries:

π = (. . . m− 1 m m + 1 . . .) or
π = (. . . m + 1 m m− 1 . . .).

(3.12)

By tables 3.1, 3.2 and their simpler ancestors with N = 3, 5, 7 and 9 equilibria, the self-dual
attractor 11.32−3 is in fact the first and lowest-dimensional non-pitchforkable example with
up to 11 equilibria.

4 Specifics: the planar Platonic graphs

In sections 4.1–4.5 we design Sturm attractors with the five planar Platonic graphs G as
1-skeletons C1

f of their connection graphs. Throughout we eliminate cases with substitution
equivalent attractors or orientation isomorphic 1-skeletons G.
Polarity is a primary feature of Sturm attractors and, more generally, of any Morse system.
This is caused by the two possible signs of any eigenfunction for any simple real eigenvalue
and, consequently, by the two asymptotic directions of any trajectory which converges to any
hyperbolic equilibrium – be it forward or backward in time, at a slower or faster exponential
rate. See for example [BrFi86].
Such polarity is not easily accomodated by Platonic polyhedra. In the following sections
we therefore present our attempts at designing planar Sturm attractors Af such that the 1-
skeletons C1

f of their connection graphs coincide with the five Platonic graphs. Each of these
planar graphs possesses only one plane embedding G, up to isomorphism, by the symmetries
of the Platonic solids.
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Case Sturm permutation
π 1 12 11 4 5 10 9 6 3 2 7 8 13

κπ−1κ 1 12 11 8 7 2 3 6 9 10 5 4 13

Table 4.1: Sturm permutations with the filled plane tetrahedral graph as connection graph.

Our general strategy follows theorems 1.1 and 1.2 via the recipe at the end of section 2.1.
We first study inequivalent positions for the extreme equilibria v and v̄ on G. We then
enumerate the resulting admissible orientations of G, in the sense of theorem 1.1. Through-
out section 3, the orientation was determined uniquely by the positions of v and v̄, up to
trivial substitutions. We will now see how the same geometric configuration of v, v̄ can
accommodate several orientations. As was mentioned in sections 1 and 2.1, any admissible
orientation then determines a unique boundary (ZS)-Hamiltonian pair (h0, h1) of paths from
v to v̄. This pair, in turn, defines the Sturm permutation π = h−1

0 h1 which produces the
prescribed Platonic connection graph with 1-skeleton C1

f = G. Conversely, again by theo-
rems 1.1, 1.2, any connection graph with C1

f = G defines an admissible orientation of G, and
therefore must come from one of the Sturm permutations π which we have constructed.

4.1 The plane tetrahedral graph

See figure 4.1, left for the planar tetrahedral graph, the numbering of its vertices, and the
two admissible orientations of its 1-skeleton. We only need to consider extremal vertices
v = 1 and v̄ = 2, possibly after rotation and interchange of v, v̄ by reflection σ1 through the
symmetry axis 35 of the plane embedded tetrahedral graph.
The two admissible orientations on the 1-skeleton G are related as follows. Reflecting through
35 and reversing all arrows transforms one orientation into the other. Consequently, the right
diagram of figure 4.1 is obtained from the center diagram by reflection through 35, reversal
of all arrows, and interchange of h0, h1.
To derive the associate Sturm permutations π = πf which turn figure 4.1 into an attractor
design, we recall π = h−1

0 ◦ h1 from (2.3). Relabeling vertices does not affect π. Let us
therefore relabel vertices such that the Z-Hamiltonian path h0 = id: we simply tag vertices
along the path h0. Then π = h1 simply collects the same tags along the S-Hamiltonian path
h1; see (2.4).
The Sturm permutations π1, π2 leading to – or generated by – the center and right diagrams
in figure 4.1 are given explictly in table 4.1. Note that π2 = κπ−1κ is trivially substitution
equivalent to π1 by symmetry σ1. Neither permutation is pitchforkable. Inspection of the
duals G∗, as in section 3, shows that the tetrahedral graphs are face-glued versions of the
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v=2
_

v_=1

35

6

7

4

8

9

10

11

12

13 v=2
_

v_=1

v=2
_

v_=1

Figure 4.1: The filled plane tetrahedral graph. Left: numbering of vertices and orientations.
Center and right: boundary ZS-Hamiltonian pairs (h0, h1). Double arrows indicate deviating
orientations. Top row: disentangled paths h0 (black) and h1 (gray). Simplified diagrams in
bottom row: edges traversed by both h0 and h1 are gray; black is for h0, and light gray for
h1, alone; thin edges for neither.

36



v=2
_

v_=1

v=2
_

v_=1
G G* G

~

3
4

5
6

3

4

5

6

v*
_

v_*

Figure 4.2: The plane octahedral graph G. Left: numbering of vertices and basic orientations.
Center: the dual 1-skeleton G∗. Right: G after removal of glued triangle 125 on the left.

self-dual case 11.32− 3; see also figure 3.11 and table 3.2. The gluing face is the triangle 124
in G. Face gluing always applies, trivially, for adjacent extrema v, v̄ on ∂G.

4.2 The plane octahedral graph

See figure 4.2, left, for the plane octahedral graph G, the numbering of its vertices, and the
basic orientation constraints induced by the extremal vertices v and v̄. Again we only need
to consider adjacent extremal vertices v = 1 and v̄ = 2, without loss of generality.
Before we determine all remaining possibilities for the orientations in the “square” 3456, we
trivially observe that the face 125 is a gluing face; see the stacking in the dual, figure 4.2,
center. We are therefore left with the orientation problem of the reduced graph G̃ on the
right of figure 4.3. More precisely, we have to check the 25 possible orientations of the five
edges in the square 3456 for their admissibility.
Instead of case-by-case, we proceed by isotropy with respect to the symmetries of the reduced
1-skeleton G̃. Let σ1 denote reflection of G through the horizontal axis 35, again, which
comes with reversal of all orientation arrows. To fix v, v̄, we also reverse and interchange
the ZS-Hamiltonian paths h0, h1 from v to v̄. Let σ2 denote the reflection of G̃ through the
vertical axis v v̄ = 12, which also interchanges h0, h1 but does not reverse arrows. Rotation
by 180◦, with orientation reversal, is the composite σ1σ2 of the commuting reflections. The
orientation of the edge {4, 6} in the square 3456 is affected by neither of these automorphism
of the (unoriented) graph G̃. Let I denote the orientation isotropy of G̃, that is the subgroup
of those elements in the symmetry group Γ = 〈σ1, σ2〉 = {id, σ1, σ2, σ1σ2} of G̃ which also
respect a given orientation of G̃.
First suppose σ1 ∈ I. Then the edges {4,5} and {5,6} possess antiparallel orientation, as do
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Ι=〈σ1,σ2〉 Ι=〈σ1σ2〉 I={id}

(a)

(b)

3
4

5
6

Ι=〈σ2〉

3
4

5
6

3
4

5
6 3

4

5
6

3
4

5
6

Figure 4.3: Orientations and isotropies I of the octahedral square 3456, up to action by
Γ = 〈σ1, σ2〉.

Isotropy I Sturm permutation

Γ = 〈σ1, σ2〉 1 24 23 16 15 4 5 14 17 22 21 18 13 12 11 6 3 2 7 10 19 20 9 8 25

〈σ2〉 1 24 23 20 19 4 5 18 17 8 9 16 21 22 15 14 13 10 7 6 3 2 11 12 25

〈σ1, σ2〉, (a) 1 24 23 20 19 16 15 2 3 14 13 6 7 12 17 18 11 10 21 22 9 8 5 4 25
〈σ1σ2〉, (b) 1 24 23 20 19 10 9 2 3 8 11 18 17 12 7 6 13 16 21 22 15 14 5 4 25

{id}, (a) 1 24 23 20 19 4 5 18 17 12 11 6 3 2 7 10 13 16 21 22 15 14 9 8 25
{id}, (b) 1 24 23 12 11 4 5 10 13 22 21 14 9 8 15 20 19 16 7 6 3 2 17 18 25

Table 4.2: Sturm permutations π with the filled plane octahedral graph as connection graph.
Substitution equivalent and orientation isomorphic copies are omitted. See also figure 4.4
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Ι=〈σ1,σ2〉

Ι=〈σ1σ2〉

I={id}

Ι=〈σ2〉

(a) (b)

(a) (b)

v
_

v_

Figure 4.4: The six boundary ZS-Hamiltonian pairs (h0, h1) for the planar octahedral graph.
For Sturm permutations and enumeration of cases by isotropy I see table 4.2. Edges traversed
by both h0 and h1 are gray; black is for h0, light gray for h1 alone; thin edges for neither.
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{3,4} and {3,6}. Because none of the vertices 3,5 is di-critical in G, in the sense of section
1, the resulting orientations are 45, 56, and 43, 36. Acyclicity of the orientation then implies
downward orientation 46 of the vertical diagonal edge {4,6}. This unique case therefore
possesses full isotropy, I = Γ = 〈σ1, σ2〉. See figure 4.3
Next suppose σ1 6∈ Γ. Then at least one of the above two nonvertical edge pairs must possess
parallel orientation. Acting by σ2, we may assume the left pair {4,5}, {5,6} to be parallel.
Acting by σ1 we may assume outward orientation 45, 65. Two cases arise here:

(a) upward orientation 64 of the vertical edge. Because neither vertex 4 nor vertex 6 is
di-critical, this implies the orientations 34 and 36, with resulting isotropy I = 〈σ1, σ2〉.
See figure 4.3, I = 〈σ1σ2〉, case (a).

(b) downward orientation 46 of the vertical edge. If σ1σ2 ∈ I, i.e., I = 〈σ1σ2〉, then 45, 65
imply 36, 34, respectively. See figure 4.3, I = 〈σ1σ2〉, case (b).

If σ2 ∈ I2, i.e., I2 = 〈σ2〉, then we obtain 63, 43, instead, as in figure 4.3, I = 〈σ2〉.
Finally, therefore, trivial isotropy comes with antiparallel orientation of the edges {3,4} and
{3,6}. Because vertex 3 is not di-critical in G, this implies 43, 36, as in figure 4.3, I = {id}.
The five cases of figure 4.3 therefore exhaust all admissible orientations of the reduced square
3456 in the reduced 1-skeleton G̃ and in the octahedral 1-skeleton G, alike. For the associated
boundary ZS-Hamiltonian pairs from v = 1 to v̄ = 2 see figure 4.4. As in the case of the
tetrahedron, we may relabel vertices such that h0 = id. Then the Sturm permutations
π = πf are given by the paths h1 as π = h1. In table 4.2 we list the resulting six Sturm
permutations. We omit the trivial substitution action of σ1, given by π 7→ κπ−1κ. Only for
trivial isotropy, I = {id}, the actions of the remaining group elements cannot be represented
by σ1 alone. Instead, we obtain two permutations, which are related by σ2, in this case.
Only the case with isotropy I = 〈σ2〉 is pitchforkable. In figure 4.4 it is informative to check
the isotropies I with respect to σ1, on G2, and with respect to σ2, on the filled reduced graph
G̃2 of G̃, in terms of reflections, orientation reversals, and interchanges of h0, h1.

4.3 The plane hexahedral (cube) graph

See figure 4.5, left, for the plane hexahedral graph G, otherwise known as the 1-skeleton of
the 3-cube. Immediately two cases arise, depending on the relative position of the extrema
v, v̄. Indeed, v and v̄ may either be adjacent, or else diagonally opposite on the boundary
∂G.
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Figure 4.5: The plane hexahedral graph G with adjacent extrema v = 1, v̄ = 2. Left:
numbering of vertices and basic orientations. Center: dual 1-skeleton G∗. Right: reduced
1-skeleton G̃ after removal of the glued trapezoid 1276 from G.

Ι=〈σ1,σ2〉 Ι=〈σ1σ2〉 I={id}

(a)

(b)

Ι=〈σ1〉

Figure 4.6: Orientations and isotropies of the hexahedral “letter I” spanned by the vertices
345678.
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Isotropy I Sturm Permutation
Γ = 〈σ1, σ2〉 1 24 23 8 9 20 19 10 7 2 3 6 11 12 13 18 21 22 17 14 5 4 15 16 25

〈σ1〉 1 24 23 12 11 2 3 6 7 10 13 14 15 22 21 16 9 8 17 18 5 4 19 20 25

〈σ1σ2〉, (a) 1 24 23 18 17 2 3 10 11 16 19 20 15 12 9 4 5 8 13 14 21 22 7 6 25
〈σ1σ2〉, (b) 1 24 23 18 17 2 3 14 13 4 5 8 9 12 15 16 19 20 11 10 21 22 7 6 25
{id} 1 24 23 18 17 2 3 6 7 16 19 20 15 8 9 14 21 22 13 10 5 4 11 12 25

Table 4.3: Sturm permutations π with the filled plane hexahedral (cube) graph as connection
graph and adjacent extrema v, v̄. Substitution equivalent and orientation isomorphic copies
are omitted. See also figure 4.7.

Isotropy I Sturm Permutation

〈σ2〉 1 16 17 24 23 18 15 8 9 14 19 20 13 10 7 2 3 6 11 12 21 22 5 4 25

〈σ1σ2〉, (a) 1 16 17 24 23 18 15 4 5 14 19 20 13 6 7 12 21 22 11 8 3 2 9 10 25
〈σ1σ2〉, (b) 1 6 7 24 23 8 9 14 15 22 21 16 13 10 5 4 11 12 17 18 3 2 19 20 25

{id}, (a) 1 10 11 24 23 12 9 4 5 8 13 14 15 22 21 16 7 6 17 18 3 2 19 20 25
{id}, (b) 1 16 17 24 23 18 15 12 11 2 3 6 7 10 13 14 19 20 9 8 21 22 5 4 25

Table 4.4: Sturm permutations π with the filled plane hexahedral (cube) graph as connec-
tion graph and diagonally opposite extrema v, v̄. Substitution equivalent and orientation
isomorphic copies are omitted. See also figure 4.10.
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Ι=〈σ1,σ2〉

Ι=〈σ1σ2〉

I={id}

Ι=〈σ1〉

(a) (b)

v
_

v_

Figure 4.7: The five boundary ZS-Hamiltonian pairs (h0, h1) for the planar hexahedral
(cube) graph with adjacent extrema v, v̄. For Sturm permutations and enumeration of cases
by isotropy I see table 4.3. Edges traversed by both h0 and h1 are gray; black is for h0, light
gray for h1 alone; thin edges for neither.
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Figure 4.8: The plane hexahedral graph G with diagonally opposite extrema v = 1, v̄ = 3.
Left: numbering of vertices and basic orientations. Center: the dual 1-skeleton G∗. Right:
the central winged square 267854 of G.

Ι=〈σ2〉 Ι=〈σ1σ2〉 I={id}

(a)

(b)

(a)

(b)

45
6

7
8

2

Figure 4.9: Orientations and isotropies of the hexahedral winged squared 267854.
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Ι=〈σ1σ2〉

I={id}

Ι=〈σ2〉

(a) (b)

(a) (b)

v
_

v_

Figure 4.10: The five boundary ZS-Hamiltonian pairs (h0, h1) for the planar hexahedral
(cube) graph with diagonally opposite extrema v, v̄. For Sturm permutations and enumera-
tion of cases by isotropy I see table 4.4. Edges traversed by both h0 and h1 are gray; black
is for h0, light gray for h1 alone; thin edges for neither.
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4.3.1 The case of adjacent extrema v, v̄

Without loss of generality, v = 1 and v̄ = 2. See figure 4.5 for the dual 1-skeleton G∗, and
for the reduced 1-skeleton G̃ after removal of the trivially glued trapezoid face 1276. Face
gluing forces the orientation 67 of the edge {6,7}. Analogously to section 4.2, we perform an
admissibility check on the 25 orientations of the remaining “letter I” spanned by the vertices
345678. We consider reflections σ1, σ2 as before: the axis of σ2 runs through 1582, vertically,
whereas σ1 bisects the edges 43, {5, 8} and 67 horizontally. Di-criticality and acyclicity
constraints on admissible orientations lead to the five cases listed in figure 4.6. We leave the
derivation, which is analogous to section 4.2, to our reader as an exercise.
For boundary ZS-Hamiltonian pairs from v = 1 to v̄ = 2 generated by these orientations
see figure 4.7. In table 4.3 we list the resulting five Sturm permutations. Again, we omit
σ1-related cases, alias κπ−1κ. Only for trivial isotropy, the remaining σ2-related case has to
be added. Only the cases with isotropy I = 〈σ1, σ2〉 and I = 〈σ1〉 are pitchforkable.

4.3.2 The case of diagonally opposite extrema v, v̄

Without loss of generality, v = 1 and v̄ = 3. See figure 4.8 for G∗ to see that G is neither
face-glued nor stacked. This leaves us with 26 orientations for the central winged square
267854 to check for admissibility.
Analogously to figures 4.3 and 4.6 we arrive at the five admissible orientations of figure 4.9,
listed by decreasing isotropy with respect to the horizontal and vertical reflections σ1, σ2 of
the winged square.
In addition to σ1, this time, also σ2 acts on the non-reduced 1-skeleton G itself, by interchange
of the paths h0 and h1. Since relabeling of vertices does not affect the Sturm permutation
π, this amounts to the trivial substitution equivalence π ↔ π−1. Therefore only five cases
arise, up to trivial substitutions. See table 4.4 and figure 4.10. None of the resulting cases
is pitchforkable.

4.4 The plane dodecahedral graph

The plane dodecahedral graph G, as a 1-skeleton, features 30 edges. Since ∂G is a 5-gon,
and by the rotation and reflection symmetries of the dodecahedron, it is sufficient to consider
two relative positions of the extrema v, v̄ on ∂G: adjacent, or else at distance 2. Either case
fixes the orientations of the five boundary edges. In the adjacent case, moreover, the 5-gon
containing v, v̄ also fixes the orientations of an additional 4 interior edges. As for the cube
in section 4.3.1, this follows because the dual 1-skeleton G∗ is then stacked, the face adjacent
to v and v̄ is trivially face glued, and the boundary orientation of theorem 1.1 applies to
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Figure 4.11: Orientations and symmetries of the plane dodecahedron.

G∗. In any case, we are left with 221 possibilities to discuss for an orientation of G, many
of which are admissible. The group generated by the symmetries σ1, σ2, as in the previous
sections, will be of little help in any attempt of a complete enumeration. With a merciful
eye on the referee, and ourselves, we only discuss three examples which differ by flipping the
orientation of only two edges, as indicated in figure 4.11.
Our examples differ in the orientation of the edges {2,3} and {4,17}. We distinguish the
three cases of table 4.5. In cases 1 and 2 the extrema v, v̄ are adjacent in G. After removal of
the glued face 1 8 9 10 2 we obtain the reflection symmetries σ1, σ2 of the reduced 1-skeleton
G̃, as in the previous sections and as indicated in figure 4.11. This time, however, the edges
{9,12} and {4,17} come to lie on the reflection axis of σ1. Since σ1 reverses orientations,
this implies that σ1 cannot be in the isotropy of any orientation. Likewise, σ2 cannot be
an isotropy element because the axis of σ2 bisects the edges {6,7} and {14,15}, but does
not reverse orientations. Therefore, the maximal isotropy of any admissible orientation is
I = 〈σ1σ2〉, as exemplified in case 1. Reversing only the orientation of the edge {4,17}, as in
case 2, is sufficient to eliminate all isotropy. Case 3, finally, moves the extremum v̄ from 2
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Case {2,3} {4,17} v v̄ isotropy I

1 3 → 2 4 → 17 1 2 〈σ1σ2〉
2 3 → 2 17 → 4 1 2 {id}
3 2 → 3 4 → 17 1 3 {id}

Table 4.5: Three examples of orientations of the plane dodecahedron, distinguished by ori-
entations of the edges {2,3} and {4,17}. See also figure 4.11.

Case Sturm Permutation
1 1 60 59 12 13 54 53 14 15 26 27 38 29 52 55 56 51 40 37 28

25 16 11 2 3 10 17 18 19 24 29 30 31 36 41 42 43 50 57 58
49 44 35 32 23 20 9 4 5 8 21 22 33 34 45 46 7 6 47 48 61

2 1 60 59 8 9 54 53 10 11 26 27 38 39 52 55 56 51 40 37 28
25 12 7 2 3 6 13 14 15 24 29 30 31 36 41 42 43 50 57 58
49 44 35 32 23 16 17 22 33 34 45 46 21 18 5 4 19 20 47 48 61

3 1 58 57 12 13 52 51 14 15 26 27 38 39 50 53 54 49 40 37 28
25 16 11 2 3 10 17 18 19 24 29 30 31 36 41 42 43 48 55 56
59 60 47 44 35 32 23 20 9 4 5 8 21 22 33 34 45 46 7 6 61

Table 4.6: Three Sturm permutations of dodecahedra. For enumeration of cases by isotropy
I see table 4.5 and figure 4.12.
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Case 1
Ι=〈σ1σ2〉

Case 2
I={id}

Case 3
I={id}

v=2
_

v_=1

v=2
_

v_=1

v=3
_

v_=1

Figure 4.12: Boundary ZS-Hamiltonian paths h0, h1 for the three dodecahedral orientations
of table 4.5. Edges traversed by both h0 and h1 are gray; black is for h0, light gray for h1

alone; thin edges for neither.
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σ1

σ2

v=2
_

v_=1

σ2

Figure 4.13: An example of the plane icosahedron. Insert: orientations and symmetries.
Main: boundary ZS-Hamiltonian paths h0, h1. Edges traversed by both h0 and h1 are gray;
black is for h0, light gray for h1 alone; thin edges for neither.
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to 3. This leaves only the reflection σ3 as a candidate for isotropy. However, σ3 fails because
it reverses orientation and contains the edges {2,10} and {18,19} of the 1-skeleton.
The ZS-Hamiltonian pairs (h0, h1) for all three cases are illustrated in figure 4.12. Note the
invariance of paths and the reversal of orientations in G̃ effected by the isotropy σ1σ2 in case
1. Also note how the “atomic” orientation flips from case 1 to cases 2 and 3, respectively, are
accommodated by rather localized changes in the Hamiltonian paths. The resulting changes
in the Sturm permutations π = h−1

0 h1, however, are quite nonlocal; see table 4.6. All three
cases are pitchforkable.

4.5 The plane icosahedral graph

As a final illustration of design of Sturm attractors we consider the plane icosahedral 1-
skeleton G, again with 30 edges. The extrema v, v̄ are necessarily adjacent on the triangular
boundary; see the insert of figure 4.13. The face 125 is therefore glued. The reduced 1-
skeleton G̃ possesses the indicated symmetries σ1 and σ2, as discussed in the sections above.
For the same reasons as in section 4.4, neither σ1 nor σ2 alone can be an isotropy element.
Since we are left with 221 choices for the remaining edge orientations, once again many of
them admissible, we select a single example orientation with isotropy I = 〈σ1σ2〉. See figure
4.13 for the chosen orientation of the 1-skeleton G and for the resulting ZS-Hamiltonian
paths h0 and h1. Note grayscale preservation and orientation reversal under the rotation
σ1σ2, outside the glued on triangle 125. The Sturm permutation π = h−1

0 h1 of this example
is multiply pitchforkable:

π = (1 60 59 52 51 20 19 4 5 18 21 50 49 34 33 22 17 16 23 32

35 48 53 58 57 54 47 46 45 36 31 30 29 24 15 14 13 6 3 2(4.1)

7 12 25 28 37 44 43 38 27 26 11 10 39 42 55 56 41 40 9 8 61)
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