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Abstract

In this article we study the dynamical behavior near solitary wave
solutions of lattice differential equations (LDEs). We are interested in
the case, where the solitary wave profile induces a homoclinic solution of
the associated traveling-wave equation. Using exponential dichotomies
we prove the existence of a C0 function ξ : R

m−1 → R
m, such that

the existence of a zero of ξ corresponds to the existence of a multi-
pulse solution near the primary solitary wave solution. In particular,
we can relate the existence of multi-round homoclinic solutions in the
travelling wave equation (which hit a local Poincaré section m times
before converging to a steady state) to the zero set of a specific C0-
function. This approach is known as Lin’s method.

As an application we study the existence of periodic solutions in
general and time-reversible lattice differential equations. Using Lin’s
method we can prove that the occurrence of symmetric solitary waves
generically induces a family of large amplitude periodic solutions whose
period becomes unbounded. This result is commonly known as the
blue-sky catastrophe.

1 Introduction

Lattice differential equations appear in various areas such as mechanics, biol-
ogy and physics. However, they are less amenable to analytic techniques than
their continuous counterparts. As a consequence, the majority of works on
traveling waves on lattices has been build upon continuum approximations,
where the equation governing a traveling wave simply becomes an ordinary
differential equation and dynamical systems methods become applicable. In
sharp contrast to this scenario, the initial value problem associated to the trav-
eling wave equation of the original one-dimensional lattice differential equation

∂tu
i(t) = F (ui−M(t), . . . , ui(t), . . . , ui+M(t)) (1)

is ill-posed. In fact, a traveling wave ansatz ui(t) = ψ(i + ct), c �= 0, leads to
a non-trivial advance delay equation

cψ′(ξ) = F (ψ(ξ −M), . . . , ψ(ξ), . . . , ψ(ξ +M)), (2)
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where we have set ξ = i − ct; we refer to [20, 21, 22, 28, 5, 6, 7, 8] for
background for these equations. Rather than working with (2) directly, a lot
of authors preferred to use variational techniques instead [4, 25]. In particular,
the existence of solitary waves

ui(t) = ψ(i+ c∗t) (3)

has been provided in this way [4, 25], although the existence of small localized
waves has also been proved by center manifold reductions [12, 13]. Here and
in the following, a solitary wave denotes a traveling wave solution of (1) where
the profile ψ satisfies ψ(ξ) → 0 as ξ → ±∞ (in particular, zero is a steady
state). Instead of constructing such solutions, we want to study dynamical
properties near solitary wave solution (3) in this work, which do not have to
be of small amplitude. In order to motivate our interest note that in the case
of ordinary differential equations one often encounters large periodic solutions
near any homoclinic solution and even more complicated solutions when vary-
ing a parameter, see [15]. We are therefore interested in the question whether
we can detect such solutions also in the traveling wave equation (2) despite its
ill-posedness. Of course, flow-based concepts such as Poincaré-maps have to
be neglected in this regard. To be more specific, we may be interested in the
existence of periodic or m-homoclinic (respectively multi-round homoclinic)
solutions, which hit a local Poincaré-section m times before approaching a
steady state asymptotically. In this particular case variational methods are
hard to apply. In fact, in a variational set up one looks for critical points in a
suitable space that mainly incorporates the asymptotic behavior of the desired
solution. But if we are also interested in the way how a homoclinic solu-
tion behaves on large but bounded time-intervals (such as intersecting a given
Poincaré-section various times), then it is hard to incorporate this behavior in
the definition of the space and still obtaining critical points.
We therefore proceed differently and set up a method (commonly referred
to as Lin’s method), that allows us to obtain a one-to-one correspondence
between multipulse solutions (which induce m-homoclinic solutions in the ill-
posed equation (2)) near the primary solitary wave and the zero set of a certain
continuous function ξ : Rm−1 → Rm (see the examples after theorem 5). Like-
wise, we can also relate the existence of large periodic solutions uj(t) = p(j+ct)
to zeros of a specific C0-function ξ : R2 → R, which depends differentiable on
the parameter c. The strength of such a result is clear: In the context of
the infinite-dimensional, ill-posed equation (2) it may be complicated to find
a set up that allows one to look for m-homoclinic solutions or even periodic
solutions directly, but in the realm of implicit function theorems and abstract
index theory it may be possible on the other hand to prove the existence of
zeros, which then immediately imply nontrivial solutions. We will construct
the function ξ using Lyapunov-Schmidt reductions by constructing solutions of
(2) having possible ”jumps” near a given point of the homoclinic orbit within
a prescribed finite-dimensional vector space. If all the jumps are zero, we infer
a globally defined solution of the traveling wave equation.
The next theorem makes these statements precise and is the main result of this
work (see also theorem 5 which lists all the relevant hypotheses explicitly). We
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will draw various interesting consequences from this result; in particular with
respect to periodic solutions (see the theorems below). Moreover, we identify
the variables of the jump function ξ as ”‘flight times”’ of solutions segments,
which stay close to the primary homoclinic solution ψ.

Theorem 1 (Lin’s method for advance delay equations)
Fix c ≈ c∗. Under generic assumptions there exist positive constants ω∗ such
that for all {ωj}j∈Z, with ωj > ω∗ for all j ∈ Z, there exist unique functions

xj
+ : [−M,M + ωj) → R

N ,

xj
− : [−M − ωj−1,M) → R

N , j ∈ Z,

such that

a) xj
+ solves (5) on (0, ωj) and xj

− solves (5) on (−ωj−1, 0) (see also section
3 for a precise definition of a solution).

b) xj
+(ωj + •) = xj+1

− (−ωj + •) in C0([−M,M ],RN ).

b) The value ξj(ωj−1, ωj) := xj
+(·) − xj

−(·) ∈ C0([−M,M ],RN ) lies in a j-
independent one-dimensional vector space. Moreover, ξj is a continuous
function.

c) The orbit of xj
± is close to the orbit of ψ.

Remark
We can also specify the form of the jump-functions ξj more explicitly (see
the last equation (59) in theorem 5). However, this result forces us to define
various quantities and we have therefore decided to postpone this result until
theorem 5.

The theorem therefore provides the existence of solutions, which stay near
the homoclinic solution ψ with possible jumps along a fixed one-dimensional
vector space. Hence, if these jumps vanish for some sequence {ωi}i then we
obtain a globally defined solution of (2). In order to get some geometrical
feeling concerning the jump functions ξi, let us consider the particular case
that (2) depends on an arbitrary parameter η ≈ 0 (rather than the special
case η = c − c∗) and possesses a homoclinic solution for η = 0. We may
now be interested in the existence of homoclinic solutions near the primary
when varying η slightly. It has already been shown in [9] that in this case the
bifurcation function ξ∞ under generic assumptions reads

ξ∞(η) =

(∫ ∞

−∞

〈
DηF (ψ(s−M), . . . , ψ(s+M), η)

∣∣
η=0

, ψ̃(s)
〉

RN
ds

)
· η

+ O(η2), (4)

for some specific function ψ̃ (compare also with the last statement of theorem
5). In particular this means that any zero η of ξ∞(η) induces a homoclinic
solution. The bifurcation function ξ∞ has been used in [9] in order to study a
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homoclinic bifurcation scenario in a reversible advance delay equation which
may appear as the travelling wave of a time-reversible LDE. As in the frame-
work of ordinary differential equations, the leading order term in (4) (with re-
spect to η) refers to the splitting of stable and unstable manifold of the steady
state zero measured within a fixed one-dimensional vector space when varying
the parameter η (again we refer to [9] for more details). Let us point out,
that the notion of stable and unstable manifold, which has been introduced in
[6, 7, 8], does not refer to equation (2) directly but rather to an related abstract
setting (which will be introduced in section 3). We can now deduce from the
bifurcation function ξ∞ that as long as stable and unstable manifold split with
non vanishing speed with respect to η (which is the generic case), then ξ∞ �= 0
and the homoclinic solution ψ does not persist for η �= 0. Analogously to
ordinary differential equations, this reflects the fact that homoclinic solutions
are not a generic phenomenon but typically a codimension-one-phenomenon.
Summarizing, this shows that the leading order term of the bifurcation func-
tion ξ∞ has a very reasonable geometric interpretation. The jump-function ξi
now provide a natural generalization of the limiting function ξ∞ and we will
in fact show that ξi → ξ∞ as ωi−1, ωi → ∞ (see theorem 5); hence, ξ∞ sim-
ply coincides with the peculiar looking choice ωi = ∞ for all i in theorem 1.
Compared to ξ∞, the explicit representation of ξi (see theorem 5) additionally
incorporates informations of the homoclinic solution ψ at its ”tails” ±∞. As
a consequence, the analysis of the zero-set of the jump functions will be influ-
enced crucially in the way how the primary homoclinic solution ψ approaches
the steady state zero as ξ → ±∞. This behavior naturally relates to the lead-
ing eigenvalues of the linearization D1F (0, η) for η = 0, since by the results in
[6, 7, 8] and [21] the homoclinic solution will generically approach the steady
state along its leading eigenvectors. Again, this shows that we can make use of
various geometrical information in order to study the zero-set of ξi which then
determines the set of periodic, aperiodic or multiround homoclinic solutions
near the primary homoclinic solution (we refer the reader to the discussion in
section 8 for an outlook in this direction).
The contens of theorem 1 is commonly referred to as Lin’s method and it is one
of the achievements of this work to introduce this method in its general form in
the framework of traveling wave equations of LDEs. This functional analytic
approach was used by Palmer [24] to obtain solutions corresponding to a Smale
horseshoe in the context of ordinary differential equations; this result was later
extended by Sanstede et al [30] and Georgi [6] within the framework of elliptic
equations on cylinders and LDEs, respectively. Hale and Lin [10] used Lin’s
method to obtain perturbations and continuations of heteroclinic orbits. It
was subsequently developed more fully by Lin [16, 17, 18] and more recently
by Sandstede [26, 27] and Sandstede and Scheel [28, 29, 30]. In the framework
of LDEs Mallet-Paret [22] and Hoffman [11] used this functional analytic ap-
proach to address the problem of crystallographic pinning by a careful study
of a singular perturbation problem.
As an application, we will use Lin’s method (alias theorem 1) to discuss the
existence of periodic solutions near the primary homoclinic solution ψ.

The next result makes this precise and infers the existence of large periodic
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solutions of (2) for wave speeds c ≈ c∗ under generic conditions (which are
listed more explicitly in the statement of theorem 7).

Theorem 2
Consider a LDE (1) and assume the existence of a solitary wave solution ui(t) =
ψ(i + c∗t) with limt→±∞ ψ(t) = 0. Moreover, we consider the case that zero
is hyperbolic. Then, generically, for any ω > ω∗ there exists a traveling wave
speed c = c(ω) such that the equation (1) possesses a periodic wave uj(t) =
p(j + ct). Here, p is periodic with period ω and its orbit is close to the orbit
of the primary homoclinic solution ψ.

This theorem actually follows from the results of Mallet-Paret [22]. However,
we think that its proof shows a nice application of Lin’s method. In particular,
we will have to study the zero-set of a suitable jump-function ξ by using a
variant of the implicit function theorem (see the appendix).

The task of finding large amplitude periodic solutions near a homoclinic solu-
tion in fact simplifies greatly when the underlying lattice is additionally time-
reversible (see section 4.3 for a precise definition). Examples of such lattices
are the Klein-Gordon and the Fermi-Pasta Ulam lattice [9, 12, 13]. Roughly
speaking this means that ψ(ξ) is a solution of (2) whenever Rψ(−ξ) is a solu-
tion. As we will see, the jump-functions ξj inherit a symmetry property in this
case which makes it easier to study the zero-set, see [3] and section 7.1. We
can prove the following result (see also theorem 6 which lists all hypotheses
explicitly) which in the case of ordinary differential equations has been proved
in [3] using the same methods.

Theorem 3 (Homoclinic period blow up in LDEs)
Consider a time-reversible LDE (1). Then, generically, the following happens:
Near any symmetric solitary wave solution (i.e. ψ is a symmetric solution of
(2); see definition 5), which approaches a hyperbolic steady state asymptoti-
cally, there exists a family of periodic waves uκ

i (t) = pκ(i + c∗t) of (1). Here,
pκ is a periodic solution of (2) for all κ > 0. Moreover, the orbit of pκ is close
to the orbit of ψ and for κ↘ 0 the period of pκ becomes unbounded.

This result is known is the blue sky catastrophe in the case of ordinary differ-
ential equations, see [3, 2] and [15].

The set up of the article is as follows. We will introduce some notation in
the next section. In section 3 we will then set up our problem in a suit-
able functional analytic framework and recall some known facts concerning
advance-delay equations as well as the abstract formulation in section 4. In
particular, we will state some results in the framework of reversible equations
in section 4.3 which allow us to construct appropriate Poincaré-sections near
the homoclinic solution. The statement of the main result as well as its proof
is addressed in section 6. The theorems 3 and 2 are proved in the sections
7.1 and 7.2, respectively. We conclude the article with a brief discussion in
section 8, where we comment on various generalizations of the obtained results.
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2 Notation

In the following we will use the notation xt ∈ L2([−M,M ],RN ) for an inte-
grable function x : R → RN . This function is defined by xt(θ) := x(t + θ) for
any t ∈ R.
The following spaces will be frequently used throughout this paper:

Y := R
N × L2([−M,M ],RN ),

Z∞ := R
N × L∞([−M,M ],RN )

X := {(ξ, ϕ) ∈ Y | ϕ ∈ H1([−M,M ],RN ) and ϕ(0) = ξ}
X̃ := {(ξ, φ) ∈ R

N × C0([−M,M ],RN ) : φ(0) = ξ}

As a convention, if subspaces are furnished with an additional ˜, they are
regarded as subspaces of X̃ with the induced norm. If they are furnished with
an additional ˆ, they are viewed as subspaces of X.
Moreover, let C0 := C0([−M,M ],RN ) and we define the spaces

Xi−1,i := C0([−ωi−1, 0],RN × C0) × C0([0, ωi],R
N × C0)

and

X0
i−1,i := {V = (V −, V +) ∈ Xi−1,i : V ±(0) ∈ Γ;V +(0) − V −(0) ∈ Z̃}.

3 The abstract formulation

Let us consider the traveling wave equation

ẋ(t) =
1

c
F (x(t−M), . . . , x(t), . . . , x(t+M)) (5)

for c �= 0 where we assume from now on that F ∈ Ck for some k ≥ 2. We
make the following definition.

Definition 1 (Solution)
We call a function x ∈ L2([−M, τ),CN ) a solution of (5) for some M < τ � ∞
to the initial condition φ ∈ L2([−M,M ],CN ), if x ∈ H1

loc([0, τ),C), x0 = φ
and (5) is satisfied for almost every t ∈ [0, τ).

However, instead of working with (5) directly, we prefer to work with the
abstract equation

U̇(t) = F(ξ(t), φ(t, ·))
=

(
1
c
F (φ(t,−M), . . . , φ(t, 0), . . . , φ(t,M)))

∂θφ(t, θ)

)
,

(6)

where F ∈ BC2(RN(2M+1) × R; RN) and F (0) = 0. This approach has first
been used in [12, 13] although with a slightly different choice of state spaces
X, Y . Let us now define what a strong and weak solution of (6) is.
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Definition 2
• We call a continuous function U(t) : [t1, t2) → Y a solution of (6) on

(t1, t2), where −∞ < t1 < t2 � ∞, if t→ U(t) is continuous regarded as
a map on (t1, t2) with values in X, if t→ U(t) is differentiable regarded
as a map on (t1, t2) with values in Y and (6) is satisfied on (t1, t2).

• We call a differentiable function U(t) : (−∞, t2) → Y a solution of (6)
on (−∞, t2) and t2 ∈ R, if t→ U(t) is continuous regarded as a map on
(−∞, t2) with values in X and (6) is satisfied on (−∞, t2).

• We call a continuous function U : [t1, t2) → X̃ a weak solution of (6), if

U(t) = (x(t), xt)

for some function x ∈ C0([t1 −M, t2 + M),RN ) ∩ C1((t1, t2 + M),RN)
which solves the equation ẋ(t) = F (xt, λ) on (t1, t2).

The next lemma clarifies the connection between solutions of (6) and our orig-
inal equation (5). The proof can be found in [5, 6, 7].

Lemma 1
Let

U(t) =

(
ξ(t)
ϕ(t)(·)

)
be a solution of (6) on (t1 − M, t2 + M). Then ϕ(t)(θ) = ξ(t + θ) for all
t ∈ (t1 − M,M + t2) and θ ∈ [−M,M ] with t + θ ∈ (t1 − M, t2 + M).
Furthermore ξ(t) solves (5) on the interval (t1, t2).

4 Preliminary results

4.1 Linear equations

In this chapter we want to review some known facts about linear functional
differential equations of mixed type which we will use in the sequel, see also
[21, 28]. We investigate the linear equation

ẏ(t) =
1

c∗
D1F (h(t−M), . . . , h(t), . . . , h(t+M))yt =: L(t)yt, (7)

where we recall that yt(θ) := y(t+ θ) for any θ ∈ [−M,M ]. Note that in any
case L(t)φ for fixed t and φ ∈ C0([−M,M ],RN ) has the form

L(t)φ =
M∑

j=−M

Lj(t)φ(j) (8)

for some Lj(·) ∈ BC0(R, L(CN ,CN)). As in the nonlinear case we can relate
equation (7) to the abstract equation

∂tV (t) = A(t)V (t), (9)
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where the linear operator A(t) : X ⊂ Y → Y is defined by

A(t)

(
ξ
ϕ

)
=

(
L(t)ϕ
∂θϕ

)

for (ξ, ϕ) ∈ X. Let us set A+ := limt→∞ A(t) (i.e. where L(t) in the definition
of A(t) is replaced by L+ := limt→∞ L(t)). Then it is known that the spectrum
of the densely defined operator A+ : X ⊂ Y → Y only consists of eigenvalues
of finite multiplicity. Moreover, an element λ∗ ∈ C is in spec(A+), if the
characteristic function vanishes at λ∗, that is, if

det(
(λ)) := det

[
λ · id−

M∑
j=−M

L+
j (e+jλ · id)

]
= 0 (10)

for λ = λ∗, where L+
j := limt→∞ Lj(t). Furthermore, the algebraic multiplic-

ity of λ∗ as an eigenvalue of A+ (which is the dimension of its generalized
eigenspace) coincides with the order of λ∗ as a zero of det
(·); we refer to
[5, 6, 28] for proofs of these statements.

Definition 3
We call a linear equation ẋ(t) = Lxt ( respectively V̇ = AV ) hyperbolic for
some L ∈ L(C0,CN) (respectively A = (L, ∂θ) ∈ L(X, Y )), if the characteristic
equation

det 
 (λ) := det

(
λ · id−

(
m∑

k=1

Lke
λk

))
= 0 (11)

does not possess purely imaginary zeros λ = is with s ∈ R.

Let us now state a uniqueness-hypothesis which implies that two solutions
ỹ, y ∈ H1(R,RN) of (7) are identical provided they coincide on some interval
of length 2M , see [5, 28]. We will need this hypothesis for the existence of
exponential dichotomies.

Hypothesis 1
det(A−M(·)) and det(AM(·)) do not vanish identically on any nontrivial interval
of R.

The following result implies that on suitable subspaces the abstract equation
(9) can be solved in forward- and backward time, respectively. The proof can
again be found in [5, 6, 28].

Theorem 4 (Exponential dichotomy on R+)
Assume that the hypothesis 1 is satisfied and that the equation V̇ = A+V
is hyperbolic. Then (9) possesses an exponential dichotomy on R+. That is,
there exist constants K,α > 0 and a family of strongly continuous projections
P (t) : Y → Y , t � 0, with the following properties. For U ∈ Y and t0 � 0

• there exists a continuous function Φs
+(·, ·)U : {(t, t0) : t � t0; t, t0 � 0} →

Y , such that Φcs
+ (t0, t0)U = P (t0)U . Moreover, Φcs(t, t0)U ∈ Rg(P (t))

and |Φcs
+ (t, t0)U |Y � Ke−α|t−t0||U |Y for all t � t0 � 0.
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• There exists a continuous function Φu
+(·, ·)U : {(t, t0) : t � t0; t, t0 �

0} → Y , such that Φu
+(t0, t0)U = (id − P (t0))U . Moreover, Φu

+(t, t0) ∈
ker(P (t)) and |Φu

+(t, t0)U |Y � Ke−α|t−t0||U |Y for all t0 � t � 0.

In the special case U ∈ X the functions t �→ Φs
+(t, t0)U and t �→ Φu

+(t, t0)U
define classical solutions of (9) on their domain of definition. In any case, if
U ∈ Rg(P (t0)) with U = (ζ, φ(·)) the map Φs

+(t, t0)U is of the form (x(t), xt)
for t > t0, Φs

+(t0, t0)U = U and x(·) defines a solution of (7) with x0 = φ. An
analogous statement holds for Φu

+(t, t0)U .

Alternatively, there exist continuous solution operators Φs
−(t, t0), Φu

−(t, t0) for
t0 � t0 � 0 and t � t � 0, respectively, which define strong solutions for initial
values U ∈ X and satisfy the estimates

‖Φs
−(t, t0)‖L(Y,Y ) � Ke−α|t−t0|, ‖Φu

+(t, t0)‖L(Y,Y ) � Ke−δ|t−t0|.

We need the following result, which is proved in [5, 6, 7] and will be used in
the sequel.

Lemma 2
Let U ∈ RN×C0. Then Φs

+(t, s)U ∈ Z∞ and ‖Φs
+(t, s)U‖Z∞ � Me−α|t−s|‖U‖Z∞.

As a consequence, ‖Φs
+(t, s)‖L(Z∞,Z∞) � Me−α|t−s|. The analogous statement

is true for Φu
+ and Φ

s/u
− .

4.2 Integral formulas, the weak∗ integral

When dealing with nonlinear equations and constructing stable and unstable
manifolds we often have to deal with integral formulas of the kind∫ t

0

Φs
+(t, s)G(s)ds, (12)

where G(s) is continuous as a map from [0,∞) to RN × C0. Typically, G(s)
has the form G(s) = (g(s), 0) for some continuous function g : R+ → RN .
The integral expression (12) makes perfectly sense in Y , since the integrand
is continuous with respect to s and values in Y . However, if we like to set up
a contraction mapping argument, the map G(s) will not be well defined with
values in Y (see for example our choice of nonlinearity in the proof of lemma
12). As a consequence, we would like to view the integral (12) as an element
in X̃. For this reason we regard the integral from now on as a weak∗ integral,
which we define now and collect some properties. Let us choose some element

(η, ψ) ∈ Ỹ := C
N × L1([−M,M ],CN )

and note that
s �→ 〈

Φs
+(t, s)G(s), (η, ψ)

〉 ∈ L1([0, t],C), (13)

where 〈·, ·〉 denotes the pairing between Z∞ = CN × L∞([−M,M ],CN ) and
Ỹ ; that is

〈(ξ, φ), (η, ψ)〉 = ξ · η +

∫ M

−M

φ(θ)ψ(θ)dθ
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for (ξ, φ) ∈ Z∞ and (η, ψ) ∈ Ỹ . Here, Z∞ can be identified with the dual
space of Ỹ . Hence, there exists a unique Q ∈ Z∞, such that

〈Q, (η, ψ)〉 =

∫ t

0

〈
Φs

+(t, s)G(s), (η, ψ)
〉
ds (14)

for every (η, ψ) ∈ Ỹ ; see the appendix of [19].

Definition 4
We set

∫ t

0
Φs

+(t, s)G(s)ds := Q and call Q the weak∗ integral.

From now on we view the integral term in (12) as a weak∗ integral, which is
an element of Ỹ ∗ = Z∞ by definition. Note that if s �→ G(s) is continuous and
takes values in X, then the weak∗ integral coincides with the usual Riemann
integral. Let us now prove that the integral is actually an element of X̃ =
{(ξ, φ) ∈ CN × C0([−M,M ],CN ) : φ(0) = ξ}. The next lemma has been
proved in [6].

Lemma 3
For each fixed t ≥ 0 we have

∫ t

0
Φs

+(t, s)G(s)ds ∈ X̃.

The weak integral actually depends continuously on t:

Lemma 4
The function v : t→ ∫ t

0
Φs

+(t, s)G(s)ds is continuous as a function from [0,∞)

to X̃ and

‖v(t)‖X̃ �
∫ t

0

Me−α(t−s)ds · sup
0�s�t

‖G(s)‖Z∞.

Note that Φs
+(t, s) satisfies the estimate ‖Φs

+(t, s)‖L(Z∞,Z∞) � Me−α(t−s) for
t ≥ s ≥ 0 and some α ∈ R+.

Of course, similar results are true if we consider integral terms such as
∫ t

∞ Φu
+(t, s)G(s)ds

for some fixed t ≥ 0.

4.3 Reversible equations

Often lattice differential equations are time-reversible. This has a consequence
for the traveling wave equation and we will therefore define the notion of
reversibility for our abstract equation (6) in this section. More precisely, if

RF(U) = −F(RU) (15)

for any U = (ξ, φ) ∈ X, where the linear map R : Y → Y is defined by

R(ξ, φ(θ)) := (Rξ,R[Sφ(·)]) = (Rξ,Rφ(−θ))

and (Sφ)(θ) := φ(−θ) for any φ ∈ C0([−M,M ],RN ), we call the abstract
equation (6) reversible. Here, we assume that R ∈ L(RN) can be represented
in the form

R = Pi1 ◦ Pi2 ◦ . . . ◦ Pin , (16)
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where the reflection Pi, 1 � i � N , is defined by

Pi(x
1, . . . , xN ) �→ (x1, . . . , xi−1,−xi, xi+1, . . . , xN).

The next example provides a well-known lattice differential equation, where
the corresponding abstract equation satisfies (15).

Example
Let us consider the Klein-Gordon equation

ün = un+1 − 2un + un−1 + V ′(un), n ∈ Z

for some on site potential V with V (0) = V ′(0) = 0. A traveling wave ansatz
leads to the abstract equation

 ∂tx(t)
∂tξ(t)
∂tφ(t, ·)


 =


 ξ(t)

φ1(t, 1) + φ1(t,−1) − 2φ1(t, 0) + V ′(φ1(t, 0))
∂θφ(t, ·)


 ,

where φ1 denotes the first component of φ = (φ1, φ2) : [−1, 1] → R
2 and

(x, ξ, φ) ∈ X = {(x, ξ, (φ1, φ2)) ∈ R2 × H1([−1, 1],R2) : φ(0) = (x, ξ)}. Then
R is given by

R(x, ξ, φ(θ)) �→ (x,−ξ, φ1(−θ),−φ2(−θ)), (17)

which has the upper form (15).

Since we will be particularly interested in the dynamical properties near a
homoclinic solution of (6) that intersects Fix(R), we will make the next defi-
nition.

Definition 5
We call a globally solution U of (6) symmetric, if U is not a steady state and
U(τ) ∈ Fix(R) = {V ∈ Y : RV = V } for some τ ∈ R. Similarly, we call a
solution ψ of (2) symmetric, if U(t) = (ψ(t), ψt) is a symmetric solution of
(6).

Finally, we will need a result which allows us to construct suitable R-invariant
Poincaré-sections near U(τ), if U denotes a homoclinic solution. The proof of
the next result can be found in [8].

Lemma 5 (Poincaré sections)
There exist subspaces Ẽs

+(0) ⊂ Rg(Φs
+(0, 0)) and Ẽu

−(0) ⊂ Rg(Φu
−(0, 0)) which

are complementary to span〈F(H(0))〉 and that are closed with respect to
the X̃-norm. Moreover, for any finite-dimensional complement Z̃ of the sum
Ẽs

+(0) + Ẽu
−(0) + span 〈F(H(0))〉, the space

Γ̃ := Z̃ ⊕ Ẽs
+(0) ⊕ Ẽu

−(0)

is closed with respect to the X̃-norm and defines a Poincaré-section at U(τ)
via Σ̃ := U(τ) + Γ̃. If Z̃ is chosen to be R-invariant, then also the space Γ̃ is
R-invariant.
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Let us comment on this result. First let us note that we can always find a
subspace Z̃ ⊂ Fix(R) or Z̃ ⊂ Fix(−R) complementary to the space Ẽs

+(0) +

Ẽu
+(0) + span 〈F(H(0))〉 which possesses finite codimension. This follows from

the fact that Fix(R∣∣
X̃

) ⊕ Fix(−R∣∣
X̃

) = X̃. Secondly, we want to point out

that the construction of such a Poincaré-section in X̃ is not at all trivial. In
fact, since X̃ is a Banach space we still can construct a Poincaré-section by
applying Hahn-Banachs theorem. However, by doing so we cannot guarantee
that the constructed section Γ̃ is actually R-invariant.

5 Set up

From now on we consider the equation

U̇(t) = F((ξ(t), φ(t, ·)), c)
=

(
1
c
F (φ(t,−M), . . . , φ(t, 0), . . . , φ(t,M)))

∂θφ(t, θ)

)
(18)

and make the following hypothesis.

Hypothesis 2
Equation (18) possesses a homoclinic solution H(t) = (ψ(t), ψt) to the hyper-
bolic steady state zero for c = c∗.

Linearizing along the homoclinic solutions H(t) leads to the equation

∂tV (t) = A(t)V (t) :=

(
1
c∗D1F (ψt, 0)φ(t, ·)

∂θφ(t, θ)

)
, (19)

where V (t) = (η(t), φ(t, ·)). Throughout this section we want to assume that
hypothesis 1 is satisfied.

Exponential dichotomies
On account of theorem 4 the equation (19) possesses exponential dichotomies

in R± with solution operators Φ
s/u
+ on R+ and Φ

s/u
− on R− together with a

family of projections P
s/u
+ (t) : Y → Y , t ≥ 0, and P

s/u
− : Y → Y , t � 0,

respectively. Moreover, there exist α,K > 0 such that

‖Φs
+(s, t)‖L(Y,Y ) � Ke−α|t−s|, ‖Φu

+(t, s)‖L(Y,Y ) � Ke−α|t−s|, t ≥ s ≥ 0,

‖Φs
+(s, t)‖L(Y,Y ) � Ke−α|t−s|, ‖Φu

+(t, s)‖L(Y,Y ) � Ke−α|t−s| t � s ≤ 0.

We now fix a complement Z̃ ⊂ X̃ of Rg(P s
+(0)) + Rg(P u

−(0)). Let us make the
following generic assumption.

Hypothesis 3
H is non degenerate, i.e. Rg(P s

+(0)) ∩ Rg(P u
−(0)) = span 〈F(H(0), c∗)〉.

12



As a consequence, stable and unstable manifold of zero intersect only along H
and the space Z̃ (which appears in the definition of the constructed Poincaré-
section) is in fact one-dimensional. Upon choosing new projections we can find
an exponential dichotomy on R+ and R−, such that Rg(P u

+(0)) := Eu
−(0) + Z̃

and Rg(P s
−(0)) := Es

+(0) + Z̃, see the introduction of [30].

6 The adaption of Lin’s method to advance

delay equations

In this section we want to prove our main result. Let us first formulate this
result.

Theorem 5
Assume that the hypotheses 1, 2 and 3 are satisfied and fix a complement

Z̃ ⊂ X̃ of Rg(P s
+(0))+Rg(P u

−(0)). Then there exist positive constants ω∗, δ∗, ε∗
such that for all {ωi}i∈Z with ωi > ω∗ for all i ∈ Z and all λ ∈ Bδ∗(c∗) there
exist unique continuous functions

U i
+ : [0, ωi] → X̃

U i
− : [−ωi−1, 0] → X̃

which have the following properties.

a) U i
+ and U i

− are classical solutions of (5) on (0, ωi) and (−ωi−1, 0), respec-
tively.

b) U i
+(0) ∈ Σ̃ and U i

−(0) ∈ Σ̃ and U i
+(ωi) = U i+1

− (−ωi).

c) ξi(ωi−1, ωi) := U i
+(0) − U i

−(0) ∈ Z̃.

d)

sup
−ωi−1≤t≤0

‖U i
−(t) −H(t)‖X̃ ≤ ε∗

sup
0≤t≤ωi

‖U i
+(t) −H(t)‖X̃ ≤ ε∗.

e) Finally, the mapping ξ : (ω∗,∞) × (ω∗,∞) × Bδ∗(c∗) → Z̃ is C0 and C2

with respect to the parameter c. Moreover,

lim
ω∗→∞

sup
−ωi−1≤t≤0

‖U i
−(t) −H(t)‖X̃ = 0

lim
ω∗→∞

sup
0≤t≤ωi

‖U i
+(t) −H(t)‖X̃ = 0

Moreover, letting U±
i = H + V ±

i we have the explicit expression

〈ξi(ωi−1, ωi),Ψ0〉Y =
〈
H(ωi−1), Ψ̃(−ωi−1)

〉
Y
−

〈
H(ωi), Ψ̃(−ωi)

〉
Y

+

∫ ωi

−ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉

Y
ds, (20)
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where Ψ̃ denotes the unique nontrivial bounded solution of the adjoint equa-
tion V̇ (t) = −A(t)∗V (t) (see also (54)) and where Ψ0 ∈ Y is orthogonal to
Rg(P s

+(0)) + Rg(P u
−(0)).

Remark
Before we are going to proceed, let us comment on the last statement of the
theorem. On account of technical issues we have to choose Z̃ ⊂ X̃, and as a
consequence ξi ∈ X̃. Since Ψ0 is not necessarily an element of X̃, we have to
project the value of ξi onto span〈Ψ0〉 in the expression (59). However, since
X̃ is dense in Y with respect to the Y -norm, we can achieve that given any
ε > 0, the right hand side of (59) multiplied by Ψ0 differs from ξi at least by
ε (where the distance is measured with respect to the Y -norm).

Examples
a) Multiround homoclinic solutions: As a short example, we would like to
illustrate how one could try to detect 2-homoclinic solutions near H using this
result. Here, a 2-homoclinic solution H2 of (18) is a homoclinic solution which
intersects a given local Poincaré-section near H(0) exactly two times (provided
H intersects this local section exactly one time). We claim that a 2-homoclinic
solution corresponds to a zero ω1 of the jump-functions

ξ1(∞, ω1) = 0, ξ2(ω1,∞) = 0

(and all the other ξj vanish with the choice ωj−1 = ωj = ∞). In fact, let ω1

be such a zero. Then we can obtain a 2-homoclinic via

H2(t) :=




H(t) on (−∞, 0),
U1

+(t) on [0, ω1]
U2
−(t− 2ω1) on (ω1, 2ω1)
H(t− 2ω1) on [2ω1,∞)

Note that here H(t) = U1
−(t) on (−∞, 0]. In this sense we see that the part of

the solution on [0, 2ω1] is responsible for the ”extra” loop.

b) Periodic solutions: If we want to focus on the existence of periodic orbits
near H then we have to look for zeros ω1 of ξ1(ω1, ω1) = 0 (in this scenario all ξi
and ωi are identical). Obviously, such a zero induces a periodic solution of (18).

Instead of proving the upper theorem directly we will show the next lemma.

Lemma 6
There exist unique weak solutions V +

i : [0, ωi] → X̃, V −
i : [−ωi−1, 0] → X̃ of

V ′(t) = A(t)V (t) + G(t, V (t)), (21)

where for V ∈ X̃ we have set G(t, V ) := F(H(t) + V ) − F(H(t)) − A(t)V .
Moreover,

I) for bi(ωi) := H(−ωi)−H(ωi) it is true that V +
i (ωi)− V −

i (−ωi) = bi(ωi).

II) V ±
i (0) ∈ Γ̃ and V +

i (0) − V −
i (0) ∈ Z̃.

Since the proof of the lemma is rather technical, we first will give an outline
of how we proceed.
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6.1 Outline of the proof of lemma 6

We follow closely the presentation in the appendix of [14], see also [3]. The
next four steps are the main ingredients in proving lemma 6.

A) For each j ∈ Z we will construct a unique solution in Vj = (V −
j , V

+
j ) ∈

X0
j−1,j of the linear equation

V̇ (t) = A(t)V (t) + hj(t)

for any function hj ∈ Xj−1,j. Moreover, we construct Vj in such a way
that it satisfies the boundary conditions

P u
+V

+
j (ωj) = a+

j

P s
−V

−
j (−ωj−1) = a−j

(22)

for any given (a−j , a
+
j ) ∈ Rg(P s

−(−ωj−1)
∣∣
X̃

) × Rg(P u
+(ωj)

∣∣
X̃

) (see lemma
8).

B) By establishing a linear relation between hj , aj and bj = ψ(−ωj)−ψ(ωj)
we can provide that Vj solves condition I) if and only if Vj = Vj(aj , hj)
satisfies this linear relation; i.e. we will translate the dependence of Vj

of bj in a dependence of the terms aj , hj instead. This will result in the
fact that for large ωj > 0 and for each hj, bj the linear inhomogeneous
equation V̇ (t) = A(t)V (t)+hj(t) possesses a unique solution Vj ∈ X0

j−1,j

satisfying the boundary conditions (22) (see lemma 10).

C) Then we obtain an integral equation, whose fixed points induce solu-
tions of the nonlinear equation (21). More precisely, we will set up a
fixed-point equation, whose solutions are in one-to-one correspondence
to solutions Vj = (V −

j , V
+
j ) in X0

j−1,j for all j solving the boundary con-
dition V +

j (ωj)−V −
j (−ωj) = bj(ωj). This will be done by the contraction

mapping theorem (see lemma 12). As a technical issue, we will strongly
make use of the results of section 4.2, which allow us to handle integral
terms arising in the fixed-point equation.

D) As a last step, we will address the question of continuity of the so con-
structed jump functions ξj (see condition II) in the upper lemma 6). We
will prove that the ξj’s depend continuously on the flight times ωj (see
lemma 13). In fact, this result may not be optimal and we expect C1-
smoothness in general (a fact, which remains open until now). However,
we expect that the explicit calculation of the leading order terms of the
jump functions will also imply the C1-dependence on the flight-times ωj.

6.2 The proof of lemma 6

We are now going to prove lemma 6.

Notation
We denote by πs/u the projection onto the stable and unstable subspace of the
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linearisation A := limt→∞A(t).

We begin with the next lemma:

Lemma 7
There exist constants ω# > 0 and C > 0 such that for all wi > w# we have

X̃ = Rg(P s
−(−wi)

∣∣
X̃

) ⊕ Rg(P u
+(wi)

∣∣
X̃

)

and ‖P̂i‖ ≤ C, where P̂i : X̃ → X̃ denotes the bounded projection which
projects onto Rg(P s

−(−wi)
∣∣
X̃

) along Rg(P u
+(wi)

∣∣
X̃

).

Proof :
On account of lemma 2 in [9] we have that

lim
t→∞

‖P s
+(t) − πs‖L(E,E) = 0,

lim
t→−∞

‖P u
−(t) − πu‖L(E,E) = 0

for both choices of spaces E = Y and E = X̃ and therefore

lim
t→∞

‖P u
+(t) − πu‖L(E,E) = lim

t→∞
‖(id− P s

+(t)) − (id− πs)‖L(E,E) = 0,

lim
t→−∞

‖P s
−(t) − πs‖L(E,E) = lim

t→−∞
‖id− P u

−(t) − (id− πu)‖L(E,E) = 0.

Let us now define

Si−1 = P s
−(−wi−1) ◦ πs + P u

+(wi−1) ◦ πu,

then

Si−1 =
(
πs + P s

−(−wi−1) − πs
)
πs +

(
πu + P u

+(wi−1) − πu
)
πu

=
(
P s
−(−wi−1) − πs

)
πs + πs + πu +

(
P u

+(wi−1) − πu
)
πu

= idE + (P s
−(−wi−1) − πs)πs + (P u

+(wi−1) − πu)πu.

We can now choose ω# > 0 large enough such that for all ωi−1 > ω#

‖(P s
−(−wi−1) − πs)πs + (P u

+(wi−1) − πu)πu‖L(E,E) ≤ 1

3
;

hence Si ∈ L(E,E) is invertible with ‖Si‖ ≥ 1
3

and ‖(Si)
−1‖ ≤ 3. Finally we

define the projection P̂i = P̂i,E ∈ L(E,E) by

P̂i,E := Si−1π
s(Si−1)

−1.

We claim that

Rg(P̂i,Y ) = Rg(P s
−(−ωi−1)

∣∣
Y
) ker(P̂i,Y ) = Rg(P u

+(ωi−1)
∣∣
Y
) (23)

if ωi−1 is large enough, which then shows the claim of the lemma. In order to
show (23) let us first note that

P̂i,Y Si−1 = Si−1π
s = P s

−(−ωi−1)π
s,
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since πu ◦ πs = 0. We proceed by contradiction and assume that for every
ωi−1 > 0 large enough there exists a non-trivial unit vector ψ ∈ Rg(P s

−(−ωi−1))
such that

ψ ⊥ K, where K := Rg
(
P s
−(−ωi−1) ◦ πs

)
.

Now

‖P s
−(−ωi−1)

[
P s
−(−ωi−1) − πs

]
ψ‖2 = ‖ψ − φ‖2

for some vector φ with ‖φ‖Y ≤ 1. Let us write φ = α · φ̃ for some scalar
0 ≤ α ≤ 1 and some unit vector φ̃. Then we have

‖ψ − φ‖2 = 〈ψ, ψ〉 − 2 〈ψ, φ〉 + α2
〈
φ̃, φ̃

〉
= 1 + α2 ≥ 1

on account of 〈ψ, φ〉 = 0, since φ ∈ K. This is impossible however, since on
the other hand

‖P s
−(−ωi−1)

[
P s
−(−ωi−1) − πs

]
ψ‖ ≤ ‖P s

−(−ωi−1)‖L(Y,Y )‖P s
−(−ωi−1) − πs‖L(Y,Y )

≤ C · ‖P s
−(−ωi−1) − πs‖L(Y,Y ) ≤ 1

5

for ωi−1 > 0 large enough. This shows that Rg(P̂i,Y ) = Rg(P s
−(−ωi−1)) and

similarly we can prove that ker(P̂i,Y ) = Rg(P u
+(ωi−1)) if ωi−1 is large enough.

From this observation we can deduce the statements of the lemma. �

We now consider the equation

V̇ ±
i (t) = A(t)V ±

i + h±i (t) (24)

for hi = (h−i , h
+
i ) ∈ Xi−1,i.

Lemma 8
Let ωi > 0, hi ∈ Xi−1,i and ai = (a−i , a

+
i ) ∈ Fi := Rg(P s

−(−ωi−1))×Rg(P u
+(ωi))

for all i ∈ Z. Then (24) has a unique weak solution Vi = V̄i(hi, ai) ∈ X0
i−1,i

satisfying the boundary conditions

P u
+(ωi)V

+
i (ωi) = a+

i

P s
−(−ωi−1)V

−
i (−ωi−1) = a−i

Proof
Consider a classical solution V −

i of (24) on −ωi−1 ≤ t ≤ 0; then by integration

V −
i (t) = Φu

−(t, 0)V u,0 +

∫ t

0

Φu
−(t, s)h−i (s)ds (25)

+ Φs
−(t,−ωi−1)V

s,ωi−1 +

∫ t

−ωi−1

Φs
−(t, s)h−i (s)ds

for some V u,0 ∈ Rg(P u
−(0)) and V s,ωi−1 ∈ Rg(P s

−(−ωi−1)). Let us point out that
the operator Φs

−(t,−ωi−1) is in fact well defined on the interval −ωi−1 ≤ t ≤ 0.
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On the interval 0 ≤ t ≤ ωi we have

V +
i (t) = Φs

+(t, 0)V s,0 +

∫ t

0

Φs
+(t, s)h+

i (s)ds (26)

+ Φu
+(t, ωi)V

u,ωi +

∫ t

ωi

Φu
+(t, s)h+

i (s)ds

for V s,0 ∈ Rg(P s
+(0)) and Vu,ωi

∈ Rg(P u
+(ωi)). Setting t = −ωi−1 in (25) we

end up with

V −
i (−ωi−1) = Φu

−(−ωi−1, 0)V u,0 +

∫ −ωi−1

0

Φu
−(−ωi−1, s)h

−
i (s)ds (27)

+ P s
−(−ωi−1)V

s,ωi−1.

and therefore
P s
−(−ωi−1)V

−
i (−ωi−1) = V s,ωi−1 := a−i .

This observation shows that with the choices V s,ωi−1 = a−i and V u,ωi = a+
i

in (25) and (26), respectively, we obtain the existence of weak solutions V ±

solving (24) and satisfying the boundary conditions in the statement of the
lemma.
Let us now construct V u,0 and V s,0 in such a way that

V +
i (0) − V −

i (0) = V +
i (0, V s,0) − V −

i (0, V u,0) ∈ Z̃. (28)

In order to do this note that

V +
i (0) = V s,0 + Φu

+(0, ωi)a
+
i +

∫ 0

ωi

Φu
+(0, s)h+

i ds

V −
i (0) = V u,0 + Φs

−(0,−ωi−1)a
−
i +

∫ 0

−ωi−1

Φs
−(0, s)h−i ds.

Let us denote by PẼ : X̃ → X̃ the bounded projection onto the space Ẽ,
where Ẽ = Ẽs

+(0) or Ẽ = Ẽu
−(0), with respect to the decomposition

X̃ = Ẽs
+(0) ⊕ Ẽu

−(0) ⊕ Z̃ ⊕ span 〈F(H(0), c∗)〉 .

Hence, in order to satisfy (28) we define

V u,0 := P Ẽu
−(0)

[
Φu

+(0, ωi)a
+
i +

∫ 0

ωi

Φu
+(0, s)h+

i ds

]

V s,0 := P Ẽs
+(0)

[
Φs

−(0,−ωi−1)a
−
i +

∫ 0

−ωi−1

Φs
−(0, s)h−i ds

]
.

(29)

With this definition we now easily conclude that V ±
i (0) ∈ Γ̃ and (28) is satis-

fied. �
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Remark (Differentiability of the solutions)
Let us make the following observation, which shows that we can in fact provide
that the initial values V ±

i (0) lie in the smooth space X̃ ∩ (RN ×C1([−M,M ])),
where from now on X̃ ∩ (RN × C1([−M,M ])) is equipped with the canonical
RN × C1([−M,M ])-topology. First of all note that we are actually free to
chose Z̃ ⊂ X̃ ∩ (RN × C2([−M,M ])), see lemma 5. Now

Φu
+(0, ωi)a

+
i +

∫ 0

ωi

Φu
+(0, s)h+

i ds ∈ X̃ ∩ (RN × C1([−M,M ])),

Φs
−(0,−ωi−1)a

−
i +

∫ 0

−ωi−1

Φs
−(0, s)h−i ds ∈ X̃ ∩ (RN × C1([−M,M ]))

if ωi−1 is large enough, we can also choose

V u,− := P u

[
Φu

+(0, ωi)a
+
i +

∫ 0

ωi

Φu
+(0, s)h+

i ds

]

V s,0 := P s

[
Φs

−(0,−ωi−1)a
−
i +

∫ 0

−ωi−1

Φs
−(0, s)h−i ds

]
.

(30)

Here P u : X̃ ∩ (RN × C1([−M,M ])) → X̃ ∩ (RN × C1([−M,M ])) (respec-
tively P s) denotes the bounded projection onto Ẽu

−(0) ∩ (RN × C1([−M,M ])

(respectively Ẽs
+(0)∩ (RN ×C1([−M,M ])) with respect to the decomposition

X̃ ∩ (RN × C1([−M,M ])) =
(
Ẽu

−(0) ∩ (RN × C1([−M,M ]))
)
⊕ Z̃

⊕
(
Ẽs

+(0) ∩ (RN × C1([−M,M ]))
)
⊕ span 〈F(H(0))〉 .

This observation in fact shows that V ±
i (0) ∈ RN ×C1([−M,M ]), if Z̃ is chosen

to lie in a smooth space.

Notation
We set

V̄i = V̄i(t, ωi−1, ωi, ai, hi) :=

{
V +

i (t), t > 0
V −

i (t), t ≤ 0

Lemma 9
There exists positive constants independent of ωi and t such that for all t

‖V̄i(hi, ai)(t)‖X̃×X̃ ≤ Ci (‖{hi}i∈Z‖ + ‖{ai}‖) (31)

and

‖P u
−(−ωi−1)V̄

−
i (ai)(−ωi−1)‖X̃ + ‖P s

+(ωi−1)V̄
+
i−1(ai−1)(ωi−1)‖X̃ (32)

≤ Cie
−2αi·min{ωi−1,ωi} (‖{hi}i∈Z‖ + ‖{ai}‖)

for some αi > 0.
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Proof
For V̄ = (V +, V −) let us write

V ±(0) = σ + Z±,

where σ ∈ Ẽs
+(0) + Ẽu

−(0) and Z± ∈ Z̃. We now want to consider the linear
operator

L(σ, Z+, Z−) :=

(
P u

+(0)[σ + Z+]
P s
−(0)[σ + Z−]

)

=:

(
σ̃+ + Z+

σ̃− + Z−

)

where σ = σ̃− + σ̃+. Then

L :
[
Ẽs

+(0) ⊕ Ẽu
−(0)

]
× Z̃ × Z̃ →

(
Ẽu
−(0) × Z̃

)
×

(
Ẽs

+(0) × Z̃
)

is a bounded linear operator.

Surjectivity
Let z± ∈ Z̃ and σ̃+ ∈ Ẽu

−(0) and σ̃− ∈ Ẽs
+(0). Then we define

σ := σ̃+ + σ̃−, Z± := z±

and we see that L(σ, Z+, Z−) = (σ̃+ + z+, σ̃− + z−).

Injectivity
Let V ±(0) = σ + Z± and assume that

P u
+(0)

[
σ + Z+

]
= 0 (33)

P s
−(0)

[
σ + Z−] = 0

and therefore

σ + Z+ ∈ Rg(P s
+(0)), σ + Z− ∈ Rg(P u

−(0)).

Hence,

V + − V u = Z+ − Z− ∈ Z̃ ∩ (
Rg(P s

+(0)) ∩ Rg(P u
−(0)

)
which means that Z+ = Z− and in fact Z+ = Z− = 0 due to (33) and the
definition of P u

−(0), P s
+(0). Hence

σ ∈ Rg(P s
+(0)) ∩ Rg(P u

−(0)) ∩ Σ

we conclude that σ = 0 which proves injectivity.

Hence, Li is boundedly invertible. We now apply the projections P s
−(0) and

P u
+(0) to the equations (25) and (26), respectively, evaluated at t = 0. Hence,
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we can estimate

‖(V −
i (0), V +

i (0))‖X̃×X̃ ≤ ‖L−1‖L(X̃,X̃)

(
Kie

−αωi‖a+
i ‖ +Kie

−αωi−1‖a−i ‖
)

+ ‖L−1‖L(X̃,X̃)

∫ ωi

0

Kie
−α|s|‖h+

i ‖X̃ds (34)

+ ‖L−1‖L(X̃,X̃)

∫ −ωi−1

0

Kie
−α|s|‖h−i ‖X̃ds

≤ ‖L−1‖L(X̃,X̃)Ki

(
e−αωi‖a+

i ‖ + e−αωi−1‖a−i ‖ + ‖h+
i ‖ + ‖h−i ‖

)
.

Furthermore, from (26) and (25) we conclude

P s
+(t)V +

i (t) = Φs
+(t, 0)V +

i (0) +

∫ t

0

Φs
+(t, s)h+

i (s)ds, ωi ≥ t ≥ 0

P u
−(t)V −

i (t) = Φu
−(t, 0)V −

i (0) +

∫ t

0

Φu
−(t, s)h−i (s)ds, −ωi−1 ≤ t ≤ 0.

and

P u
+(t)V +

i (t) = Φu
+(t, ωi)a

+
i +

∫ t

ωi

Φu
+(t, s)h+

i (s)ds, ωi ≥ t ≥ 0

P s
−(t)V −

i (t) = Φs
−(t,−ωi−1)a

−
i +

∫ t

−ωi−1

Φs
−(t, s)h−i (s)ds, −ωi−1 ≤ t ≤ 0.

Using (34) we end up with

‖P s
+(t)V +

i (t)‖ ≤ K · (‖a−i ‖ + ‖a+
i ‖ + ‖h−i ‖ + ‖h+

i ‖
)

‖P u
+(t)V +

i (t)‖ ≤ K · (‖a−i ‖ + ‖a+
i ‖ + ‖h−i ‖ + ‖h+

i ‖
)

and analogously

‖P s
−(t)V −

i (t)‖ ≤ K · (‖a−i ‖ + ‖a+
i ‖ + ‖h−i ‖ + ‖h+

i ‖
)

‖P u
−(t)V −

i (t)‖ ≤ K · (‖a−i ‖ + ‖a+
i ‖ + ‖h−i ‖ + ‖h+

i ‖
)
,

which proves the estimate (31) of the lemma. Similarly the other estimate can
be proved and we omit the details, see the appendix of [14]. �

6.2.1 The gluing procedure

In this section we construct the boundary terms a±j in such a way that the
solution Vj satisfies the boundary condition V +

j (ωj)− V −
j+1(−ωj) = H(−ωj)−

H(ωj). The next lemma is the key step in this direction.

Lemma 10
There exists some ω∗ > 0 such that for all ωi > ω∗ and for all (hi, bi) ∈
Xi−1,i × X̃ the linear equation

V̇ ±
i = A(t)V ±

i (t) + h±i (t)
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possesses a unique solution Vi = V̄i(hi, bi) ∈ X0
i−1,i such that

a+
i−1 − a−i = bi + P u

−(−ωi−1)V̄
−
i (h−i , a

−
i )(−ωi−1)

− P s
+(ωi−1)V̄

+
i−1(h

+
i−1, a

+
i−1)(ωi−1). (35)

Moreover, there exists a constant Ci > 0 independent of ωi, ωi−1, hi, bi with

‖V̄i(h
+
i−1, h

−
i , bi)‖ ≤ Ci(‖{hi}‖ + ‖{bi}‖)

Proof
We now want to look for unique (a+

i , a
−
i ) ∈ Rg(P u

+(ωi)) × Rg(P s
−(−ωi−1)) for

all i and ωi >> 0 such that

Ū+
i (ωi) = Ū−

i+1(−ωi),

where Ū±
i = H+ V̄ ±

i . For this purpose let us look only at the important choice

bi = bi(ωi) := H(−ωi) −H(ωi)

but in general the bi could be chosen arbitrarily. We look for ai = (a+
i , a

−
i )

such that

V̄ +
i (t;ωi, ai, hi)

∣∣
t=ωi

− V̄ −
i+1(t;ωi, ai+1, hi+1)

∣∣
t=−ωi

= bi,

where hi = (h+
i , h

−
i ) ∈ Xi−1,i. This condition is equivalent to

a+
i − a−i+1 = bi + P u

−(−ωi)V̄
−
i+1(−ωi) − P s

+(ωi)V̄
+
i (ωi). (36)

For ωi > 0 large enough this is the same as

a−i+1 = P̂i

(
bi + P u

−(−ωi)V̄
−
i+1(−ωi) − P s

+(ωi)V̄
+
i (ωi)

)
(37)

a+
i = (id− P̂i)

(
bi + P u

−(−ωi)V̄
−
i+1(−ωi) − P s

+(ωi)V̄
+
i (ωi)

)
.

Note that the separation of the terms a+
i , a

−
i+1 was actually the reason to define

the projection P̂i. The solutions V̄ ±
i depend on hi, ai in a linear way, so we

can write the last two equations in the form(
a−i+1

a+
i

)
= L1

(
a−i+1

a+
i

)
+ L2bi + L3

(
hi+1

hi

)
, (38)

where L1 ∈ L(Rg(P s
−(−ωi)) × Rg(P u

+(ωi))) =: L(Ei) is bounded. On account
of lemma 9 and in particular estimate (32) we conclude that ‖L1‖ → 0 as
ωi → ∞. Hence, (id − L1) ∈ L(Ei) is invertible if ωi > 0 is large enough. We
can therefore solve for (

a−i+1

a+
i

)

in equation (38) and we can define

V̄i(·) = V̄i(·, hi, hi−1, hi+1, bi−1, bi, ωi−1, ωi)
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with possible jumps at t = 0. �

We now want to solve the nonlinear problem

V ′(t) = A(t)V (t) + G(t, V (t)) (39)

for solutions V satisfying lemma 6. In order to do that we define the superpo-
sition operator Gi : Xi−1,i → Xi−1,i by

G−
i (V )(t) = G(t, V −

i (t)), −ωi−1 ≤ t ≤ 0,

G+
i (V )(t) = G(t, V +

i (t)), 0 ≤ t ≤ ωi.

We need the next lemma, which implies that the super-position map is Ck and
Lipschitz in a neighborhood of zero, which will be important in order to apply
the contraction mapping theorem in the sequel.

Lemma 11
For ωi, ωi−1 > 0 the mapping Gi : Xi−1,i → Xi−1,i is of class Ck. Moreover, for
each γ > 0 there are constants ε, C > 0 which do not depend on ωi, ωi−1 such
that

‖Gi(Vi)‖ ≤ γ‖Vi‖ + C|µ|,
‖DV Gi(Vi)‖ ≤ γ

for all ωi, ωi−1 > 0 and for all Vi ∈ Xi−1,i ∩Bε(0).

The proof of the lemma can found in [3] or the appendix of [14]. The next
lemma finally deals with the nonlinear equation (39).

Lemma 12
There exist constants ω∗, ε0, δ0 > 0 such that for all ωi > ω∗ and for all µ with
|µ| < δ0 the equation

V̇ (t) = A(t)V (t) + G(t, V (t)) (40)

with boundary condition

V +
i (ωi) − V −

i+1(−ωi) = H(−ωi) −H(ωi) (41)

has unique solutions V +
i , V

−
i+1 with Vi = (V +

i , V
−
i ) ∈ X0

i−1,i and ‖Vi‖ ≤ ε0.

Proof
Let us set

V̂i = V̂i(hi, hi+1, bi, ωi) = (V̄ +
i , V̄

−
i+1) ∈ Xi,

where Xi := C0([0, ωi],R
N×C0)×C0([−ωi, 0],RN×C0). We have then already

shown that

‖V̂i(h
±
i , h

−
i+1, bi)‖ ≤ Ci

(‖h−i ‖ + ‖h+
i ‖ + ‖h−i+1‖ + ‖bi‖

)
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if ωi is large enough and (hi, bi) ∈ Xi−1,i × X̃. From this estimate we readily
conclude that

‖V̂i(G−
i (V −

i ),G+
i (V +

i ),G−
i+1(V

−
i+1), bi(ωi))‖ ≤ ε∗

if Vi ∈ Xi−1,i for all i satisfies ‖Vi‖ ≤ ε, ε < 0 is small enough and ωi >> 0 is
large enough. Moreover, abbreviating

V̂i(V
−
i , V

+
i , V

−
i+1) = V̂i(G−

i (V −
i ),G+

i (V +
i ),G−

i+1(V
−
i+1), bi(ωi))

we have

‖V̂i(V
−
i , V

+
i , V

−
i+1) − V̂i(Ṽ

−
i , Ṽ

+
i , Ṽ

−
i+1)‖ ≤

ε#

(
‖Ṽ −

i − V −
i ‖ + ‖Ṽ +

i − V +
i ‖ + ‖Ṽ −

i+1 − V −
i+1‖

)

if Ṽj , Vj ∈ X0
i−1,i, j = i − 1, i, i + 1, are close enough to zero. Note that on

account of (38) the term bi drops out in the difference

V̂i(V
−
i , V

+
i , V

−
i+1) − V̂i(Ṽ

−
i , Ṽ

+
i , Ṽ

−
i+1).

Now consider the map

L : ⊕i∈ZXi −→ ⊕i∈ZXi

{Vi}i �→
{
V̂i(G−

i (V −
i ),G+

i (V +
i ),G−

i+1(V
−
i+1), bi(ωi))

}
.

Then L induces a Lipschitz map with small Lipschitz constant if ε is chosen
small enough; hence the equation

{Vj}j = L [{Vj}j]

possesses a fixed point {Vj} ∈ ⊕j∈ZXj and for convenience we write Vj =
(V +

j , V
−
j+1) for each j ∈ Z. By construction, (V +

j , V
−
j ) ∈ X0

j−1,j and every
(V +

j , V
−
j+1) satisfies the conditions (40), (41) of the lemma. �

We have therefore proved all statements of our main result, theorem 5, except
continuity of the jump-functions

ξi : (ω∗,∞) × (ω∗,∞) → Z̃ (42)

ξi : (ωi−1, ωi) �→ U−
i (0) − U+

i (0),

where U±
i = V ±

i +H . This will be done in the next lemma. We should point out
that this is not an easy task, since the proof strongly relies on time-rescalings
which contrary to the ODE-case lead to remarkable technical problems.

Lemma 13
For all i the function ξi is C0.
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Proof
Fix some vector {ωi}i with ωj > ω∗. Now choose a vector {β±

i }i ∈ RZ with
|β±

i | small enough for all i such that ωi(1 + β±
i ) > ω∗ for all i. Now consider

J+
i (ωi, βi)(t) := V +

i ((1 + β+
i )ωi)((1 + β+

i )t), 0 ≤ t ≤ ωi (43)

J−
i (ωi, βi)(t) := V −

i ((1 + β−
i )ωi−1)((1 + β−

i )t), −ωi−1 ≤ t ≤ 0

for βi = (β+
i , β

−
i ). Note that the J±

j are well-defined. Then J+
i solves

J̇(t) = (1 + β+
i )A((1 + β+

i )t)J(t) + (1 + β+
i )G((1 + β+

i )t, J(t)) (44)

and in order to prove the lemma it suffices to show that J±
i depends C1 on β±

i

near β±
i ≈ 0. In order to do that we want to identify again the J±

i as fixed
points of a certain integral equation. We will show then, that the fixed point
equation (and therefore its fixed points) depend continuously on β±

i . Let us
begin by analysing the linear part of (44).

The linear rescaled equation
Let us look at the equation

J̇(t) = (1 + β+
i )A((1 + β+

i )t)J(t).

This equation possesses an exponential dichotomy on R+ with projection P βi(t)
and solution operators Φβi,s

+ ,Φβi,u
+ given by

Φβi,s
+ (t, s) = Φs

+(at, as), Φβi,u
+ (s, t) = Φu

+(as, at), t ≥ s ≥ 0,

P βi(t) = Φβi,s
+ (t, t) = Φs

+(at, as),

where a := 1 + β+
i . In fact, let U ∈ RgP βi(t) ∩ X then J(t) := Φβi,s

+ (t, s)U
solves

J̇(t) = (1 + β+
i )

(A((1 + β+
i )t)J(t)

)
, J(s) = U.

In the next step we will consider the rescaled ”variation of constants-formula”.

The rescaled variation-of-constants formula
Since J+ solves (44) we have to look for fixed points J = J+ ∈ BC0 :=
BC0([0, ωi], X̃) of

J(t) = Φs
+(at, 0)Js

0 + a ·
∫ t

0

Φs
+(at, as)G(as, J(s))ds (45)

+ Φu
+(at, a · ωi)J

u
0 + a ·

∫ t

ωi

Φu
+(at, as)G(as, J(s))ds.

Here, Js
0 , J

u
0 ∈ X̃ ∩ (RN ×C1([−M,M ],RN )) on account of the specific choice

(29) and the remark after the proof of lemma 8. Let us now show, that the
right hand side of (45) defines a map from BC0 into itself which depends C0

on the parameter a. In order to show this we let J ∈ BC0 be arbitrary and
consider the term

a ·
∫ t

0

Φs
+(at, as)G(as, J(s))ds+ a ·

∫ t

ωi

Φu
+(at, as)G(as, J(s))ds. (46)
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Continuity with respect to time t
We want to prove that the term depends continuous on t for fixed a (note
that in the expression (46) the a-dependence coincides basically with the t-
dependence in a lot of places). Instead of considering (46) we study the ex-
pression

F δ(t) = a ·
∫ t

0

Φs
+(at, as)

(
g(s, a)

g(s, a) · l(δ)(·)
)
ds (47)

+ a ·
∫ t

ωi

Φu
+(at, as)

(
g(s, a)

g(s, a) · l(δ)(·)
)
ds,

where g(s, a) denotes the RN -component of G(s, J(s)) and where

l(δ)(θ) :=

{
2 · 2 1

(θ/δ)2−1 θ ∈ (−δ, δ)
0 else

for θ ∈ [−M,M ] and |δ| < M . Hence, for fixed δ > 0, (47) defines an element
in X for each fixed t. Moreover, the integral can be regarded as the usual
Riemann integral since the integrand is continuous when considered as a map
with values in X. We can now differentiate F δ(·) : R+ → Y and obtain

∂tF
δ(t) =

(
∂tf

δ(t)
∂tξ

δ(t, ·)
)

= a

(
g(t, a)

g(t, a)l(δ)(·)
)

+ aA(at)F δ(t) (48)

= a

(
g(t, a)

g(t, a)l(δ)(·)
)

+

(
aL(at)[ξδ(t, ·)]
a∂θξ

δ(t, ·)
)
.

Let us take a closer look at the second component of (48) first. Since F δ(t) ∈ X
for each fixed t, δ and therefore ξδ(t, 0) = f δ(t), we obtain from

∂tξ
δ(t, θ) = a · ∂θξ

δ(t, θ) + a · g(t, a)l(δ)(θ)

via the method of characteristics the identity

ξδ(t, θ) =

{
f δ(at+ θ) +

∫ θ

0
ag(t+ θ − η, a)l(δ)(η)dη t+ θ � 0

ξδ(0, θ + t) +
∫ t

0
ag(t, a)l(δ)(θ + t− η)dη, −M � t+ θ < 0.

(49)

Note that g(t, a)l(δ)(θ) → 0 in L2([−M,M ],RN ) as δ ↘ 0. Moreover, the
integral in (47) converges with respect to the Y -norm to the value

F 0(t) = a ·
∫ t

0

Φs
+(at, as)G(as, J(s))ds+ a ·

∫ t

ωi

Φu
+(at, as)G(as, J(s))ds

as δ ↘ 0. Let us write F 0(t) = (f(t), ξ(t, ·)). Convergence of (47) in Y implies
by definition that f δ(t) → f(t) for fixed t as δ ↘ 0. Therefore, we can pass to
the limit δ ↘ 0 in (49) and get

ξ(t, θ) = f(at+ θ) (50)
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as long as t+ θ � 0 and we extend f by f(t) := ξ(0, t) for −M ≤ t ≤ 0. Let
us now look at the (integrated) first equation of (48) in the limit δ ↘ 0; this
equation reads

f(t) = f(0) + a

(∫ t

0

g(s, a) + L(as)f(as + ·)ds
)

(51)

in view of (50). We can see in particular that f is a C1 function with respect to
t and fixed a, since g is continuous (but in general not C1). As a consequence,
F 0(t) (and therefore the right hand side of (47)) is continuous with respect to
t for every fixed a and J ∈ BC0.

Continuity with respect to a
Now let us write (46) in a slightly different form and consider∫ at

0

Φs
+(at, s)G

(
s, J

(s
ã

))
ds+

∫ at

bωi

Φu
+(at, s)G

(
s, J

(s
ã

))
ds. (52)

In fact, (52) coincides with (46) for the choices ã = a and b = a. Let us
therefore argue that (52) is continuous with respect to a, b, ã. We first observe
that (52) is continuous with respect to a, since it is continuous with respect
to t. Arguing as before, we can also see that (52) is continuous with respect
to (a, b) = (a, a) (i.e. b is replaced by a in the upper expression (52)). This
can again be seen by replacing the nonlinearity G by the modified one (as in
(47)) and arguing as before. Also the term (52) depends C0 on ã on account
of J ∈ BC0. Putting things together and replacing b, ã by a, we finally have
proved that (52) depends C0 on a for fixed t ≥ 0 and therefore also (46). The
fact that F 0(·) ∈ BC0 now depends C0 on a is standard and we omit it.
We have therefore proved the lemma, since also the remaining terms in (45)
are C0-with respect to a. �

Remark
At this stage we are only able to prove ξi ∈ C0 although we expect the jump
functions to be at least C1 with respect to ωi. In fact, by calculating the
leading order terms of the jump functions explicitly (which will be done in a
subsequent article) we can show even differentiability of the jump functions.

Finally, we want to find an explicit expression for the jump functions ξi.

Lemma 14
Letting U±

i = H + V ±
i we have the explicit expression

〈ξi(ωi−1, ωi),Ψ0〉Y =
〈
H(ωi−1), Ψ̃(−ωi−1)

〉
Y
−

〈
H(ωi), Ψ̃(−ωi)

〉
Y

+

∫ ωi

−ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉

Y
ds, (53)

where Ψ̃ denotes the unique nontrivial bounded solution of the adjoint equation
V̇ (t) = −A(t)∗V (t) and where Ψ0 ∈ Y is orthogonal to Rg(P s

+(0))+Rg(P u
−(0)).
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Proof
By definition we have

ξi = V +
i (0) − V −

i (0) = V s,0 + Φu
+(0, ωi)a

+
i +

∫ 0

ωi

Φu
+(0, s)G(s, V +

i (s))ds

− V u,0 − Φs
−(0,−ωi−1)a

−
i −

∫ 0

−ωi−1

Φs
−(0, s)G(s, V −

i (s))ds,

see also the equations (25) and (26). Projecting this value onto span〈Ψ0〉 gives

〈ξi,Ψ0〉Y =
〈
V s,0 − V u,0,Ψ0

〉
Y

+
〈
Φu

+(0, ωi)a
+
i ,Ψ0

〉
Y
− 〈

Φs
−(0,−ωi−1)a

−
i ,Ψ0

〉
Y

−
∫ ωi

ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉

Y
ds,

where explicitly

Ψ̃(t) =

(
ψ̃(t)

φ̃(t, ·)
)

=

{
Φu

+(0, t)∗Ψ0 : t ≥ 0
Φs

−(0, t)∗Ψ0 : 0 > t
(54)

Now since Ψ0 is perpendicular to Rg(P s
+(0)) + Rg(P u

−(0)) with respect to the
Y -scalar product, we obtain

〈ξi,Ψ0〉Y =
〈
a+

i , Ψ̃(ωi)
〉

Y
−

〈
a−i , Ψ̃(−ωi−1)

〉
Y
−

∫ ωi

ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉
− Y ds.

Now recall the definition of a±i in (36) and (35); as a consequence we obtain

〈ξi,Ψ0〉Y =
〈
H(ωi), Ψ̃(ωi)

〉
Y
−

〈
H(−ωi−1), Ψ̃(−ωi−1)

〉
Y

−
∫ ωi

ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉
ds,

which proves the lemma and therefore the last statement of theorem 5. �

7 Application: The existence of periodic solu-

tions

As an application of Lin’s method we want to prove the existence of periodic
solutions of the abstract equation (6) for c ≈ c∗ near the primary homoclinic
solution, whose period become unbounded. Note that such solutions induce
periodic waves

uj(t) = p(j + ct), j ∈ Z

of the LDE (1) for some periodic function p. We make an assumption which
we assume to be satisfied for the rest of this section.

Hypothesis 4
Let H(t) = (ψ(t), ψt) be a homoclinic solution of (18) for c = c∗ to the hyper-
bolic equilibrium zero and

codimY (E) := codimY

(
Rg(Φs

+(0, 0)) + Rg(Φu
−(0, 0))

)
= 1

where Φs
+,Φ

u
− denote the stable and unstable solution operators with respect

to an exponential dichotomy with respect to H .
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Remark
i) The last assumption is generic and implies that stable and unstable manifold
intersect only along the homoclinic solution near H(0).

We now consider two distinct scenarios. In the first case we investigate the
situation that the abstract equation is additional reversible. Afterwards, we
look at a general equation without symmetries.

7.1 Homoclinic period blow up

Let us make an additional assumption.

Hypothesis 5
Assume that the abstract equation (18) is reversible (in the sense explained
in section 4.3). Finally, assume that the homoclinic solution is symmetric and
without loss of generality let H(0) ∈ Fix(R).

As a consequence, there exists an involution R ∈ L(RN ) which defines the
reverser R via R(η, φ(θ)) = (Rη,Rφ(−θ)). In order to detect periodic solu-
tions near the primary homoclinic orbit, we will apply theorem 1 and look for
solutions ω > ω∗ of

ξ1(ω, ω) = U1
+(0) − U1

−(0) = 0.

In fact, any such zero ω induces a periodic solution of (2) of period ω. Note that
we can choose ξ1 to take values in an R-invariant, one-dimensional complement
Z̃ to Ẽ := E ∩ X̃, where E is defined in hypothesis 5. We now want to
assume further that there actually exists an element κ ∈ Fix(R) which spans
a complement of Ẽ; so we can choose

Z̃ := span 〈κ〉 . (55)

This would be a consequence in ordinary differential equations when the upper
hypothesis 4 are satisfied. In fact, if we could not find such an element κ then
the intersection of the tangent spaces of stable and unstable manifold would
be higher dimensional than 1 (see lemma 4 in [3]); contradicting the upper
hypothesis 4. Here, in the context of infinite dimensions, such an implication
is no longer obvious and we have to assume the existence of such an element
κ ∈ Fix(R). In order to see that ξ1(ω, ω) = 0 we define a function U on [−ω, ω]
via U(t) := U1

+(t) on [0, ω] and U(t) := U1
−(t) on [−ω, 0] (since actually ξj ≡ ξ1

for all j we also have U j
−(t) = U(t) on [−ω, 0] and U j

+(t) = U(t) on [0, ω]).
Then U is continuous. Let us now consider the function

Ũ(t) = RU(−t), t ∈ [−ω, ω].

Then Ũ1
+(t) := Ũ

∣∣
[0,ω]

, Ũ1
−(t) := Ũ

∣∣
[−ω,0]

satisfy all the conditions a)− e) of

theorem 5; hence, Ũ = U by uniqueness. It follows that

ξ1(ω, ω) = U1
+(0) − U1

−(0) = RU1
−(0) −RU1

+(0)

= −Rξ1(ω, ω) = −ξ1(ω, ω)
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on account of Z̃ ⊂ Fix(R). We therefore conclude that ξ1 ≡ 0 for all ω1 > ω∗.
Let us summarize this observation in the next theorem.

Theorem 6
Assume that the upper hypotheses 1 and 4,5 are satisfied. If there exists a
nontrivial element κ ∈ Fix(R), which is not contained in the subspace

Rg(Φs
+(0, 0)

∣∣
X̃

) + Rg(Φu
−(0, 0)

∣∣
X̃

)

of X̃, then there exists a ω∗ > 0 and a family of periodic waves uδ
i (t) =

pδ(i+ c∗t) of (1), where pδ is a periodic solution of (2) for all δ > 0. Moreover,
the orbit of pδ is close to the orbit of ψ and for δ ↘ 0 the period of pδ becomes
unbounded.

Remark
For ordinary differential equations this result is known as the blue-sky catastro-
phe.

7.2 Periodic solutions

In this section we want to address the existence of periodic solutions near the
homolinic solution H , when no underlying symmetries of the lattice are present
(which then would induce additional symmetries of the abstract equation (18)).
We assume the following.

Hypothesis 6
The element zero is an algebraically simple eigenvalue of the operator

L : H1(R,RN) → L2(R,RN)

(Lu)(t) := c∗ · ∂tu(t) −
M∑

j=−M

DjF (ψ(t−M), . . . , ψ(t+M))u(t+ j).

That is, we assume that ψ /∈ Rg(L).

We can now prove the following theorem, which is originally due to John
Mallet-Paret, see theorem C in [22]. However, since the result is probably not
well-known to the general audience and its proof provides a nice example how
to apply Lin’s method in a non-trivial way, we have decided to include the
result.

Theorem 7
If the hypotheses 1 and 4,6 are true, then for any ω > ω∗ there exists a traveling
wave speed c = c(ω) with limω→∞ c = c∗ such that the equation (1) possesses a
periodic wave uj(t) = p(j + ct), where p = pc depends on c. p = pc is periodic
with period ω and its orbit is close to the orbit of the primary homoclinic
solution ψ.

Proof
Let us first note that the proof of the existence of the jump functions trans-
lates verbatim to the case where equation (18) depends on a parameter. The
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construction then shows that the jump functions depend C2 on the parameter.
Let us now study the zero-set of the jump-function ξ1 = ξ1(ω, ω, c) for c ≈ c∗.
Note that

lim
ω→∞

ξ1(ω, ω, c∗) = 0.

Let us first show that ∂cξ �= 0 if ω > ω∗ is large enough. In order to prove this
it suffices to show that 〈

∂cV
1
+(0) − ∂cV

1
−(0),Ψ0

〉
Y
�= 0, (56)

where Ψ0 ∈ Y spans the orthogonal complement of Rg(Φs
+(0, 0))+Rg(Φu

−(0, 0))
in Y . Indeed, if (56) is true, then

∂cV
1
+(0) − ∂cV

1
−(0) /∈ Rg(Φs

+(0, 0)) + Rg(Φu
−(0, 0))

and therefore ∂cξ
∣∣
c=c∗

�= 0. In order to prove (56) note that by definition

V 1
+(0) − V 1

−(0) = V s,+ + Φu
+(0, ω)a+

1 +

∫ 0

ω

Φu
+(0, s)G(s, V 1

+(s), c)ds

− V u,− − Φs
−(0,−ω)a−1 −

∫ 0

−ω

Φs
−(0, s)G(s, V 1

−(s), c)ds, (57)

where a−1 and a+
1 are chosen to satisfy the boundary condition (41). Moreover,

by construction V s,+ and V u,− have been determined in such a way to ensure
V 1

+(0) − V 1
−(0) ∈ Z̃. More precisely, we recall that

V 1
+(0) − V 1

−(0) =
(
id −P Ẽs

+(0)+Ẽu
−(0)

)
Φu

+(0, ω)a+
1

+
(
id −P Ẽs

+(0)+Ẽu
−(0)

)[∫ 0

ω

Φu
+(0, s)G(s, V 1

+(s), c)ds

]

−
(
id −P Ẽs

+(0)+Ẽu
−(0)

)
Φs

−(0,−ω)a−1

−
(
id −P Ẽs

+(0)+Ẽu−(0)
)(∫ 0

−ω

Φs
−(0, s)G(s, V 1

−(s), c)ds

)
,

where P Ẽs
+(0)+Ẽu

−(0) : X̃ → X̃ projects onto the closed space Ẽs
+(0)+ Ẽu

−(0) along

Z̃ + span 〈F(H(0))〉. Let us make the following observations:

• We point out that also a+
1 , a

−
1 depend on c; fortunately we can neglect

this in our computation since one can show that

|∂ca
+
1 | + |∂ca

−
1 |

remains bounded as ω → ∞. As a consequence, the terms Φu
+(0, ω)∂ca

+
1

and Φs
−(0,−ω)∂ca

−
1 , which arise in (57) by differentiating with respect

to c then become arbitrarily small when ω → ∞. [One can check this
claim by considering the equation (37) (where one now has to take into
account that the V ±

i are solutions of a nonlinear equation rather than
a non-homogeneous linear equation) and solving for the a±1 using (38)].
Hence, we can neglect the terms involving a+

1 , a
−
1 .
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• The next term we are interested in is the term

∫ 0

ω

Φu
+(0, s)

{
∂2G(s, V 1

+(s), c∗)∂c(V
1
+(s))

∣∣
c=c∗

}
ds, (58)

where ∂2 denotes the derivative with respect to the V -component of G.
Again, since ‖∂c(V

1
+(s))

∣∣
c=c∗

‖X̃ stays bounded as ω → ∞, we observe

that (58) approaches zero as ω → ∞. Why? On account of property
e) in theorem 5 we know that V 1

+(s) approaches 0 uniformly on [0, ω] as
ω → ∞ (since V 1

+(s) +H(s) = U1
+(s)). As a consequence

∂2G(s, V+(s), c∗) → ∂2G(s, 0, c∗) = 0

uniformly with respect to s ∈ [0, ω].

Finally, we can then compute

〈
∂c(V

1
+(0) − V 1

−(0)),Ψ0

〉
Y

≈
〈∫ 0

ω

Φu
+(0, s)∂3G(s, V 1

+(s, c∗), c)
∣∣
c=c∗

ds,Ψ0

〉
Y

−
〈∫ 0

−ω

Φs
−(0, s)∂3G(s, V 1

+(s, c∗), c)
∣∣
c=c∗

ds,Ψ0

〉
Y

= −
∫ ω

−ω

〈
∂3G(s, V 1

+(s, c∗), c)
∣∣
c=c∗

, Ψ̃
〉

Y
ds

where we have set

Ψ̃(t) =

(
ψ̃(t)

φ̃(t, ·)
)

=

{
Φu

+(0, t)∗Ψ0 : t ≥ 0
Φs

−(0, t)∗Ψ0 : 0 > t

Now as ω → ∞ we have∫ ω

−ω

〈
∂3G(s, V 1

+(s, c∗), c)
∣∣
c=c∗

, Ψ̃
〉

Y
ds→

∫ ∞

−∞

〈
∂3G(s, 0, c)

∣∣
c=c∗

, Ψ̃
〉

Y
ds �= 0

on account of∫ ∞

−∞

〈
∂3G(s, 0, c)

∣∣
c=c∗

, Ψ̃
〉

Y
ds =

〈
∂cg(t, ψ(t+ ·), 0, c)∣∣

c=c∗
, ψ̃(t)

〉
L2(R,RN )

�= 0.

The latter is true on account of the hypothesis 6 and ∂cg(t, ψt, 0, c)
∣∣
c=c∗

=

C∂tψ(t) for some C �= 0. This shows that ∂cξ(ω, c)
∣∣
c=c∗

�= 0 if ω is large
enough. We can therefore apply the implicit function theorem of the appendix
to the function ξ(ω, c) =: ∂cξ(ω, c∗)[c− c∗] + h(ω, c− c∗) in order to conclude
all the assertions of the theorem (we apply the theorem with x := c, y = 1/ω).
�
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8 Discussion

In this section we discuss some generalizations of our results and provide an
outlook.

The importance of geometrical informations
From the last statement of theorem 5 we recall that after prescribed a small
error term γ, we can can choose the one-dimensional complement Z̃ = span <
φ̂ > is such a way that

ξ̃i(ωi−1, ωi) =
〈
H(ωi−1), Ψ̃(−ωi−1)

〉
Y
−

〈
H(ωi), Ψ̃(−ωi)

〉
Y

+

∫ ωi

−ωi−1

〈
G(s, V ±

i (s)), Ψ̃(s)
〉

Y
ds+ γ, (59)

where ξ̃i = ξi · φ̂. Note that the small error stems from the fact that we cannot
necessarily choose φ̂ := Ψ0, since Ψ0 may not lie in X̃. However, following the
ideas in the case of ordinary differential equations [14], we actually expect that
we can define jump functions in such a way such that

ξ̃i(ωi−1, ωi) =
〈
H(ωi−1), Ψ̃(−ωi−1)

〉
Y
−

〈
H(ωi), Ψ̃(−ωi)

〉
Y

+ o(e−ωi−1a) + o(e−ωib) (60)

for some suitable a, b ∈ R. This result is true in ordinary differential equations,
if the homoclinic solution approaches the steady state zero along its leading
eigendirections and the corresponding eigenvalues −ηs, ηu > 0 are simple and
real. In this case, in fact a = 2ηs and b = 2ηu . Note that a homoclinic
solution (ψ(t), ψt) of (6) approaches the steady in forward direction t → ∞
always along an eigendirection, since it lies on the stable manifold of zero and
a result of Mallet Paret applies, see proposition 7.2 in [21]. Hence, the infor-
mation of the way how the homoclinic solution ψ, and therefore H , approaches
the steady state as t → ±∞ plays a crucial role for the determination of the
zero set of the jump-functions. In the case where the leading eigenvalues are
real, the zeros of ξi can in fact be approximated by the zeros of the truncated
bifurcation function ξi (where the remainder on the right hand side of (60) are
truncated), see section 2.4 in [14]. The validation of these results in the case
of advance delay equations will be the contens of a subsequent paper.

Heteroclinic chains
In fact, our main theorem 5 is true for more general scenarios. For example,
we may consider a heteroclinic chain Hj of heteroclinic solutions of (18) where
{Hj}j connects the steady states Qj and Qj+1. By applying the same pro-
cedure we can then generically find solutions Uj = (U−

j , U
+
j ) ∈ X0

j−1,j which
satisfy all the conditions a) − e) in theorem 5 with respect to the heteroclinic
solution Hj and a j-dependent Poincaré-section Σ̃j . In particular, the dimen-
sion of the space Z̃ = Z̃j now depends on the heteroclinic solution Hj and
may differ for different j. For precise statements of these results in the case of
ordinary differential equations see [14, 3] and [26, 27]. We have restricted our
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attention in this article to the case of a homoclinic ”chain” Hj := H for all j
for the sake of presentation.
In applications, another trivial case may arise if we consider a reversible LDE
like the Klein Gordon lattice, which possesses one heteroclinic solution H con-
necting two steady states Q1, Q2 ∈ Fix(R). In this case the reverser R and
H induce a second heteroclinic solution H̃(t) = RH(−t) providing a simple
heteroclinic chain. An application of theorem 5 to such a scenario may now
provide the existence of large periodic solutions in some cases by adapting
ideas from the proof of theorem 7. In fact, results in this spirit have been
achieved in [22] and [11].

9 Appendix: A variant of the implicit function

theorem

In this section we recall and a variant of the implicit function theorem that is
useful in the case where a base point is missing.

Theorem 8
Let X ,Y ,Z be Banach spaces and U ⊂ X , V ⊂ Y open subsets with 0 ∈ U .
Assume that f : U × V → Z is given by f(x, y) = Λ(y)x − h(x, y), where
Λ(y) ∈ L(X ,Z) for all y ∈ V . Moreover, assume the following

i) The linear map Λ(y) is invertible for all y ∈ V .

ii) There exists a constant K1, such that ‖Λ(y)−1‖L(Z,X ) ≤ K1 for all y ∈ V .

iii) There is a positive constant R, such that for all x, x̄ ∈ U with ‖x−x̄‖ ≤ R
and for each y ∈ V it is true that

‖h(x, y) − h(x̄, y)‖ ≤ 1

2K1
‖x− x̄‖.

iv) There is a positive constant R1 > 0 such that ‖h(0, y)‖ ≤ R
2K1

for all
y ∈ V with ‖y‖ ≤ R1.

Then there is a map x∗ : {y ∈ V : ‖y‖ ≤ R1} → {x ∈ U : ‖x‖ ≤ R} with
f(x∗(y), y) = 0. Moreover, for ‖x‖ ≤ R and ‖y‖ ≤ R1 the equation f(x, y) = 0
is true if and only if x = x∗(y).

Proof
Consider the map g : U × V → Z defined by

g(x, y) := Λ(y)−1h(x, y)

and note that g(x, y) = 0 exactly if h(x, y) = 0. For ‖x− x̂‖ ≤ R we compute
that

‖g(x, y) − g(x̂, y)‖ ≤ ‖Λ(y)−1(h(x, y) − h(x̂, y))‖ ≤ K1 · 1

2K1
‖x− x̂‖
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by ii) and iii). Thus in order to apply the contraction-mapping theorem we
have to show that g(·, y) maps the ball {x ∈ U : ‖x‖ ≤ R} into itself for all
y ∈ V with ‖y‖ ≤ R1. Indeed, we have for any x with ‖x‖ ≤ R

‖g(x, y)‖ ≤ ‖g(x, y) − g(0, y)‖+ ‖g(0, y)‖ ≤ K1 · ‖x‖
2K1

+K1
R

2K1
≤ R

Hence, we can apply the uniform contraction mapping theorem to conclude
the theorem. �
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