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tWe 
onsider the delayed feedba
k 
ontrol method for stabilization of unstable rotating wavesnear a fold bifur
ation. Theoreti
al analysis of a generi
 model and numeri
al bifur
ation analysisof the rate-equations model demonstrate that su
h orbits 
an always be stabilized by a proper
hoi
e of 
ontrol parameters. Our paper 
on�rms the re
ently dis
overed invalidity of the so-
alled�odd-number-limitation� of delayed feedba
k 
ontrol. Previous results have been restri
ted to thevi
inity of a sub
riti
al Hopf bifur
ation. We now refute su
h a limitation for rotating waves near afold bifur
ation. We in
lude an appli
ation to all-opti
al realization of the 
ontrol in three-se
tionsemi
ondu
tor lasers.
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I. INTRODUCTIONControl of 
omplex irregular dynami
s is one of the 
entral issues in applied nonlinears
ien
e [1℄. Starting with the work of Ott, Grebogi and Yorke [2℄, a variety of methods havebeen developed in order to stabilize unstable periodi
 orbits (UPOs) embedded in a 
haoti
attra
tor by employing tiny 
ontrol for
es. A parti
ularly simple and e�
ient s
heme is time-delayed feedba
k 
ontrol as suggested by Pyragas [3℄. In re
ent years the notion of 
haos
ontrol has been extended to a mu
h wider 
lass of problems involving the stabilization ofunstable periodi
 states in nonlinear dynami
 systems, and has been applied to a vast rangeof problems in physi
s, 
hemistry, biology, medi
ine, and engineering. However, a deepenedunderstanding of the 
ontrol s
hemes and analyti
 insight into their potential limitations isstill a 
hallenging task.Re
ently Fiedler et al. [4℄ have refuted an often invoked assertion, the so-
alled �odd-number limitation� of delayed feedba
k 
ontrol. This purported limitation 
laims that aperiodi
 orbit with an odd number of real Floquet multipliers greater than unity 
annot bestabilized by the time-delayed feedba
k 
ontrol in the form proposed by Pyragas [3℄. Thepapers [4�6℄ show the possibility of stabilization of unstable periodi
 orbits, whi
h are gener-ated by a sub
riti
al Hopf bifur
ation. In our paper, we 
onsider the 
ase when the unstableperiodi
 orbit is generated by a fold bifur
ation of saddle-node type; see Eq. (1) below. Weshow that su
h orbits 
an be stabilized by delayed feedba
k 
ontrol. We will restri
t ouranalysis to the 
ase when the periodi
 orbits have the spe
ial form of rotating waves. This
ase is parti
ularly important for appli
ations to opti
al systems and, in addition, allowsdetailed analyti
al treatment. One su
h system, a three-se
tion semi
ondu
tor laser, will be
onsidered in our paper. Numeri
al bifur
ation analysis 
on�rms that an all-opti
al delayedfeedba
k 
ontrol 
an su

essfully stabilize rotating waves 
lose to a fold bifur
ation in thissystem. All-opti
al 
ontrol exploits the advantage of delayed feedba
k 
ontrol, as well assimpli
ity and inherent high-speed operation. All-opti
al 
ontrol of unstable steady states
lose to a super
riti
al Hopf bifur
ation of the same system has been reported in Ref. [7℄.The plan of our paper is as follows: Se
tion II is devoted to the analyti
al treatmentof a generi
 model for fold bifur
ations of rotating waves. We derive ne
essary and su�-
ient 
onditions for su

essful 
ontrol. In parti
ular, we show that the stabilization 
an bea
hieved by delayed feedba
k with arbitrarily small 
ontrol amplitude provided the phase2



of the 
ontrol is 
hosen appropriately. In Se
tion III, we study a rate-equation model forthree-se
tion semi
ondu
tor lasers with all-opti
al delayed feedba
k. For suitably 
hosen pa-rameter values, this model has a fold bifur
ation. Numeri
al bifur
ation analysis establishessu

essful 
ontrol in the vi
inity of this bifur
ation.II. ANALYSIS OF FOLDS OF ROTATING WAVESA. Properties of the fold system without 
ontrolAs a paradigm for fold bifur
ation of rotating waves we 
onsider planar systems of theform
ż = g(λ, |z|2)z + ih(λ, |z|2)z. (1)Here z(t) is a s
alar 
omplex variable, g and h are real valued fun
tions, and λ is a realparameter. Systems of the form (1) are S1-equivariant, i.e., eiθz(t) is a solution whenever

z(t) is, for any �xed eiθ in the unit 
ir
le S1. In polar 
oordinates z = reiϕ this manifestsitself by absen
e of ϕ from the right hand sides of the resulting di�erential equations
ṙ = g(λ, r2)r,

ϕ̇ = h(λ, r2).
(2)In parti
ular, all periodi
 solutions of Eq. (1) are indeed rotating waves, alias harmoni
, ofthe form

z(t) = reiωtfor suitable nonzero real 
onstants r, ω. Spe
i�
ally, this requires ṙ = 0, ϕ̇ = ω:
0 = g(λ, r2),

ω = h(λ, r2).
(3)Fold bifur
ations of rotating waves are generated by the nonlinearities

g(λ, r2) = (r2 − 1)
2 − λ,

h(λ, r2) = γ(r2 − 1) + ω0.
(4)Our 
hoi
e of nonlinearities is generi
 in the sense that g(λ, r2) is the normal form fora nondegenerate fold bifur
ation [8℄ at r2 = 1 and λ = 0. See Fig. 1 for the resultingbifur
ation diagram. We �x 
oe�
ients γ, ω0 > 0.3
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Figure 1: Bifur
ation diagram of rotating waves (solid line: stable; dashed line: unstable) of Eqs. (1)and (4). Arrows indi
ate (in-)stability a

ording to Eq. (2).Using Eqs. (3) and (4), the amplitude r and frequen
y ω of the rotating waves then satisfy
r2 = 1 ±

√
λ, ω = ω0 + γ(r2 − 1) = ω0 ± γ

√
λ. (5)The signs ± 
orrespond to di�erent bran
hes in Fig. 1, + unstable and − stable.B. Fold system with delayed feedba
k 
ontrolOur goal is to investigate delay stabilization of the fold system (1) by the delayed feedba
kterm

ż = f(λ, |z|2)z + b0e
iβ [z(t− τ) − z(t)] , (6)with real positive 
ontrol amplitude b0, delay τ , and real 
ontrol phase β. Here we haveused the abbreviation f = g + ih. The Pyragas 
hoi
e requires the delay τ to be an integermultiple k of the minimum period T of the periodi
 solution to be stabilized:

τ = kT. (7)This 
hoi
e guarantees that periodi
 orbits of the original system (1) with period T arereprodu
ed exa
tly and noninvasively by the 
ontrol system (6). The minimum period T ofa rotating wave z = reiωt is given expli
itly by T = 2π/ω. Using Eqs. (5), Eq. (7) be
omes
τ =

2πk

ω0 ± γ
√
λ
, (8)or, equivalently,

λ = λ(τ) =

(

2πk − ω0τ

γτ

)2

. (9)4



Figure 2: The Pyragas 
urves λ = λ(τ), 
orresponding to the unstable bran
h in Fig. 1, in theparameter plane (τ, λ); see Eq. (9). Parameters: γ = ω0 = 1.In the following we sele
t only the bran
h of λ(τ) 
orresponding to the τ -value with the +sign, whi
h is asso
iated with the unstable orbit. Condition (9) then determines the k-thPyragas 
urve in parameter spa
e (τ, λ) where the delayed feedba
k is noninvasive, indeed.The fold parameter λ = 0 
orresponds to τ = 2πk/ω0, along the k-th Pyragas 
urve. SeeFig. 2 for the Pyragas 
urves in the parameter plane (τ, λ).For the delay stabilization system (6) we now 
onsider τ as the relevant bifur
ationparameter. We restri
t our study of Eq. (6) to λ = λ(τ) given by the Pyragas 
urve (9),be
ause τ = kT is the primary 
ondition for noninvasive delayed feedba
k 
ontrol.We begin with the trivial 
ase b0 = 0 of vanishing 
ontrol, somewhat pedanti
ally; seeSe
tion IIA. For ea
h λ = λ(τ), we en
ounter two rotating waves given by
r2 = 1 ± 2πk − ω0τ

γτ
, ω = ω0 ±

(

2πk − ω0τ

τ

)

. (10)The two resulting bran
hes form a trans
riti
al bifur
ation at τ = 2πk/ω0. At this stage, thetrans
riti
ality looks like an artefa
t, spuriously 
aused by our 
hoi
e of the Pyragas 
urve
λ = λ(τ). Note, however, that only one of the two 
rossing bran
hes features minimumperiod T su
h that the Pyragas 
ondition τ = kT holds. This happens along the bran
h

r2 = 1 +
2πk − ω0τ

γτ
, ω = 2πk/τ,see Fig. 3. We 
all this bran
h, whi
h 
orresponds to '+' in Eq. (10) the Pyragas bran
h.5
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Figure 3: Bifur
ation diagram of rotating waves of Eq. (6) at vanishing 
ontrol amplitude b0 = 0.Parameters: T0 = 2π/ω0, ω0 = 1, γ = 10.The other bran
h has minimum period T with
kT =

πk

ω0τ − πk
τ 6= τ,ex
ept at the 
rossing point ω0τ = 2πk. The minus-bran
h therefore violates the Pyragas
ondition for non-invasive 
ontrol, even though it has admittedly been generated from thesame fold bifur
ation.Our strategy for Pyragas 
ontrol of the unstable part of the Pyragas bran
h is now simple.For a nonzero 
ontrol amplitude b0, the Pyragas bran
h persists without 
hange, due to thenoninvasive property τ = kT along the Pyragas 
urve λ = λ(τ). The minus-bran
h, however,will be perturbed slightly for small b0 6= 0. If the resulting perturbed trans
riti
al bifur
ation

τ = τc (11)moves to the left, i.e., below 2πk/ω0, then the stability region of the Pyragas bran
h hasinvaded the unstable region of the fold bifur
ation. Again this refutes the notorious oddnumber limitation of Pyragas 
ontrol, see Fiedler et al. [4℄ and referen
es therein.Let τ = τc denote the trans
riti
al bifur
ation point on the Pyragas 
urve λ = λ(τ); seeEq. (9). Let z(t) = rce
iωct denote the 
orresponding rotating wave, and abbreviate ε ≡ r2

c−1.In Appendix A, we obtain 
onditions for the trans
riti
al bifur
ation in Eq. (6). As a result,the following relations between the 
ontrol amplitude bc at the bifur
ation and ε, τc areshown:
bc = −ε ω0 + γε

kπ(γ sin β + 2ε cosβ)
(12)6



and
bc = − 2πk − ω0τc

τc
(

1
2
γ2τc sin β + (2πk − ω0τc) cosβ

) . (13)As follows from Eqs. (12) and (13), for small ε, alias for τc near 2kπ/ω0, the optimal
ontrol angle is β = −π/2 in the limit ε → 0, and for �xed k, ω0, γ, ε this 
ontrol phase
β allows for stabilization with the smallest amplitude |bc|. For β = −π/2 the relationsEqs. (12) and (13) simplify to

bc =
ε

kπ

(

ω0

γ
+ ε

) (14)and
bc =

2

(γτc)
2 (2kπ − ω0τc) , (15)respe
tively. For small b0 > 0 we also have the expansions

ε = −
(

kπ
γ

ω0
sin β

)

b0 + · · · (16)and
τc =

2πk

ω0
+





1

2ω0

(

2kπγ

ω0

)2

sin β



 b0 + · · · . (17)for the lo
ation of the trans
riti
al bifur
ation. In parti
ular we see that odd number delaystabilization 
an be a
hieved by arbitrary small 
ontrol amplitudes b0 near the fold, for γ > 0and sin β < 0. Note that the stability region of the Pyragas 
urve in
reases if ε = r2
c−1 > 0;see Fig. 1. For vanishing phase angle of the 
ontrol, β = 0, in 
ontrast, delay stabilization
annot be a
hieved by arbitrarily small 
ontrol amplitudes b0, near the fold in our system(6).Even far from the fold at λ = 0, τ = 2kπ/ω0 the above formulas (12) � (15) hold andindi
ate a trans
riti
al bifur
ation from the (global) Pyragas bran
h of rotating waves ofEq. (6), along the Pyragas 
urve λ = λ(τ). This follows by analyti
 
ontinuation. Delaystabilization, however, may fail long before τ = τc is rea
hed. In fa
t, nonzero purelyimaginary Floquet exponents may arise, whi
h destabilize the Pyragas bran
h long before

τ = τc is rea
hed. This interesting point remains open.A more global pi
ture of the orbits involved in the trans
riti
al bifur
ation may be ob-tained by numeri
al analysis. Rewriting Eq. (6) in polar 
oordinates z = reiϕ yields
ṙ = [(r2 − 1)2 − λ]r (18)

+b0[cos(β + ϕ(t− τ) − ϕ) r(t− τ) − r cosβ]7



ϕ̇ = γ(r2 − 1) + ω0 (19)
+b0[sin(β + ϕ(t− τ) − ϕ) r(t− τ)/r − sin β].To �nd all rotating wave solutions we make the ansatz r = const and ϕ̇ = ω = const andobtain

0 = (r2 − 1)2 − λ + b0[cos(β − ωτ) − cosβ]

ω = γ(r2 − 1) + ω0 + b0[sin(β − ωτ) − sin β].Eliminating r we �nd a trans
endental equation for ω
0 = −γ2λ+ γ2b0[cos(β − ωτ) − cosβ]

+ (ω − ω0 − b0[sin(β − ωτ) − sin β])2 .One 
an now solve this equation numeri
ally for ω and insert the result into
r =

(

ω − ω0

γ
− b0
γ

[sin(β − ωτ) − sin β] + 1

) 1

2to obtain the allowed radii (dis
arding imaginary radii).The orbit whi
h stabilizes the Pyragas bran
h in the trans
riti
al bifur
ation may be theminus-bran
h or another delay indu
ed orbit whi
h is born in a fold bifur
ation, dependingon the parameters. Figure 4 displays the di�erent s
enarios and the 
rossover in dependen
eon the 
ontrol amplitude b0. The value of γ is 
hosen as γ = 9, 10.5, 10.6, and 13 in panels(a), (b), (
), and (d), respe
tively. It 
an be seen that the Pyragas orbit is stabilized by atrans
riti
al bifur
ation T1. As the value of γ in
reases, a pair of a stable and an unstableorbit generated by a fold bifur
ation F1 approa
hes the minus-bran
h (see Fig. 4(a)). Onthis bran
h, fold bifur
ations (F2 and F3) o

ur as shown in Fig. 4(b). At γ = 10.6, thefold points of F1 and F2 tou
h in a trans
riti
al bifur
ation T2 and annihilate (see Figs. 4(
)and (d)). Thus, for further in
rease of γ, one is left with the stable minus-bran
h and theunstable orbit, whi
h was generated at the fold bifur
ation F3. In all panels the radius ofthe Pyragas orbit is not 
hanged by the 
ontrol. The radius of the minus-bran
h, however,is altered be
ause the delay time does not mat
h orbit period.Figure 5 shows the region in the (β, b0) plane where the Pyragas orbit is stable, for aset of parameters. The grays
ale (
olor 
ode) shows only negative values of the largest realpart of the Floquet exponents. One 
an see that the orbit is most stable for feedba
k phases8



Figure 4: Radii of stable (solid) and unstable (dashed) rotating wave solutions in dependen
e on
b0 for di�erent γ. Parameters: ω0 = 1, λ = 0.001, β = −π/2.
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Figure 5: (Color online) Domain of stability of the Pyragas orbit. The grays
ale (
olor 
ode)shows only negative values of the largest real part of the Floquet exponents. Parameters: ω0 = 1,
λ = 0.0001, γ = 0.1. Cf. also Fig. 11.
β ≈ −π/2 whi
h agrees with the previous analyti
 results for small λ. The pi
ture wasobtained by linear stability analysis of Eqs. (18) and (19) and numeri
al solution of thetrans
endental eigenvalue problem for the Floquet exponents (see Appendix B).III. APPLICATION TO ALL-OPTICAL CONTROL OF SEMICONDUCTORLASERSLasers in stationary states emit rotating waves. A �rst step towards various instabilitiesis often the destru
tion of these states or the 
reation of additional ones in fold bifur
ations.This happens generi
ally when a laser is 
oupled to other lasers or to external 
avities [9℄.In what follows, we investigate to what extent the results of Se
tion II 
an be transferedto lasers in su
h situations. In parti
ular, we 
onsider an integrated tandem laser (ITL),whi
h is integrating two single-mode lasers 
oupled by a passive waveguide se
tion on amonolithi
 semi
ondu
tor 
hip (
f. Fig. 6). Devi
es of this type are applied in ultrafastopti
al 
ommuni
ation [10, 11℄. Depending on pump 
urrents they exhibit di�erent types ofbifur
ations and dynami
s at tens of GHz, and THz are within rea
h [12, 13℄. Control onthose ultra-short pi
ose
ond times
ales 
an be performed only in the opti
al domain, whi
hpro�ts from the ultimately high speed of light. Two s
hemes have been proposed: opti
alfeedba
k either from a Mi
helson interferometer [14℄ or from a Fabry-Perót interferometer[15℄. Experimental all-opti
al time delayed feedba
k 
ontrol has been developed only re-10




ently, exploiting opti
al feedba
k from a Fabry-Perót interferometer to stabilize unstablesteady states of an ITL 
lose to a Hopf bifur
ation [7℄. In the present work we 
onsiderthe Mi
helson 
on�guration [14℄, whi
h is the opti
al version of the Pyragas method. The
orresponding s
heme is sket
hed in Fig. 6.
Figure 6: S
hemati
 diagram for all-opti
al delayed feedba
k 
ontrol. The emission from one fa
etof an integrated tandem laser is inje
ted into a Mi
helson interferometer. Two re�e
ted waves returnfrom there with di�erent delays τl and τl + τ . Their superposition is reinje
ted into the devi
e andserves as 
ontrol for
e. The amplitude b0 of the 
ontrol is adjusted by a neutral density �lter. The
ontrol phase β rotates by 2π when 
hanging the pathway between laser and interferometer by onewavelength.A. System without 
ontrolIn order to des
ribe the dynami
s, we use the 
oupled rate-equations model for ITL lasersin dimensionless form [16℄

Ė1 = iδE1 + (1 + iα)N1E1 + ηe−iϕE2, (20)
Ṅ1 = ε

[

J −N1 − (1 + 2N1) |E1|2
]

, (21)
Ė2 = (1 + iα)N2E2 + ηe−iϕE1 + Eb(t), (22)
Ṅ2 = ε

[

J −N2 − (1 + 2N2) |E2|2
]

, (23)extended by the 
ontrol term Eb(t), whi
h is disregarded for the moment and will be spe
i�edlater (in Eq. (25)). The 
omplex amplitudes E1,2 and the real quantities N1,2 represent theopti
al �elds and the 
arrier densities in the two single-mode distributed feedba
k (DFB)lasers, respe
tively; δ a

ounts for the frequen
y detuning between them; J stands for pump-ing 
urrents; η and ϕ 
hara
terize the 
oupling rate and the opti
al phase shift, respe
tively,between the two DFB se
tions; α denotes the linewidth-enhan
ement fa
tor 
hara
terizing11



the amplitude-phase 
oupling typi
al for semi
ondu
tor lasers; ε = τp/τn is the ratio betweenphoton (τp) and 
arrier (τn) lifetimes, and τp serves as unit of time. It is important to knowthat E1,2(t) represent slowly varying amplitudes. The full temporal variation of the opti
al�elds is
E1,2(t) = E1,2(t)e

iω0t (24)with the opti
al referen
e frequen
y ω0 playing the role of the 
orresponding quantity ω0 inSe
tion II. In the present formulation, ω0 is the opti
al frequen
y of laser 2 in its unperturbed(η = Eb = 0) stationary state N2 = 0, E2 =
onst. At 
ommuni
ation wavelengths around
λ = 1.55 µm, we have ω0 ≈ 1015s−1. The 
orresponding dimensionless value is 50000 whenassuming τp = 5 ps. The dynami
s of E(t) and N(t) takes pla
e on times
ales whi
h are bymore than 3 orders of magnitude slower.System (20) � (23) without 
ontrol, i.e., Eb = 0, was 
onsidered in detail in Ref. [16℄.Rotational symmetry manifests itself by the invarian
e with respe
t to the transformation
(E1, E2) 7→ (eiθE1, e

iθE2) for any eiθ in the unit 
ir
le S1. This 
auses periodi
 solutionsin the form of rotating waves (E1, N1, E2, N2) = (a1e
iωt, n1, a2e

iωt, n2) with real 
onstants
ω, n1, n2 and 
omplex 
onstants a1 and a2. When varying the phase ϕ of the internal 
ouplingbetween the two DFB lasers, the rotating waves lose stability either in a Hopf bifur
ation orin a fold bifur
ation as shown in a typi
al bifur
ation diagram presented in Fig. 7. The Hopfbifur
ation gives rise to periodi
ally modulated waves, 
alled self-pulsations, whi
h will notbe 
onsidered furthermore. In the present 
ontext, we 
onsider the problem of stabilizationof unstable rotating waves 
lose to the fold F . The frequen
ies ω of rotating waves near Fare drawn in panel (b). They in
rease when moving up through F in 
on
ordan
e with thes
enario γ > 0 
onsidered in Se
tion II. Thus, we 
an expe
t that the stabilization of theunstable bran
h by Pyragas-type feedba
k should be possible.B. The opti
al 
ontrol for
eUnder whi
h 
onditions does opti
al feedba
k from a Mi
helson interferometer give riseto a Pyragas-type 
ontrol term Eb(t)? Generally, Eb is proportional to the slowly varyingamplitude of the light fed ba
k from the interferometer, whi
h in turn is the sum of two12



Figure 7: (Color online) (a): Bifur
ation diagram for the system (20) � (23) without 
ontrol, i.e.,
b0 = 0. Inset: a zoom 
lose to the fold bifur
ation F. Thi
k lines: rotating waves; thin lines:modulated waves (self-pulsations). Stable and unstable parts of the diagram are shown by solidlines and dashed lines respe
tively. H: Hopf bifur
ation; PD: periodi
 doubling of self-pulsations.(b): frequen
ies of rotating waves 
lose to the fold bifur
ation of panel (a). Open 
ir
le: exemplarytarget state for stabilization. Other parameters are ε = 0.03, J = 1, η = 0.2, δ = 0.3, α = 2.partial waves, ea
h one re�e
ted from a di�erent mirror. A

ordingly,

Eb(t) = b0e
iβ
[

eiψE2(t− τl − τ) − E2(t− τl)
]

. (25)
τl and τl + τ are the travel times of light on the two pathways. τ 
orresponds to the 
ontroldelay time of Eq. (6) and τl is an additional laten
y, whi
h unavoidably o

urs in realsystems. The two opti
al phase shifts β = −(ω0τl + π) and ψ = −(ω0τ + π) are asso
iatedwith the respe
tive delays. They are the impa
t of the fast opti
al phase rotation (24) onthe slow amplitudes of delayed light. The π is added in both 
ases to obtain 
onsisten
ywith the 
hoi
e of signs in Se
tion II. Further possible phase shifts, e.g., from re�e
tionsat mirrors may also be in
orporated this way. Both phases are tunable by subwavelength13




hanges of the respe
tive opti
al pathways whi
h have no e�e
t on the slow amplitudes.Thus, they are regarded as independent parameters. The feedba
k amplitude b0 
ontains allattenuations on the respe
tive round trips. Note that equal attenuation on both pathways isassumed, otherwise destru
tive interferen
e remains in
omplete and noninvasiveness is nota
hievable. Noninvasiveness also requires proper adjustment of phase ψ. Indeed, when thetarget state is a rotating wave E2(t) = a2e
iωt, the 
ontrol term vanishes for ei(ψ−ωτ) = 1.This is the well-known 
ondition for destru
tive interferen
e: nothing is re�e
ted if the tworeturning partial waves have opposite amplitudes. Control phase β and amplitude b0 arefree parameters playing the same role as the 
orresponding quantities in Se
tion II.C. Stabilization of rotating wavesNow we study stabilization of rotating waves on the unstable bran
h 
lose to the foldbifur
ation in Fig. 7. We �x the delays of the 
ontrol term as τl = 8 and τ = 12, 
orrespond-ing to about 40 ps and 60 ps, respe
tively, whi
h are a

essible in experiment [7℄. Theseparameters are not 
riti
al, other values of the same order yield similar results.Exemplarily, we address the unstable state ω = 0.1109 at ϕ = 0.1267 (open 
ir
le in Fig.7(b)), whi
h without 
ontrol indeed has a single positive Floquet exponent [20℄ (Fig. 8(a)).With 
ontrol (b0 > 0), this target state itself does not get light ba
k and keeps un
hanged bysetting ψ = ωτ = 1.3308. Only deviations from it 
ause a nonvanishing feedba
k, whi
h infa
t modi�es its stability. These e�e
ts and the resulting bifur
ations have been 
al
ulatedby applying the software pa
kage DDE-BIFTOOL [17℄ to the delay-di�erential system (20)� (23). Now the leading Floquet exponents 
hange with b0 is plotted in Fig. 8(b) for β = 0.With in
reasing b0, the unstable real Floquet exponent de
reases and be
omes negative inpoint T . This stabilization is due to a trans
riti
al bifur
ation T , as predi
ted in Se
tionII. In terms of the Floquet multipliers this indi
ates that an unstable multiplier 
rosses theunit 
ir
le at 1. With further in
rease of the 
ontrol parameter b0, �rst, two bran
hes ofeigenvalues with negative real parts 
oales
e and then a destabilization takes pla
e, when thetwo 
omplex 
onjugate eigenvalues be
ome unstable, i.e., a Hopf bifur
ation to self-pulsatingsolutions o

urs in point H in Fig. 8(b). The zero line in Fig. 8(b) 
orresponds to the trivialFloquet exponent, whi
h o

urs due to the symmetry and does not in�uen
e the stability.A two-parameter bifur
ation diagram of the same rotating wave in the plane (β, b0) is14



Figure 8: (a) Floquet exponents of the un
ontrolled target state. (b) Real part of leading Floquetexponents of the target state as a fun
tion of b0 for β = 0. T denotes trans
riti
al and H Hopfbifur
ations, respe
tively. Parameters are ε = 0.03, J = 1, η = 0.2 δ = 0.3, α = 2, ω = 0.1109,
ϕ = 0.1267, τl = 8, τ = 12 and ψ = ωτ .shown in Fig. 9. The stability region is bounded by the Hopf and trans
riti
al bifur
ationsmentioned before. The role of these bifur
ations is as predi
ted by the generi
 model inSe
tion II and also the shape is similar to that of Fig. 5. It is interesting to 
ompare thisbifur
ation diagram to other known 
ases of all-opti
al 
ontrol. A simple single-mode laserexposed to noninvasive 
ontrol of type (25) 
hanges stability similarly by trans
riti
al andHopf bifur
ations [18℄ � only the laser is destabilized but not stabilized. In 
ase of rotatingwaves beyond a Hopf bifur
ation in an ITL laser, the domains of 
ontrol are also bounded byHopf and trans
riti
al bifur
ations but with di�erent ordering: inverse Hopf de�nes the lowerbound whereas the upper bound is partly trans
riti
al [7, 19℄. Quantitatively, the verti
alextension of the present 
ontrol domain near a fold bifur
ation is, however, small 
omparedto the latter 
ase. Thus, a possible experimental stabilization near folds will probably requirea more pre
ise adjustment of 
ontrol amplitude b0 
ompared to Refs. [7, 19℄.To investigate the in�uen
e of the 
ontrol on the environment of the target state, were
al
ulated the bifur
ation diagram of Fig. 7(b) with 
ontrol parameters on the verti
alline 2 in Fig. 9. The resulting bran
hes of rotating waves are 
ompared to those of theun
ontrolled devi
e in Fig. 10. Panel (a) exempli�es the parti
ular 
ase b0 = 0.005. Apartfrom the target state (open 
ir
le), whi
h keeps un
hanged on purpose, the feedba
k isinvasive and 
hanges the laser state. Due to the smallness of b0, the modi�
ations are minor(note the small zoom 
ompared to full bifur
ation diagram Fig. 9(a). The fold bifur
ationis preserved and shifted slightly above the target state. As a 
onsequen
e, the target is now15



Figure 9: (Color online) Two-dimensional bifur
ation diagram of the target state with respe
t tothe 
ontrol parameters b0 and β. Bla
k solid: Hopf bifur
ation. Above this line the laser emitsself pulsations. Red dashed: trans
riti
al bifur
ation. Below this line, the target state is unstable.Gray area denotes the stability region. ZH is the zero-Hopf bifur
ation of 
odimension two. Line1 
orresponds to the parameter path along whi
h the eigenvalues are 
omputed in Fig. 8(b). Line2 
orresponds to the parameter 
hanges in Fig. 10. Other parameters as in Fig. 8.on the stable bran
h. The stabilization transition happens when the fold bifur
ation 
rossesthe unstable bran
h of the un
ontrolled system exa
tly in the target state. The target is theupper of the two states with ϕ = 0.1267; it is unstable for smaller b0 (
urve 1) and stablefor larger b0 (
urve 3). Both states 
ross in a trans
riti
al bifur
ation (inset), in agreementwith the results of Se
tion II.IV. CONCLUSIONSWe have shown that, 
ontrary to 
ommon belief, unstable periodi
 states with an oddnumber of real Floquet multipliers greater than unity, here 
reated by a fold bifur
ation,
an indeed be stabilized by time delayed feedba
k 
ontrol. As a promising all-opti
al real-ization we propose an integrated semi
ondu
tor tandem laser 
ombined with a Mi
helsoninterferometer.Our analysis is 
omplementary to the previous publi
ations on this topi
 [4�6℄, whi
hhave been devoted to the stabilization of unstable periodi
 orbits 
lose to a sub
riti
al Hopfbifur
ation. The approa
hes whi
h have been used in the above papers are spe
i�
ally basedon the normal form at the sub
riti
al Hopf bifur
ation and 
an not be simply transferred16



Figure 10: (Color online) Bran
hes of stable (solid) and unstable (dashed) rotating waves without
ontrol (thin, red) and with 
ontrol (bla
k, thi
k). F: fold bifur
ation. Verti
al line: ϕ = 0.1267of the 
hosen target state. Open 
ir
le: target state. (a): b0 = 0.005. (b): (1) b0 = 0.0030 below,(2) b0 = 0.0035 at, (3) b0 = 0.0050 above the 
ontrol threshold. Inset: relation to the trans
riti
albifur
ation. Parameters as in Fig. 9 and β = −0.408π, ψ = 1.3308.to the fold 
ase. The 
ommon point in both s
enarios of stabilization is the appearan
e ofa trans
riti
al bifur
ation resulting from the two basi
 assumptions: vanishing 
ontrol termfor the Pyragas orbit, and the existen
e of one unstable real positive Floquet multiplier.Note that one 
an perturb the equations (6), or (20) � (23), su
h that the S1 symmetry isbroken. In this 
ase the stable (unstable) rotating waves will be perturbed into stable (un-stable) periodi
 solutions, respe
tively, whi
h will no longer have the form of rotating waves.Thus, by rigorous perturbative arguments, our paper refutes the odd-number limitation alsofor periodi
 solutions whi
h are not rotating waves. On the other hand, in non-autonomoussystems the odd-number limitation may still hold [5℄.A
knowledgmentsWe gratefully a
knowledge the support of DFG in the framework of Sfb555.Appendix AIn this Appendix, we derive 
onditions (12) and (13) at whi
h the trans
riti
al bifur
ationin system (6) o

urs. To derive Eq. (12) we 
ould pro
eed by brute for
e: linearize the
ontrol system (6) along the Pyragas bran
h, in polar 
oordinates, derive the 
hara
teristi
17



equation in a 
o-rotating 
oordinate frame, eliminate the trivial zero 
hara
teristi
 root, anddetermine τ = τc, r = rc, and b0 = bc su
h that a nontrivial zero 
hara
teristi
 root remains.Instead, we will pro
eed lo
ally in a two-dimensional 
enter manifold of the fold, followingthe arguments in Just et al. [5℄, as given in Appendix B below. Any periodi
 solution in the
enter manifold of Eq. (6) is a rotating wave z(t) = reiωt.Hen
e, let us 
ompute the rotating waves of the system (6), globally. Substituting z(t) =

reiωt into Eq. (6) and de
omposing into real and imaginary parts, we obtain
0 = g(λ, r2) + 2b0 sin

ωτ

2
sin

(

β − ωτ

2

)

, (26)
ω = h(λ, r2) − 2b0 sin

ωτ

2
cos

(

β − ωτ

2

)

. (27)With ε = r2 − 1 and our 
hoi
es (4) for g and h, these equations be
ome
0 = ε2 − λ(τ) + 2b0 sin

ωτ

2
sin

(

β − ωτ

2

)

, (28)
ω = γε+ ω0 − 2b0 sin

ωτ

2
cos

(

β − ωτ

2

)

. (29)For small enough b0, we 
an solve Eq. (29) for ω = ω(ε) and insert into Eq. (28):
0 = G(τ, ε). (30)Here G(τ, ε) abbreviates the right hand side of Eq. (28) with ω = ω(ε) substituted for ω.The 
ondition for a trans
riti
al bifur
ation in the system with 
ontrol then reads

0 =
∂

∂ε
G(τc, ε) (31)in addition to Eq. (30). It simpli�es matters signi�
antly that this 
al
ulation has to beperformed along the Pyragas bran
h only, where ωτ = 2πτ/T = 2πk; see Eq. (7). ThereforeEq. (31) be
omes

0 =
∂

∂ε
G(τc, ε)

= 2ε+ b0τc cos kπ sin (β − kπ)ω′(ε)

= 2ε+ b0τcω
′(ε) sin β. (32)To obtain the derivative ω′ of ω with respe
t to ε we have to di�erentiate Eq. (29)impli
itly, at ωτ = 2kπ

ω′ = γ − b0τω
′ cosβ.18



Solving for ω′, for small b0, yields
ω′ =

γ

1 + b0τ cosβ
=

γ

1 + b0
2kπ
ω0+γε

cos β
. (33)Here we have used ωτ = 2kπ and ω = ω0 + γε. Plugging Eq. (33) into Eq. (32), the 
ontrolamplitude b0 enters linearly, and we obtain

0 = ε (ω0 + γε)

(

1 + b0
2kπ

ω0 + γε
cosβ

)

+ b0kπγ sin β

= ε (ω0 + γε+ b02kπ cos β) + b0kπγ sin β. (34)Solving for b0, we obtain the required expression (12) for the value of the 
ontrol amplitude,at whi
h the trans
riti
al bifur
ation o

urs.The equivalent 
ondition (13) follows from Eq. (12) by straightforward substitution ofEq. (8) and −
√
λ = r2 − 1 = ε.Appendix BIn this Appendix we perform a linear stability analysis of the Pyragas orbit. LinearizingEqs. (18) and (19) around the Pyragas orbit a

ording to z(t) = (r+ δr) exp(iωt+ iδϕ), we�nd

d

dt







δr(t)

δϕ(t)





 =







∂rg r + g − b0 cosβ rb0 sin(β − ωτ)

∂rh− b0 sin(β − ωτ) 1
r
−b0 cos(β − ωτ)













δr(t)

δϕ(t)







+







b0 cos(β − ωτ) −rb0 sin(β − ωτ)

b0 sin(β − ωτ)/r b0 cos(β − ωτ)













δr(t− τ)

δϕ(t− τ)





 .The delay time τ mat
hes the period of the Pyragas orbit and we thus have
ωτ = 2πk.Using the exponential ansatz (δr(t), δϕ(t)) ∝ exp Λt gives a trans
endental equation for theFloquet exponents Λ:

det







4(r2 − 1)r2 + (r2 − 1)2 − λ− Λ − b0 cosβ (1 − e−Λτ ) rb0 sin β (1 − e−Λτ )

2γr − (b0/r) sin β (1 − e−Λτ ) −Λ − b0 cosβ (1 − e−Λτ )





 = 0.(35)19



Figure 11: (Color online) Plot of trans
riti
al (dashed) and Hopf bifur
ation line (solid) and domainof stability (shaded region) in the (β, b0) plane. Parameters as in Fig. 5This equation was numeri
ally solved to obtain Fig. 5.One 
an �nd the Hopf bifur
ation of the Pyragas orbit in a semi-analyti
 way by inserting
Λ = iΩ into Eq. (35) and separating the equation into real and imaginary parts:Real: 0 = −Ω2 − 2Ωb0 cosβ sin(Ωτ) (36)

−b0(cr sin β + a cosβ) [1 − cos(Ωτ)]

−b20 2[1 − cos(Ωτ)] cos(Ωτ)Imag: 0 = −aΩ + 2Ωb0 cosβ [1 − cos(Ωτ)] (37)
−b0(cr sin β + a cosβ) sin(Ωτ)

+b20 2[1 − cos(Ωτ)] sin(Ωτ).We 
an now use Ω as a parameter and solve the two equations for β and b0 at ea
h Ω. Theresulting Hopf 
urve and the trans
riti
al bifur
ation 
urve (12) then form the boundary ofthe 
ontrol domain (Fig. 11).
[1℄ E. S
höll and H. G. S
huster, eds., Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008),se
ond 
ompletely revised and enlarged ed.[2℄ E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett. 64, 1196 (1990).[3℄ K. Pyragas, Phys. Lett. A 170, 421 (1992).[4℄ B. Fiedler, V. Flunkert, M. Georgi, P. Hövel, and E. S
höll, Phys. Rev. Lett. 98, 114101 (2007).20



[5℄ W. Just, B. Fiedler, M. Georgi, V. Flunkert, P. Hövel, and E. S
höll, Phys. Rev. E 76, 026210(2007).[6℄ C. M. Postlethwaite and M. Silber, Phys. Rev. E 76, 056214 (2007).[7℄ S. S
hikora, P. Hövel, H.-J. Wüns
he, E. S
höll, and F. Henneberger, Phys. Rev. Lett. 97,213902 (2006).[8℄ Y. Kuznetsov, Elements of Applied Bifur
ation Theory, vol. 112 of Applied Mathemati
al S
i-en
es (Springer-Verlag, 1995).[9℄ B. Krauskopf and D. Lenstra, eds., Fundamental Issues of Nonlinear Laser Dynami
s, vol. 548(AIP Conferen
e Pro
eedings, 2000).[10℄ C. Bornholdt, J. Slovak, and B. Sartorius, Ele
tron. Lett. 40, 192 (2004).[11℄ J. Slovak, C. Bornholdt, J. Kreissl, S. Bauer, M. Biletzke, M. S
hlak, and B. Sartorius, IEEEPhot. Te
hn. Lett. 18, 844 (2006).[12℄ I. Kim, C. Kim, G. Li, P. LiKamWa, and J. Hong, IEEE Phot. Te
hnol. Lett. 17, 1295 (2005).[13℄ M. Al-Mumin, C. Kim, I. Kim, N. Jaafar, and G. Li, Opti
s Communi
ations 275, 186 (2007).[14℄ W. Lu and R. G. Harrison, Opt. Commun. 109, 457 (1994).[15℄ J. E. S. So
olar, D. W. Sukow, and D. J. Gauthier, Phys. Rev. E 50, 3245 (1994).[16℄ S. Yan
huk, K. R. S
hneider, and L. Re
ke, Phys. Rev. E 69, 056221 (2004).[17℄ K. Engelborghs, T. Luzyanina, and G. Samaey, Te
h. Rep. TW 330, Katholieke UniversiteitLeuven (2001).[18℄ V. Z. Tron
iu, H. J. Wüns
he, M. Wolfrum, and M. Radziunas, Phys. Rev. E 73, 046205(2006).[19℄ E. S
höll and H. G. S
huster, eds., Handbook of Chaos Control (Wiley-VCH, Weinheim, 2008),
hap. 21, se
ond 
ompletely revised and enlarged ed.[20℄ Note that due to the rotational symmetry of the system, the rotating waves
(a1e

iωt, n1, a2e
iωt, n2) are usually transformed into the family of equilibria (a1e

iθ, n1, a2e
iθ, n2),

0 ≤ θ < 2π in the rotating 
oordinate system. For these equilibria, it is meaningful to speakabout their eigenvalues. These eigenvalues 
oin
ide with the Floquet exponents of the originaltime-periodi
 rotating waves. An additional zero eigenvalue of these equilibria appears due tothe symmetry.
21


