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I. INTRODUCTIONControl of omplex irregular dynamis is one of the entral issues in applied nonlinearsiene [1℄. Starting with the work of Ott, Grebogi and Yorke [2℄, a variety of methods havebeen developed in order to stabilize unstable periodi orbits (UPOs) embedded in a haotiattrator by employing tiny ontrol fores. A partiularly simple and e�ient sheme is time-delayed feedbak ontrol as suggested by Pyragas [3℄. In reent years the notion of haosontrol has been extended to a muh wider lass of problems involving the stabilization ofunstable periodi states in nonlinear dynami systems, and has been applied to a vast rangeof problems in physis, hemistry, biology, mediine, and engineering. However, a deepenedunderstanding of the ontrol shemes and analyti insight into their potential limitations isstill a hallenging task.Reently Fiedler et al. [4℄ have refuted an often invoked assertion, the so-alled �odd-number limitation� of delayed feedbak ontrol. This purported limitation laims that aperiodi orbit with an odd number of real Floquet multipliers greater than unity annot bestabilized by the time-delayed feedbak ontrol in the form proposed by Pyragas [3℄. Thepapers [4�6℄ show the possibility of stabilization of unstable periodi orbits, whih are gener-ated by a subritial Hopf bifuration. In our paper, we onsider the ase when the unstableperiodi orbit is generated by a fold bifuration of saddle-node type; see Eq. (1) below. Weshow that suh orbits an be stabilized by delayed feedbak ontrol. We will restrit ouranalysis to the ase when the periodi orbits have the speial form of rotating waves. Thisase is partiularly important for appliations to optial systems and, in addition, allowsdetailed analytial treatment. One suh system, a three-setion semiondutor laser, will beonsidered in our paper. Numerial bifuration analysis on�rms that an all-optial delayedfeedbak ontrol an suessfully stabilize rotating waves lose to a fold bifuration in thissystem. All-optial ontrol exploits the advantage of delayed feedbak ontrol, as well assimpliity and inherent high-speed operation. All-optial ontrol of unstable steady stateslose to a superritial Hopf bifuration of the same system has been reported in Ref. [7℄.The plan of our paper is as follows: Setion II is devoted to the analytial treatmentof a generi model for fold bifurations of rotating waves. We derive neessary and su�-ient onditions for suessful ontrol. In partiular, we show that the stabilization an beahieved by delayed feedbak with arbitrarily small ontrol amplitude provided the phase2



of the ontrol is hosen appropriately. In Setion III, we study a rate-equation model forthree-setion semiondutor lasers with all-optial delayed feedbak. For suitably hosen pa-rameter values, this model has a fold bifuration. Numerial bifuration analysis establishessuessful ontrol in the viinity of this bifuration.II. ANALYSIS OF FOLDS OF ROTATING WAVESA. Properties of the fold system without ontrolAs a paradigm for fold bifuration of rotating waves we onsider planar systems of theform
ż = g(λ, |z|2)z + ih(λ, |z|2)z. (1)Here z(t) is a salar omplex variable, g and h are real valued funtions, and λ is a realparameter. Systems of the form (1) are S1-equivariant, i.e., eiθz(t) is a solution whenever

z(t) is, for any �xed eiθ in the unit irle S1. In polar oordinates z = reiϕ this manifestsitself by absene of ϕ from the right hand sides of the resulting di�erential equations
ṙ = g(λ, r2)r,

ϕ̇ = h(λ, r2).
(2)In partiular, all periodi solutions of Eq. (1) are indeed rotating waves, alias harmoni, ofthe form

z(t) = reiωtfor suitable nonzero real onstants r, ω. Spei�ally, this requires ṙ = 0, ϕ̇ = ω:
0 = g(λ, r2),

ω = h(λ, r2).
(3)Fold bifurations of rotating waves are generated by the nonlinearities

g(λ, r2) = (r2 − 1)
2 − λ,

h(λ, r2) = γ(r2 − 1) + ω0.
(4)Our hoie of nonlinearities is generi in the sense that g(λ, r2) is the normal form fora nondegenerate fold bifuration [8℄ at r2 = 1 and λ = 0. See Fig. 1 for the resultingbifuration diagram. We �x oe�ients γ, ω0 > 0.3
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Figure 1: Bifuration diagram of rotating waves (solid line: stable; dashed line: unstable) of Eqs. (1)and (4). Arrows indiate (in-)stability aording to Eq. (2).Using Eqs. (3) and (4), the amplitude r and frequeny ω of the rotating waves then satisfy
r2 = 1 ±

√
λ, ω = ω0 + γ(r2 − 1) = ω0 ± γ

√
λ. (5)The signs ± orrespond to di�erent branhes in Fig. 1, + unstable and − stable.B. Fold system with delayed feedbak ontrolOur goal is to investigate delay stabilization of the fold system (1) by the delayed feedbakterm

ż = f(λ, |z|2)z + b0e
iβ [z(t− τ) − z(t)] , (6)with real positive ontrol amplitude b0, delay τ , and real ontrol phase β. Here we haveused the abbreviation f = g + ih. The Pyragas hoie requires the delay τ to be an integermultiple k of the minimum period T of the periodi solution to be stabilized:

τ = kT. (7)This hoie guarantees that periodi orbits of the original system (1) with period T arereprodued exatly and noninvasively by the ontrol system (6). The minimum period T ofa rotating wave z = reiωt is given expliitly by T = 2π/ω. Using Eqs. (5), Eq. (7) beomes
τ =

2πk

ω0 ± γ
√
λ
, (8)or, equivalently,

λ = λ(τ) =

(

2πk − ω0τ

γτ

)2

. (9)4



Figure 2: The Pyragas urves λ = λ(τ), orresponding to the unstable branh in Fig. 1, in theparameter plane (τ, λ); see Eq. (9). Parameters: γ = ω0 = 1.In the following we selet only the branh of λ(τ) orresponding to the τ -value with the +sign, whih is assoiated with the unstable orbit. Condition (9) then determines the k-thPyragas urve in parameter spae (τ, λ) where the delayed feedbak is noninvasive, indeed.The fold parameter λ = 0 orresponds to τ = 2πk/ω0, along the k-th Pyragas urve. SeeFig. 2 for the Pyragas urves in the parameter plane (τ, λ).For the delay stabilization system (6) we now onsider τ as the relevant bifurationparameter. We restrit our study of Eq. (6) to λ = λ(τ) given by the Pyragas urve (9),beause τ = kT is the primary ondition for noninvasive delayed feedbak ontrol.We begin with the trivial ase b0 = 0 of vanishing ontrol, somewhat pedantially; seeSetion IIA. For eah λ = λ(τ), we enounter two rotating waves given by
r2 = 1 ± 2πk − ω0τ

γτ
, ω = ω0 ±

(

2πk − ω0τ

τ

)

. (10)The two resulting branhes form a transritial bifuration at τ = 2πk/ω0. At this stage, thetransritiality looks like an artefat, spuriously aused by our hoie of the Pyragas urve
λ = λ(τ). Note, however, that only one of the two rossing branhes features minimumperiod T suh that the Pyragas ondition τ = kT holds. This happens along the branh

r2 = 1 +
2πk − ω0τ

γτ
, ω = 2πk/τ,see Fig. 3. We all this branh, whih orresponds to '+' in Eq. (10) the Pyragas branh.5
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Figure 3: Bifuration diagram of rotating waves of Eq. (6) at vanishing ontrol amplitude b0 = 0.Parameters: T0 = 2π/ω0, ω0 = 1, γ = 10.The other branh has minimum period T with
kT =

πk

ω0τ − πk
τ 6= τ,exept at the rossing point ω0τ = 2πk. The minus-branh therefore violates the Pyragasondition for non-invasive ontrol, even though it has admittedly been generated from thesame fold bifuration.Our strategy for Pyragas ontrol of the unstable part of the Pyragas branh is now simple.For a nonzero ontrol amplitude b0, the Pyragas branh persists without hange, due to thenoninvasive property τ = kT along the Pyragas urve λ = λ(τ). The minus-branh, however,will be perturbed slightly for small b0 6= 0. If the resulting perturbed transritial bifuration

τ = τc (11)moves to the left, i.e., below 2πk/ω0, then the stability region of the Pyragas branh hasinvaded the unstable region of the fold bifuration. Again this refutes the notorious oddnumber limitation of Pyragas ontrol, see Fiedler et al. [4℄ and referenes therein.Let τ = τc denote the transritial bifuration point on the Pyragas urve λ = λ(τ); seeEq. (9). Let z(t) = rce
iωct denote the orresponding rotating wave, and abbreviate ε ≡ r2

c−1.In Appendix A, we obtain onditions for the transritial bifuration in Eq. (6). As a result,the following relations between the ontrol amplitude bc at the bifuration and ε, τc areshown:
bc = −ε ω0 + γε

kπ(γ sin β + 2ε cosβ)
(12)6



and
bc = − 2πk − ω0τc

τc
(

1
2
γ2τc sin β + (2πk − ω0τc) cosβ

) . (13)As follows from Eqs. (12) and (13), for small ε, alias for τc near 2kπ/ω0, the optimalontrol angle is β = −π/2 in the limit ε → 0, and for �xed k, ω0, γ, ε this ontrol phase
β allows for stabilization with the smallest amplitude |bc|. For β = −π/2 the relationsEqs. (12) and (13) simplify to

bc =
ε

kπ

(

ω0

γ
+ ε

) (14)and
bc =

2

(γτc)
2 (2kπ − ω0τc) , (15)respetively. For small b0 > 0 we also have the expansions

ε = −
(

kπ
γ

ω0
sin β

)

b0 + · · · (16)and
τc =

2πk

ω0
+





1

2ω0

(

2kπγ

ω0

)2

sin β



 b0 + · · · . (17)for the loation of the transritial bifuration. In partiular we see that odd number delaystabilization an be ahieved by arbitrary small ontrol amplitudes b0 near the fold, for γ > 0and sin β < 0. Note that the stability region of the Pyragas urve inreases if ε = r2
c−1 > 0;see Fig. 1. For vanishing phase angle of the ontrol, β = 0, in ontrast, delay stabilizationannot be ahieved by arbitrarily small ontrol amplitudes b0, near the fold in our system(6).Even far from the fold at λ = 0, τ = 2kπ/ω0 the above formulas (12) � (15) hold andindiate a transritial bifuration from the (global) Pyragas branh of rotating waves ofEq. (6), along the Pyragas urve λ = λ(τ). This follows by analyti ontinuation. Delaystabilization, however, may fail long before τ = τc is reahed. In fat, nonzero purelyimaginary Floquet exponents may arise, whih destabilize the Pyragas branh long before

τ = τc is reahed. This interesting point remains open.A more global piture of the orbits involved in the transritial bifuration may be ob-tained by numerial analysis. Rewriting Eq. (6) in polar oordinates z = reiϕ yields
ṙ = [(r2 − 1)2 − λ]r (18)

+b0[cos(β + ϕ(t− τ) − ϕ) r(t− τ) − r cosβ]7



ϕ̇ = γ(r2 − 1) + ω0 (19)
+b0[sin(β + ϕ(t− τ) − ϕ) r(t− τ)/r − sin β].To �nd all rotating wave solutions we make the ansatz r = const and ϕ̇ = ω = const andobtain

0 = (r2 − 1)2 − λ + b0[cos(β − ωτ) − cosβ]

ω = γ(r2 − 1) + ω0 + b0[sin(β − ωτ) − sin β].Eliminating r we �nd a transendental equation for ω
0 = −γ2λ+ γ2b0[cos(β − ωτ) − cosβ]

+ (ω − ω0 − b0[sin(β − ωτ) − sin β])2 .One an now solve this equation numerially for ω and insert the result into
r =

(

ω − ω0

γ
− b0
γ

[sin(β − ωτ) − sin β] + 1

) 1

2to obtain the allowed radii (disarding imaginary radii).The orbit whih stabilizes the Pyragas branh in the transritial bifuration may be theminus-branh or another delay indued orbit whih is born in a fold bifuration, dependingon the parameters. Figure 4 displays the di�erent senarios and the rossover in dependeneon the ontrol amplitude b0. The value of γ is hosen as γ = 9, 10.5, 10.6, and 13 in panels(a), (b), (), and (d), respetively. It an be seen that the Pyragas orbit is stabilized by atransritial bifuration T1. As the value of γ inreases, a pair of a stable and an unstableorbit generated by a fold bifuration F1 approahes the minus-branh (see Fig. 4(a)). Onthis branh, fold bifurations (F2 and F3) our as shown in Fig. 4(b). At γ = 10.6, thefold points of F1 and F2 touh in a transritial bifuration T2 and annihilate (see Figs. 4()and (d)). Thus, for further inrease of γ, one is left with the stable minus-branh and theunstable orbit, whih was generated at the fold bifuration F3. In all panels the radius ofthe Pyragas orbit is not hanged by the ontrol. The radius of the minus-branh, however,is altered beause the delay time does not math orbit period.Figure 5 shows the region in the (β, b0) plane where the Pyragas orbit is stable, for aset of parameters. The graysale (olor ode) shows only negative values of the largest realpart of the Floquet exponents. One an see that the orbit is most stable for feedbak phases8



Figure 4: Radii of stable (solid) and unstable (dashed) rotating wave solutions in dependene on
b0 for di�erent γ. Parameters: ω0 = 1, λ = 0.001, β = −π/2.
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Figure 5: (Color online) Domain of stability of the Pyragas orbit. The graysale (olor ode)shows only negative values of the largest real part of the Floquet exponents. Parameters: ω0 = 1,
λ = 0.0001, γ = 0.1. Cf. also Fig. 11.
β ≈ −π/2 whih agrees with the previous analyti results for small λ. The piture wasobtained by linear stability analysis of Eqs. (18) and (19) and numerial solution of thetransendental eigenvalue problem for the Floquet exponents (see Appendix B).III. APPLICATION TO ALL-OPTICAL CONTROL OF SEMICONDUCTORLASERSLasers in stationary states emit rotating waves. A �rst step towards various instabilitiesis often the destrution of these states or the reation of additional ones in fold bifurations.This happens generially when a laser is oupled to other lasers or to external avities [9℄.In what follows, we investigate to what extent the results of Setion II an be transferedto lasers in suh situations. In partiular, we onsider an integrated tandem laser (ITL),whih is integrating two single-mode lasers oupled by a passive waveguide setion on amonolithi semiondutor hip (f. Fig. 6). Devies of this type are applied in ultrafastoptial ommuniation [10, 11℄. Depending on pump urrents they exhibit di�erent types ofbifurations and dynamis at tens of GHz, and THz are within reah [12, 13℄. Control onthose ultra-short pioseond timesales an be performed only in the optial domain, whihpro�ts from the ultimately high speed of light. Two shemes have been proposed: optialfeedbak either from a Mihelson interferometer [14℄ or from a Fabry-Perót interferometer[15℄. Experimental all-optial time delayed feedbak ontrol has been developed only re-10



ently, exploiting optial feedbak from a Fabry-Perót interferometer to stabilize unstablesteady states of an ITL lose to a Hopf bifuration [7℄. In the present work we onsiderthe Mihelson on�guration [14℄, whih is the optial version of the Pyragas method. Theorresponding sheme is skethed in Fig. 6.
Figure 6: Shemati diagram for all-optial delayed feedbak ontrol. The emission from one faetof an integrated tandem laser is injeted into a Mihelson interferometer. Two re�eted waves returnfrom there with di�erent delays τl and τl + τ . Their superposition is reinjeted into the devie andserves as ontrol fore. The amplitude b0 of the ontrol is adjusted by a neutral density �lter. Theontrol phase β rotates by 2π when hanging the pathway between laser and interferometer by onewavelength.A. System without ontrolIn order to desribe the dynamis, we use the oupled rate-equations model for ITL lasersin dimensionless form [16℄

Ė1 = iδE1 + (1 + iα)N1E1 + ηe−iϕE2, (20)
Ṅ1 = ε

[

J −N1 − (1 + 2N1) |E1|2
]

, (21)
Ė2 = (1 + iα)N2E2 + ηe−iϕE1 + Eb(t), (22)
Ṅ2 = ε

[

J −N2 − (1 + 2N2) |E2|2
]

, (23)extended by the ontrol term Eb(t), whih is disregarded for the moment and will be spei�edlater (in Eq. (25)). The omplex amplitudes E1,2 and the real quantities N1,2 represent theoptial �elds and the arrier densities in the two single-mode distributed feedbak (DFB)lasers, respetively; δ aounts for the frequeny detuning between them; J stands for pump-ing urrents; η and ϕ haraterize the oupling rate and the optial phase shift, respetively,between the two DFB setions; α denotes the linewidth-enhanement fator haraterizing11



the amplitude-phase oupling typial for semiondutor lasers; ε = τp/τn is the ratio betweenphoton (τp) and arrier (τn) lifetimes, and τp serves as unit of time. It is important to knowthat E1,2(t) represent slowly varying amplitudes. The full temporal variation of the optial�elds is
E1,2(t) = E1,2(t)e

iω0t (24)with the optial referene frequeny ω0 playing the role of the orresponding quantity ω0 inSetion II. In the present formulation, ω0 is the optial frequeny of laser 2 in its unperturbed(η = Eb = 0) stationary state N2 = 0, E2 =onst. At ommuniation wavelengths around
λ = 1.55 µm, we have ω0 ≈ 1015s−1. The orresponding dimensionless value is 50000 whenassuming τp = 5 ps. The dynamis of E(t) and N(t) takes plae on timesales whih are bymore than 3 orders of magnitude slower.System (20) � (23) without ontrol, i.e., Eb = 0, was onsidered in detail in Ref. [16℄.Rotational symmetry manifests itself by the invariane with respet to the transformation
(E1, E2) 7→ (eiθE1, e

iθE2) for any eiθ in the unit irle S1. This auses periodi solutionsin the form of rotating waves (E1, N1, E2, N2) = (a1e
iωt, n1, a2e

iωt, n2) with real onstants
ω, n1, n2 and omplex onstants a1 and a2. When varying the phase ϕ of the internal ouplingbetween the two DFB lasers, the rotating waves lose stability either in a Hopf bifuration orin a fold bifuration as shown in a typial bifuration diagram presented in Fig. 7. The Hopfbifuration gives rise to periodially modulated waves, alled self-pulsations, whih will notbe onsidered furthermore. In the present ontext, we onsider the problem of stabilizationof unstable rotating waves lose to the fold F . The frequenies ω of rotating waves near Fare drawn in panel (b). They inrease when moving up through F in onordane with thesenario γ > 0 onsidered in Setion II. Thus, we an expet that the stabilization of theunstable branh by Pyragas-type feedbak should be possible.B. The optial ontrol foreUnder whih onditions does optial feedbak from a Mihelson interferometer give riseto a Pyragas-type ontrol term Eb(t)? Generally, Eb is proportional to the slowly varyingamplitude of the light fed bak from the interferometer, whih in turn is the sum of two12



Figure 7: (Color online) (a): Bifuration diagram for the system (20) � (23) without ontrol, i.e.,
b0 = 0. Inset: a zoom lose to the fold bifuration F. Thik lines: rotating waves; thin lines:modulated waves (self-pulsations). Stable and unstable parts of the diagram are shown by solidlines and dashed lines respetively. H: Hopf bifuration; PD: periodi doubling of self-pulsations.(b): frequenies of rotating waves lose to the fold bifuration of panel (a). Open irle: exemplarytarget state for stabilization. Other parameters are ε = 0.03, J = 1, η = 0.2, δ = 0.3, α = 2.partial waves, eah one re�eted from a di�erent mirror. Aordingly,

Eb(t) = b0e
iβ
[

eiψE2(t− τl − τ) − E2(t− τl)
]

. (25)
τl and τl + τ are the travel times of light on the two pathways. τ orresponds to the ontroldelay time of Eq. (6) and τl is an additional lateny, whih unavoidably ours in realsystems. The two optial phase shifts β = −(ω0τl + π) and ψ = −(ω0τ + π) are assoiatedwith the respetive delays. They are the impat of the fast optial phase rotation (24) onthe slow amplitudes of delayed light. The π is added in both ases to obtain onsistenywith the hoie of signs in Setion II. Further possible phase shifts, e.g., from re�etionsat mirrors may also be inorporated this way. Both phases are tunable by subwavelength13



hanges of the respetive optial pathways whih have no e�et on the slow amplitudes.Thus, they are regarded as independent parameters. The feedbak amplitude b0 ontains allattenuations on the respetive round trips. Note that equal attenuation on both pathways isassumed, otherwise destrutive interferene remains inomplete and noninvasiveness is notahievable. Noninvasiveness also requires proper adjustment of phase ψ. Indeed, when thetarget state is a rotating wave E2(t) = a2e
iωt, the ontrol term vanishes for ei(ψ−ωτ) = 1.This is the well-known ondition for destrutive interferene: nothing is re�eted if the tworeturning partial waves have opposite amplitudes. Control phase β and amplitude b0 arefree parameters playing the same role as the orresponding quantities in Setion II.C. Stabilization of rotating wavesNow we study stabilization of rotating waves on the unstable branh lose to the foldbifuration in Fig. 7. We �x the delays of the ontrol term as τl = 8 and τ = 12, orrespond-ing to about 40 ps and 60 ps, respetively, whih are aessible in experiment [7℄. Theseparameters are not ritial, other values of the same order yield similar results.Exemplarily, we address the unstable state ω = 0.1109 at ϕ = 0.1267 (open irle in Fig.7(b)), whih without ontrol indeed has a single positive Floquet exponent [20℄ (Fig. 8(a)).With ontrol (b0 > 0), this target state itself does not get light bak and keeps unhanged bysetting ψ = ωτ = 1.3308. Only deviations from it ause a nonvanishing feedbak, whih infat modi�es its stability. These e�ets and the resulting bifurations have been alulatedby applying the software pakage DDE-BIFTOOL [17℄ to the delay-di�erential system (20)� (23). Now the leading Floquet exponents hange with b0 is plotted in Fig. 8(b) for β = 0.With inreasing b0, the unstable real Floquet exponent dereases and beomes negative inpoint T . This stabilization is due to a transritial bifuration T , as predited in SetionII. In terms of the Floquet multipliers this indiates that an unstable multiplier rosses theunit irle at 1. With further inrease of the ontrol parameter b0, �rst, two branhes ofeigenvalues with negative real parts oalese and then a destabilization takes plae, when thetwo omplex onjugate eigenvalues beome unstable, i.e., a Hopf bifuration to self-pulsatingsolutions ours in point H in Fig. 8(b). The zero line in Fig. 8(b) orresponds to the trivialFloquet exponent, whih ours due to the symmetry and does not in�uene the stability.A two-parameter bifuration diagram of the same rotating wave in the plane (β, b0) is14



Figure 8: (a) Floquet exponents of the unontrolled target state. (b) Real part of leading Floquetexponents of the target state as a funtion of b0 for β = 0. T denotes transritial and H Hopfbifurations, respetively. Parameters are ε = 0.03, J = 1, η = 0.2 δ = 0.3, α = 2, ω = 0.1109,
ϕ = 0.1267, τl = 8, τ = 12 and ψ = ωτ .shown in Fig. 9. The stability region is bounded by the Hopf and transritial bifurationsmentioned before. The role of these bifurations is as predited by the generi model inSetion II and also the shape is similar to that of Fig. 5. It is interesting to ompare thisbifuration diagram to other known ases of all-optial ontrol. A simple single-mode laserexposed to noninvasive ontrol of type (25) hanges stability similarly by transritial andHopf bifurations [18℄ � only the laser is destabilized but not stabilized. In ase of rotatingwaves beyond a Hopf bifuration in an ITL laser, the domains of ontrol are also bounded byHopf and transritial bifurations but with di�erent ordering: inverse Hopf de�nes the lowerbound whereas the upper bound is partly transritial [7, 19℄. Quantitatively, the vertialextension of the present ontrol domain near a fold bifuration is, however, small omparedto the latter ase. Thus, a possible experimental stabilization near folds will probably requirea more preise adjustment of ontrol amplitude b0 ompared to Refs. [7, 19℄.To investigate the in�uene of the ontrol on the environment of the target state, werealulated the bifuration diagram of Fig. 7(b) with ontrol parameters on the vertialline 2 in Fig. 9. The resulting branhes of rotating waves are ompared to those of theunontrolled devie in Fig. 10. Panel (a) exempli�es the partiular ase b0 = 0.005. Apartfrom the target state (open irle), whih keeps unhanged on purpose, the feedbak isinvasive and hanges the laser state. Due to the smallness of b0, the modi�ations are minor(note the small zoom ompared to full bifuration diagram Fig. 9(a). The fold bifurationis preserved and shifted slightly above the target state. As a onsequene, the target is now15



Figure 9: (Color online) Two-dimensional bifuration diagram of the target state with respet tothe ontrol parameters b0 and β. Blak solid: Hopf bifuration. Above this line the laser emitsself pulsations. Red dashed: transritial bifuration. Below this line, the target state is unstable.Gray area denotes the stability region. ZH is the zero-Hopf bifuration of odimension two. Line1 orresponds to the parameter path along whih the eigenvalues are omputed in Fig. 8(b). Line2 orresponds to the parameter hanges in Fig. 10. Other parameters as in Fig. 8.on the stable branh. The stabilization transition happens when the fold bifuration rossesthe unstable branh of the unontrolled system exatly in the target state. The target is theupper of the two states with ϕ = 0.1267; it is unstable for smaller b0 (urve 1) and stablefor larger b0 (urve 3). Both states ross in a transritial bifuration (inset), in agreementwith the results of Setion II.IV. CONCLUSIONSWe have shown that, ontrary to ommon belief, unstable periodi states with an oddnumber of real Floquet multipliers greater than unity, here reated by a fold bifuration,an indeed be stabilized by time delayed feedbak ontrol. As a promising all-optial real-ization we propose an integrated semiondutor tandem laser ombined with a Mihelsoninterferometer.Our analysis is omplementary to the previous publiations on this topi [4�6℄, whihhave been devoted to the stabilization of unstable periodi orbits lose to a subritial Hopfbifuration. The approahes whih have been used in the above papers are spei�ally basedon the normal form at the subritial Hopf bifuration and an not be simply transferred16



Figure 10: (Color online) Branhes of stable (solid) and unstable (dashed) rotating waves withoutontrol (thin, red) and with ontrol (blak, thik). F: fold bifuration. Vertial line: ϕ = 0.1267of the hosen target state. Open irle: target state. (a): b0 = 0.005. (b): (1) b0 = 0.0030 below,(2) b0 = 0.0035 at, (3) b0 = 0.0050 above the ontrol threshold. Inset: relation to the transritialbifuration. Parameters as in Fig. 9 and β = −0.408π, ψ = 1.3308.to the fold ase. The ommon point in both senarios of stabilization is the appearane ofa transritial bifuration resulting from the two basi assumptions: vanishing ontrol termfor the Pyragas orbit, and the existene of one unstable real positive Floquet multiplier.Note that one an perturb the equations (6), or (20) � (23), suh that the S1 symmetry isbroken. In this ase the stable (unstable) rotating waves will be perturbed into stable (un-stable) periodi solutions, respetively, whih will no longer have the form of rotating waves.Thus, by rigorous perturbative arguments, our paper refutes the odd-number limitation alsofor periodi solutions whih are not rotating waves. On the other hand, in non-autonomoussystems the odd-number limitation may still hold [5℄.AknowledgmentsWe gratefully aknowledge the support of DFG in the framework of Sfb555.Appendix AIn this Appendix, we derive onditions (12) and (13) at whih the transritial bifurationin system (6) ours. To derive Eq. (12) we ould proeed by brute fore: linearize theontrol system (6) along the Pyragas branh, in polar oordinates, derive the harateristi17



equation in a o-rotating oordinate frame, eliminate the trivial zero harateristi root, anddetermine τ = τc, r = rc, and b0 = bc suh that a nontrivial zero harateristi root remains.Instead, we will proeed loally in a two-dimensional enter manifold of the fold, followingthe arguments in Just et al. [5℄, as given in Appendix B below. Any periodi solution in theenter manifold of Eq. (6) is a rotating wave z(t) = reiωt.Hene, let us ompute the rotating waves of the system (6), globally. Substituting z(t) =

reiωt into Eq. (6) and deomposing into real and imaginary parts, we obtain
0 = g(λ, r2) + 2b0 sin

ωτ

2
sin

(

β − ωτ

2

)

, (26)
ω = h(λ, r2) − 2b0 sin

ωτ

2
cos

(

β − ωτ

2

)

. (27)With ε = r2 − 1 and our hoies (4) for g and h, these equations beome
0 = ε2 − λ(τ) + 2b0 sin

ωτ

2
sin

(

β − ωτ

2

)

, (28)
ω = γε+ ω0 − 2b0 sin

ωτ

2
cos

(

β − ωτ

2

)

. (29)For small enough b0, we an solve Eq. (29) for ω = ω(ε) and insert into Eq. (28):
0 = G(τ, ε). (30)Here G(τ, ε) abbreviates the right hand side of Eq. (28) with ω = ω(ε) substituted for ω.The ondition for a transritial bifuration in the system with ontrol then reads

0 =
∂

∂ε
G(τc, ε) (31)in addition to Eq. (30). It simpli�es matters signi�antly that this alulation has to beperformed along the Pyragas branh only, where ωτ = 2πτ/T = 2πk; see Eq. (7). ThereforeEq. (31) beomes

0 =
∂

∂ε
G(τc, ε)

= 2ε+ b0τc cos kπ sin (β − kπ)ω′(ε)

= 2ε+ b0τcω
′(ε) sin β. (32)To obtain the derivative ω′ of ω with respet to ε we have to di�erentiate Eq. (29)impliitly, at ωτ = 2kπ

ω′ = γ − b0τω
′ cosβ.18



Solving for ω′, for small b0, yields
ω′ =

γ

1 + b0τ cosβ
=

γ

1 + b0
2kπ
ω0+γε

cos β
. (33)Here we have used ωτ = 2kπ and ω = ω0 + γε. Plugging Eq. (33) into Eq. (32), the ontrolamplitude b0 enters linearly, and we obtain

0 = ε (ω0 + γε)

(

1 + b0
2kπ

ω0 + γε
cosβ

)

+ b0kπγ sin β

= ε (ω0 + γε+ b02kπ cos β) + b0kπγ sin β. (34)Solving for b0, we obtain the required expression (12) for the value of the ontrol amplitude,at whih the transritial bifuration ours.The equivalent ondition (13) follows from Eq. (12) by straightforward substitution ofEq. (8) and −
√
λ = r2 − 1 = ε.Appendix BIn this Appendix we perform a linear stability analysis of the Pyragas orbit. LinearizingEqs. (18) and (19) around the Pyragas orbit aording to z(t) = (r+ δr) exp(iωt+ iδϕ), we�nd

d

dt







δr(t)

δϕ(t)





 =







∂rg r + g − b0 cosβ rb0 sin(β − ωτ)

∂rh− b0 sin(β − ωτ) 1
r
−b0 cos(β − ωτ)













δr(t)

δϕ(t)







+







b0 cos(β − ωτ) −rb0 sin(β − ωτ)

b0 sin(β − ωτ)/r b0 cos(β − ωτ)













δr(t− τ)

δϕ(t− τ)





 .The delay time τ mathes the period of the Pyragas orbit and we thus have
ωτ = 2πk.Using the exponential ansatz (δr(t), δϕ(t)) ∝ exp Λt gives a transendental equation for theFloquet exponents Λ:

det







4(r2 − 1)r2 + (r2 − 1)2 − λ− Λ − b0 cosβ (1 − e−Λτ ) rb0 sin β (1 − e−Λτ )

2γr − (b0/r) sin β (1 − e−Λτ ) −Λ − b0 cosβ (1 − e−Λτ )





 = 0.(35)19



Figure 11: (Color online) Plot of transritial (dashed) and Hopf bifuration line (solid) and domainof stability (shaded region) in the (β, b0) plane. Parameters as in Fig. 5This equation was numerially solved to obtain Fig. 5.One an �nd the Hopf bifuration of the Pyragas orbit in a semi-analyti way by inserting
Λ = iΩ into Eq. (35) and separating the equation into real and imaginary parts:Real: 0 = −Ω2 − 2Ωb0 cosβ sin(Ωτ) (36)

−b0(cr sin β + a cosβ) [1 − cos(Ωτ)]

−b20 2[1 − cos(Ωτ)] cos(Ωτ)Imag: 0 = −aΩ + 2Ωb0 cosβ [1 − cos(Ωτ)] (37)
−b0(cr sin β + a cosβ) sin(Ωτ)

+b20 2[1 − cos(Ωτ)] sin(Ωτ).We an now use Ω as a parameter and solve the two equations for β and b0 at eah Ω. Theresulting Hopf urve and the transritial bifuration urve (12) then form the boundary ofthe ontrol domain (Fig. 11).
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